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Neutron matter at low density and the unitary limit
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Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the
range of Fermi momentum kF between 0.4 and 0.8 fm−1. It is found that the Equation of State is determined by
the 1S0 channel only, the three-body forces contribution is quite small, the effect of the single particle potential
is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small
at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to
one half of the free gas value throughout the considered density range. A rank one separable representation
of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results
almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of
the calculations below kF = 0.4 fm−1 does not indicate any pathological behavior of the neutron matter equation
of state.
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I. INTRODUCTION

The crust of neutron stars is composed of a solid lattice
of nuclei, whose masses and neutron excess increase as one
proceeds from the surface to the interior [1]. This is due to the
increase of the matter density and of the corresponding electron
density, which shifts the beta equilibrium toward larger and
larger nuclear asymmetry. At a definite density nuclei start to
drip neutrons since their chemical potential turns positive. The
inner crust is then formed by a nuclear lattice permeated by a
gas of neutrons. From the drip point on, the neutron gas density
increases, starting in principle from a vanishing small value,
up to the point where nuclei merge and possibly form more
complicated structures and finally a homogeneous matter of
neutrons and protons appears. This is one of the main reasons
of the great interest that has been devoted to the study of
the equation of state (EOS) of pure neutron matter. The low
density region is less trivial than one could expect at a first
sight since the neutron-neutron scattering length is extremely
large, about −18 fm, due to the well known virtual state in the
1S0 channel, and therefore even at very low density one cannot
assume the neutrons to be uncorrelated. These considerations
have also stimulated a great interest in the so called unitary
limit, i.e., the limit of infinite (negative) scattering length of a
gas of fermions at vanishing small density. A series of works
[2–4] have been presented in the literature based on various
approximations and a recent Monte Carlo calculation [5] on
a related physical system has shown that the unitary limit can
present a quite complex structure, involving both fermionic
and bosonic effective degrees of freedom, which has still to be
elucidated. Variational [6] and finite volume Green’s function
Monte Carlo calculations [7] for neutron matter at relatively
low density have shown that the EOS, in a definite density
range, can be written as the free gas EOS multiplied by a factor
ξ , which turns out to be close to 0.5. This is actually what
one could expect in the unitary limit regime, since no scale
exists in this case, except the Fermi momentum. Monte Carlo
calculations [2–4] with schematic forces in a regime close to
the unitary limit have found a factor ξ ≈ 0.44. The connection

between the variational results and the unitary limit has been
studied in Ref. [8] by means of effective theory methods.

In this paper we present results on pure neutron matter
EOS based on the hole-line expansion of Bethe, Brueckner,
and Goldstone (BBG) [9], which is particularly suited for
the low density regime. We use a realistic force, as specified
below, and we show that at the lowest density a rank one
separable representation of the neutron-neutron interaction,
which incorporates the physical values of the scattering length
and effective range, is able to reproduce accurately the EOS
obtained with the full glory NN interaction. The extension of
the calculations to very low density is also discussed.

II. THE IN MEDIUM G-MATRIX

Since the scattering length a and effective range r0 in the
1S0 channel of the neutron-neutron interaction differ by about a
factor 6, there is no density interval where the unitary limit can
be considered strictly valid. However, in the range r0 < d <

|a|, where d is the average interparticle distance, the physical
situation should be the “closest” possible to the unitary limit.
For the sake of comparison we first restrict the analysis to the
density range corresponding to 0.4 fm−1 < kF < 0.8 fm−1,
which falls in this range and corresponds to densities between
about 1/50 and 1/5 of the saturation density. As a modern
realistic nucleon-nucleon potential we choose the Argonne
v18 interaction [10]. From the three-body force of the Urbana
model, adjusted to reproduce the correct saturation point [11],
we found a contribution which is less than 0.01 MeV, and
therefore we neglect three-body forces hereafter.

The basic quantity in the BBG expansion is the Brueckner
G-matrix, which satisfies the integral equation

〈k1k2|G(ω)|k3k4〉 = 〈k1k2|v|k3k4〉 +
∑
k′

3k
′
4

〈k1k2|v|k′
3k

′
4〉

× (1 − �F (k′
3))(1 − �F (k′

4))

ω − ek′
3
− ek′

4

×〈k′
3k

′
4|G(ω)|k3k4〉. (1)
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FIG. 1. Two and three hole-line diagrams for the ground state
energy in terms of the G-matrix (wiggly lines).

The intermediate states are particle states, and this is
indicated in Eq. (1) by the two Pauli projection factors 1 −
�F (k), being �F (k) the Fermi distribution at zero temperature.
The entry energy ω is specific of each diagram where the
G-matrix appears. At the two hole-line level of approximation,
the diagrams which contribute are the ones indicated by labels
(a) and (b) in Fig. 1 (first row), where the wiggly line indicates
the Brueckner G-matrix.

They correspond to the Brueckner-Hartree-Fock (BHF)
approximation. For these diagrams the entry energy is just
the energy of the two interacting particles. It is remarkable
that even at the relatively low densities we are considering
the inclusion of the Pauli projection in the intermediate states
produces the overwhelming dominant in medium effect. This
is illustrated in Fig. 2, where the diagonal G-matrix in the
1S0 channel is reported in comparison with the corresponding
free T-matrix (divided by 3) at selected values of the relative
momentum k and total momentum P (in fm−1) at the Fermi
momentum kF = 0.4 fm−1.

Of course, due to Galilei invariance, the free T-matrix
is independent of P . For simplicity the free single particle
spectrum (kinetic energy) is adopted in these calculations, but,
as we will see, this is not a serious restriction. Despite the
Fermi momentum is quite small, a drastic difference between
the two scattering matrices is apparent, not only in shape but
also in absolute value. The Pauli operator effect is enhanced
in this particular channel since the virtual state is suppressed
in the medium, as we will discuss later in detail. The arrows
indicate the upper limit of the momentum integration needed
for calculating the interaction energy. To be noticed is also
the pairing singularity at the Fermi momentum and for small
total momentum P . This singularity is integrable and can be
handled without numerical problems. This means of course
that we are neglecting the pairing condensation energy, which
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FIG. 2. Comparison between the free T-matrix and the Brueckner
G-matrix at different total momentum P and relative momentum k

(in fm−1) at the Fermi momentum kF = 0.4 fm−1. The arrows indicate
the upper limit of the momentum integration needed for calculating
the interaction energy.

is however negligible in this density range. In any case we are
going to compare in a coherent fashion only calculations that
neglect the pairing contribution.

Since s-wave dominates at low density, the in medium mod-
ification of the G-matrix in the 1S0 channel has a profound and
essential effect on the EOS. Indeed, higher partial waves give
a negligible contribution to the interaction energy. In practice
the calculation of the EOS at the BHF level of approximation
reduces to a single channel problem in the considered density
range (or below). The inclusion of higher partial waves would
not alter at all our analysis and conclusions.

In the BBG expansion an auxiliary single particle potential
U (k) is introduced. Then the single particle energy reads

e(k) = h̄2k2

2m
+ U (k) (2)

and the potential U (k) is determined in a self-consistent way
in terms of the Brueckner G-matrix

U (k) =
∑
k′<kF

〈kk′|G(
ek1 + ek2

)|kk′〉, (3)

The auxiliary potential is essential to get convergence in
the BBG expansion [9,12]. However in the low density regime
we are considering we found that its effect on the G-matrix
is negligible, at least within the accuracy we need for the
considerations developed in the present work. This does not
mean that we can neglect U (k) altogether, since, as we will see,
at the three hole-line level of approximation its effect through
the “U -insertion” diagram is of some relevance.
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III. THE THREE HOLE-LINE CONTRIBUTION AND
THE EOS

The BBG expansion relies on the basic idea that the
contributions of the diagrams of the expansion decrease with
increasing number of hole-lines which are included. Despite
that BBG is essentially a low density expansion, it has been
found [13,14] that the convergence is valid up to densities
as high as few times saturation density in symmetric nuclear
matter and even better in neutron matter. It is then likely that
at the low densities we are here considering this convergence
should be even faster. This is indeed confirmed by explicit
numerical calculations reported below. The three hole-line
diagrams can be summed up by means of the Bethe-Fadeev
equation [15], which introduces the in medium three-body
scattering matrix T (3). It is the analogous for three particles
of the in-medium two particle G-matrix. The Bethe-Fadeev
integral equation for T (3) is also very similar to the integral
equation for the G-matrix, where however in the kernel the
G-matrix appears in place of the bare NN interaction. This
is in line with the BBG expansion, where the bare NN

interaction is systematically replaced by the G-matrix in all
the diagrams. In terms of T (3) the contribution to the energy
of the three hole-line diagrams can be depicted as in Fig. 1(f),
and it includes a direct and an exchange contribution. For
numerical convenience the diagrams with three G-matrices
only are usually separated from the diagrams with a larger
number of G-matrices, which will be indicated as “higher
order” three hole-line diagrams. The lower order diagrams are
depicted in Fig. 1, together with the U -insertion diagram which
contributes at this level of approximation. They are indicated
as “bubble diagram” (c), U -insertion diagram (d), and “ring
diagram” (e). Diagram (e) can be considered the exchange of
diagram (c).

The different three hole-line contributions to the interaction
energy are reported in Table I at different densities.

The overall three hole-line diagrams contribution D3 is
positive in this density range and reaches a maximum around
kF ≈ 0.7 fm−1. This is in line with the calculations at higher
density, where D3 turns actually negative above a certain
density. The absolute value of D3 can be considered small with
respect to the two hole-line contribution D2, but maybe it is not
completely negligible. In any case it is regularly decreasing
with density and at the lowest densities it becomes indeed
negligible. As it is well known from previous calculations, at

TABLE I. Three hole-line contributions to the neutron matter
EOS. D3 is the total three hole-line contribution, B is the “bubble
diagram” of Fig. 1(c), BU is the U-insertion diagram of Fig. 1(d),
R is the “ring diagram” of Fig. 1(e), and H indicates the “higher
order” diagrams, as defined in the text. Energies are in MeV.

kF (fm−1) D3 B BU R H

0.4 0.023 −0.630 0.485 0.156 0.012
0.5 0.091 −0.416 0.389 0.122 −0.004
0.6 0.107 −0.526 0.515 0.123 −0.005
0.7 0.153 −0.611 0.648 0.121 −0.005
0.8 0.148 −0.592 0.651 0.095 −0.006

densities higher than the ones considered here, the smallness of
D3 is the result of a strong compensation among the different
contributions. While the “higher order” terms, as defined
above, can safely be considered negligible, the absolute values
of the bubble and U -insertion diagrams, and, to a less extent,
also the ring diagram are individually not negligible, but their
cancellation reduces by a large factor their overall contribution.
The smooth variation of each of these diagrams with density
makes the full three hole-line contribution decrease by almost
one order of magnitude from the highest to the lowest density.

We take this result as an indication of the convergence of the
BBG hole-line expansion and we will assume in the following
that the total contribution of the diagrams with a number of
hole-lines larger than three can be neglected. To this respect it
has to be noticed that the bubble and U-insertion diagrams have
opposite sign and their absolute values must become closer
and closer at lower density. In fact their absolute values are not
equal because the G-matrix of the bubble diagram is “off shell,”
while the the G-matrix which defines the potential U (k) of
Eq. (3), as appearing in the U -insertion diagram, is “on shell”.
In other words the entry energies of the two G-matrices, which
are attached to the particle line on the right in Fig. 1(c) and in
Fig. 1(d), are different in the two diagrams. However, it can be
easily seen that the difference between these two entry energies
is a quantity proportional to the Fermi energy, and therefore
vanishing small at low enough density. The cancellation is
therefore expected and clearly apparent from the results of
the explicit calculations. It can be concluded that the three
hole-line contribution further down in density can be safely
neglected.

IV. DISCUSSION

In the BBG expansion the EOS is given by the sum of the
free kinetic energy and the interaction energy discussed above.
It is reported in Fig. 3, where we also show the neutron matter
EOS estimated in Ref. [8] and the variational calculation of
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FIG. 3. Neutron matter EOS calculated within the BBG method
(label G), within the variational method of Ref. [6] (triangles),
according to the estimate of Ref. [8] (dotted line) and with the
separable representation of the G-matrix (label G sep). The dash-
dotted line is one-half of the free gas EOS.
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Ref. [6]. The contribution of the three hole-line diagrams is
hardly visible in the plot and it is neglected.

For comparison we also report the value of the free kinetic
energy divided by a factor 2. As already noticed in Ref. [7],
these values stay surprisingly close to the full microscopic
EOS. The agreement seems to indicate that indeed the total
energy is a function only of the Fermi momentum kF , as
expected in the unitary limit. In the latter case, however, Monte
Carlo calculations [2–4] suggest a factor 0.44 rather than the
value 0.5 found in our calculations. As noticed previously,
the unitary limit is not actually valid in neutron matter and
the reason of such an agreement must be found in some
other more general considerations. To clarify this point we
take advantage on the above described results that the EOS is
determined to a good accuracy only by the G-matrix in the 1S0

channel calculated with the free single particle spectrum. We
then construct a rank one separable representation of the bare
interaction which gives a free T-matrix, also separable, with
the known scattering length and effective range of the neutron-
neutron interaction in this channel and it actually depends
only on these two physical quantities. The corresponding
in-medium G-matrix will be also separable and will depend in
addition on the Fermi momentum. If we take, for simplicity,
a Laurentzian form factor

φ(k) = 1/(k2 + b2) (4)
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FIG. 4. Diagonal on shell G-matrix (full line) and the correspond-
ing separable representation (dot-dashed line) at selected values of
the total momentum P and relative momentum k and at the Fermi
momentum kF = 0.4 fm−1. The arrows have the same meaning as in
Fig. 2.

to be used for the bare neutron-neutron interaction, the
diagonal on-shell T-matrix can be written

〈k|T |k〉 = a/[1 + u(u + 2 − β)/(1 + β)], (5)

where u = k2/b2 and the parameters b and β are determined
by the relationships

a = 1

b

(
2β

1 + β

)
; r0 = 1

b

(
β − 2

β

)
. (6)

The values a = −18.5 fm and r0 = 2.7 fm are used in
the present calculation. More details can be found in the
Appendix. For large enough values of b, i.e., small value
of r0, the separable representation is physically equivalent
to a zero range interaction with a smooth cutoff. However,
the representation is valid in the general case. In principle
the effective range expansion holds at small values of the
momentum k, more precisely for k2 � (ar0)−1. However,
if the scattering is dominated by the virtual state of the
neutron-neutron 1S0 channel, the separable representation can
be valid in a wider range of momenta. The function φ(k)
can be then interpreted as the form factor for the quasibound
state (which is actually related to the corresponding Gamow
state [16,17]).

The in-medium G-matrix corresponding to the separable
representation can be written as in Eq. (5), where however in
the denominator an additional term appears, whose explicit
expression is given in the Appendix. The accuracy of the
separable representation can be appreciated in Figs. 4, 5, and 6,
where the exact (full line) and separable (dashed line) diagonal
on-shell G-matrices at different densities and momenta are
compared. The arrows have the same meaning as in Fig. 2.
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FIG. 5. Same as in Fig. 4, but at kF = 0.6 fm−1.
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FIG. 6. Same as in Fig. 4, but at kF = 0.8 fm−1.

As expected, no virtual state is present for the G-matrix and
correspondingly the in-medium scattering length is strongly
modified. As argued in Ref. [7], it becomes of order k−1

F , while
the effective range is substantially reduced (see Appendix).
Since the phase space present in the calculation of the
interaction energy is proportional to k3

F , this can be a possible
explanation of the k2

F dependence of the binding energy per
particle [7], despite neutron matter is not strictly in the unitary
limit regime. The reduction of the total energy with respect to
the free gas value EFG by a factor so close to 2 is of course not
easy to explain in simple terms. The EOS calculated with the
separable G-matrix is reported in Fig. 3. It is indistinguishable
with respect to the calculation with the exact G-matrix. This
shows that the bare interaction is mainly determined by the
virtual state (as embodied in the scattering length and effective
range values) and its in-medium suppression is the mechanism
which supersedes at the neutron matter EOS in the low density
regime.

In Fig. 3 we also report the EOS obtained within the
variational method in Ref. [6] as well as the result of the
approximate estimate of Ref. [8], based on effective theory
methods. Some discrepancy is present at the higher densities,
but all the EOS seem to converge closely at the lower densities,
maybe with the variational results slightly apart. Actually
the variational calculation was performed with a different
bare interaction, the Urbana v14 [6]. However, we checked
that the EOS calculated within the BBG method with this
different interaction is indistinguishable from the one reported
in Fig. 3. This is in line with the fact that the interaction is
determined solely by the scattering length and the effective
range, as the present analysis with the separable interaction
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FIG. 7. Neutron matter EOS compared with the free gas one EFG

and with EFG/2.

clearly indicates. The discrepancy is therefore not due to
the different interactions used but to the different adopted
many-body methods. The variational results are indeed slightly
above the BBG results.

On the basis of the results of our analysis, it is possible to
extend the calculation of the EOS below kF = 0.4 fm−1, just
by using only the separable G-matrix, since then the separable
representation is even more accurate. In Fig. 7 the EOS is
reported in comparison with 1

2EFG.
One can see that deviations start now to appear, which

indicates that the simple rule of a factor 1/2 is valid only in
a limited range of density, where indeed the neutron matter
is “closest” to the unitary limit. Indeed the deviations start
to appear for kF r0 < 1. Outside the considered range 0.4 <

kF < 0.8 fm−1 the total energy is not 1
2EFG and even not

proportional to k2
F . At decreasing density the EOS is merging

into the free gas EOS, but this happens only at extremely
low values, approximately in agreement with the condition
kF |a| � 1. At these very low density pairing could be of some
relevance, but it cannot affect appreciably the total energy
since, once again, the unitary limit is not reached.

V. CONCLUSIONS

In this paper we have established the pure neutron matter
EOS on the basis of the BBG many-body theory. We found
that the EOS is determined with high accuracy by the G-matrix
in the 1S0 channel only. In the range of density corresponding to
the Fermi momenta 0.4 < kF < 0.8 fm−1 the EOS turns out to
be very close to the value 1

2EFG, where EFG is the free Fermi
gas EOS. In this density range the condition 1/|a| < kF /α <

1/r0 is satisfied, with α = 2(9π/4)
1
3 and α/kF is the average

distance between particles. Here the scattering length a and
the effective range r0 are the ones of the 1S0 neutron-neutron
channel. We interpret this results as an indication that neutron
matter in this density range is in some way “close” to the
unitary limit, even if such limit is strictly not reached. In fact,
for the unitary limit Monte Carlo calculations [2–4] predict that
the corresponding EOS should be approximately 0.44EFG.
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A rank one representation of the neutron-neutron interaction,
which is determined only by the scattering length and effective
range, proves to be extremely accurate in reproducing the
G-matrix and the EOS. Below kF = 0.4 fm−1 the EOS is not
given by 1

2EFG and in the low density limit, when kF |a| �
1, it approaches smoothly the free gas EFG. Above kF =
0.8 fm−1 the EOS is not any more dominated by the s-wave part
of the NN interaction. As more complete calculations have
shown [13,14], in this case the EOS has no simple behavior.

APPENDIX

In this appendix we give some details about the separable
form of the neutron-neutron interaction in the 1S0 channel
and the corresponding in-medium G-matrix suitable in the
low density region as discussed in the paper. The rank-one
representation of the interaction is written as

(k′|v|k) = λφ(k′)φ(k), (A1)

where the form factor φ(k) is given by Eq. (4). The corre-
sponding scattering T-matrix in free space can be evaluated
following the standard procedure for separable interactions

(k′|T (ω)|k) = λφ(k′)φ(k)/[1 − 〈φ|G0(ω)|φ〉], (A2)

where G0 is the free Green’s function and ω is the entry
energy. With our choice of the form factor the integral for
evaluating the matrix element of the denominator can be
performed analytically. The separable interaction and the
corresponding T-matrix depend only on the two parameters
λ and b. Expanding the diagonal (k′ = k) T-matrix for low
momenta and on-shell, i.e., at the kinetic energy ω = k2/2µ,
one can relate these two parameters to the scattering length
a and effective range r0 of the original neutron-neutron

interaction. This finally gives Eq. (6) and the expression for
the T-matrix in Eq. (5).

Going to the in-medium G-matrix, one has simply to modify
the integral for the evaluation of the matrix elements of the free
Green’ s function by restricting the integration above the Fermi
surface. Still the integral can be done analytically, and the final
expression reads

(k|G(P, kF )|k) = 1
/[(

1/a − 1
2 r0k

2 + 1
2k4

/
(b3β)

)
+A(k, P, kF )

]
. (A3)

Neglecting the term A(k, P, kF ) in the denominator, one
recovers the free T-matrix of Eq. (5). The medium effects
are embodied in A, which reads

A = − 1

πb
(b2 − k2) arctan

(
kF + P/2

b

)

+ 1

π
k log

(
k + kF + P/2

−k + kF + P/2

)
+ 1

πP

(
k2
F − P 2/4 − k2

)

× log

∣∣∣∣ (kF + P/2)2 + b2

k2
F − P 2/4 + b2

· k2
F − P 2/4 − k2

(kF + P/2)2 − k2

∣∣∣∣ , (A4)

where P is the total momentum of the two particles. Expanding
the G-matrix at small momentum and at P = 0, one can obtain
the in-medium scattering length a′ and effective range r ′

0. They
read

a′ = a

/ (
1 − ab

π
arctan

(
kF

b

))
≈ − π

2kF

; (A5)

r ′
0 ≈ r0 − 4

πkF

. (A6)

The expression for r ′
0 is obtained assuming k � kF , so it

cannot be considered at too low density.
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