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We study the properties of open-charm mesons (D and D) in nuclear matter at finite temperature within a
self-consistent coupled-channel approach. The meson-baryon interactions are adopted from a type of broken
SU(4) s-wave Tomozawa-Weinberg term supplemented by an attractive scalar-isoscalar interaction. The in-
medium solution at finite temperature incorporates Pauli blocking effects, mean-field binding on all the baryons
involved, and 7 and open-charm meson self-energies in a self-consistent manner. In the D N sector, the A, and X,
resonances, generated dynamically at 2593 and 2770 MeV in free space, remain close to their free-space position
while acquiring a remarkable width due to the thermal smearing of Pauli blocking as well as from the nuclear
matter density effects. As aresult, the D meson spectral density shows a single pronounced peak for energies close
to the D meson free-space mass that broadens with increasing matter density with an extended tail particularly
toward lower energies. The D potential shows a moderate repulsive behavior coming from the dominant I = 1
contribution of the DN interaction. The low-density theorem is, however, not a good approximation for the D
self-energy in spite of the absence of resonance-hole contributions close to threshold in this case. We speculate
the possibility of D-mesic nuclei as well as discuss some consequences for the J/W suppression in heavy-ion

collisions, in particular for the future CBM experiment at FAIR.
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I. INTRODUCTION

The interest in the open and hidden charmed mesons within
the context of relativistic nucleus-nucleus collisions was trig-
gered about 20 years ago. More specifically, the suppression of
the J /W production was predicted as a rather clear signature of
the formation of quark-gluon plasma (QGP) in ultrarelativistic
central nucleus-nucleus collisions in Ref. [1]. According
to its authors, a Debye-type color screening in the gluon
exchanges blocks the formation of charmonium (c¢) bound
states. Then, starting about 10 years later, the NA50 and NA60
Collaborations [see, for example, Refs. [2-5], in the CERN
Super Proton Synchrotron (SPS) fixed target experiments]
actually claimed to have observed such a suppression in Pb+Pb
collisions at ~#160A GeV. On the start of the Brookhaven
Relativistic Heavy Ion Collider (RHIC) heavy nucleus collider
a little more than 6 years ago with, say, the central collision of
Au+-Auat \/syy = 200 GeV, a new set of exciting results has
gradually come out, such as an apparent energy independence
of the J/W suppression [6] as compared with the SPS
result with ,/syy = 17 GeV. Firmly establishing the origin
of this charmonium suppression as due to the formation of
the QGP appears to need more careful analyses of the data.
However, if formed in such ultrarelativistic collisions, the QGP
would correspond to the one with a rather high temperature:
T > T,, where the critical temperature extracted from recent
quantum chromodynamics (QCD) lattice simulation [7] is
T, ~ 175 MeV with a low-baryon number density pp (or
chemical potential pp), supposedly similar to the situation
during the initial Big Bang period. This part of the T — up
phase diagram of the hadronic/partonic matter will continue
to be the major subject of further intense activities at RHIC
as well as at the CERN LHC facility (expected at
5 TeV for Pb+Pb).
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Equally interesting as well as important is the somewhat
complementary region of the phase diagram that is character-
ized by a moderate temperature but with large pp. According
to recent lattice simulations (see, for example, Ref. [8]),
here a highly compressed hadronic matter gets transformed
into a dense partonic matter (or strongly interacting QGP)
where the boundary of the two phases is characterized by a
first-order phase transition, as opposed to the above-mentioned
RHIC-type hadron <> QGP transition which the calculation
has found as a smooth crossover (see also a so-called Polyakov
loop extended NJL (PNJL) approach to the subject [9]). The
CBM (compressed baryon matter) experiment of the FAIR
project at GSI aims at investigating an important portion of
this moderate T and large g part of the phase diagram by a
high-intensity beam of, for example, uranium nuclei of up to
35A GeV that overlaps with the SPS energy. In this way one
may expect to study possible modifications of the properties
of various mesons in dense baryonic matter. In particular,
because the charmed mesons produced at FAIR will not be
at high energies but could be close to threshold, their medium
modification may be significative. This should apply equally to
the production of open-charm mesons such as D and D as well
as to hidden charmed mesons: charmonia. For the latter, one
will be able to study the possible suppression and regeneration
of the J/W at moderate energies by mechanisms that may
be of conventional hadronic origin or due to deconfinement
but different from the high 7(QGP) color screening scheme
proposed in Ref. [1] and being sought by the far higher energy
RHIC accelerator, as stated earlier.

Our present interest is in relativistic heavy-ion collisions
that fit into some part of the domain of the phase diagram
covered by the FAIR project. In particular, we focus on
hadronic approaches to the in-medium modification of the
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D(D) mesons that may (i) enter the explanation of the possible
J/W suppression in relativistic nucleus-nucleus collisions,
see, for example, Ref. [10], with special interest in the FAIR
energies; (ii) provide a theoretical support for an anticipated
open-charm enhancement again within the FAIR energies [11],
an issue that was triggered by the NAS50 Collaboration but
was not recognized by the NA60 result, see Ref. [12]; and
(iii) infer possible D°, D—, D° bound states in heavy nuclei
such as Pb [13].

Here we should stress that all these interpretations/
predictions are based on the possible attraction felt by the
D(D) mesons which could lead to their mass reduction
in the nuclear medium [13-16]. For example, within these
mostly hadronic pictures, the J/W absorption by collision
with nucleons and mesons was suggested to take place at little
or no extra cost of energy due to the lowering of the threshold
for D D pairs, facilitating reactions of the J/ W with comoving
mesons, suchas J/¥r — D D.Inasimilar manner, processes
such as J/WN — DY,, where Y. is one of the charmed
baryons, may proceed more easily. A critical and detailed
review of these mean-field approaches was made in Ref. [17],
which eventually points to the necessity of performing a
coupled-channel meson-baryon scattering in nuclear medium
due to strong coupling among the D N and other meson-baryon
channels with same quantum numbers. Hence, in the present
article, we pursue a coupled-channel study on the spectral
properties of the open-charm D and D mesons in nuclear
matter at finite temperatures. In this regard, we want to
remark that kinetic equilibrium assumed in the corresponding
heavy-ion reactions to introduce a well-defined temperature
may yet to be firmly established, although, as pointed out in
Ref. [11], nonequilibrium transport equation methods appear
to support the thermalization picture [18-20] at SPS energies.
To set the basis, we should mention here earlier prototypes
of the present study. First, a coupled-channel approach based
on a set of separable meson-baryon interactions was adopted
with an underlying SU(3) symmetry among the u, d, and ¢
quarks (thus excluding the strangeness related channels). After
model parameters were fixed to reproduce the position and
width of the A.(2593), it was applied to study the in-medium
spectral function of the D meson for a zero-temperature
nuclear matter environment [21]. This was later extended to
finite temperatures [22]. Next, based on a SU(4) scheme broken
by the masses of the exchanged vector mesons (the charmed
ones in particular), hence including also the channels with
strangeness [23], an effective meson-baryon interaction, of
lowest order in both chiral and heavy-quark symmetries, was
introduced to study the D mesons in nuclear matter at zero
temperature [17,24].

To continue and complete this sequence, in the present arti-
cle we are extending the result of Ref. [17] to study the D and
D mesons in nuclear matter of up to twice the normal density
and having a temperature from zero to 150 MeV. A couple
of extra additions in the present work include (a) an explicit
consideration of the nuclear mean-field binding effect on all the
baryons involved in the coupled channel, inclusive of those that
are strange and charmed, and (b) the study of the in-medium
D (note that Ref. [24] also looked at this aspect). Equipped
with those tools and ingredients, we go beyond the result of
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Refs. [13-16] and try to determine the continuous in-medium
spectral (or mass) distribution of D and D and show that the
former deviates significantly from the § function-type spike at
the free-space mass or at the value shifted to elsewhere. Also
we obtain optical potentials for D and D. These are important
ameliorations in view of the points (i)—(iii) stated above.

The organization of the present article goes as follows: in
Sec. II we develop the formalism and ingredients on which the
calculation in the present work is based. Section III is devoted
to the presentation and discussion of the results. Finally, in
Sec. IV we draw our conclusions and give final remarks
pertaining to the present and future works.

II. OPEN-CHARM MESONS IN NUCLEAR MATTER AT
FINITE TEMPERATURE

Our objective in this section is to obtain the D and D
in-medium self-energy by solving the corresponding multi-
channel T-matrix equation. Then, the obtained self-energy is
used to find the D(D) spectral function in an isosymmetric
nuclear matter at finite temperature. This is done by extending
the procedure found in Ref. [17] to a nonzero temperature
environment by the procedure adopted in Ref. [22]. As
mentioned in Sec. I, we shall also introduce the binding effect
to all the baryons involved by the nuclear matter mean field.

A. Coupled meson-baryon channels in free space

The first step toward our goal is to obtain the free space
T matrices for the coupled meson-baryon system involving
DN(DN). We shall briefly summarize it as discussed in
Ref. [17]. These matrices follow the standard multichannel
scattering (integral) equation,

T=V+VGT, ey

where V is a symmetric matrix consisting of a set of meson-
baryon transition interactions (potentials). They are obtained
from the tree-level s-wave contribution to the meson-baryon
scattering and will be specified later. As shown in Ref. [25,26],
the kernel of the equation for s-wave interaction can be factor-
ized in the on-mass-shell ansatz, leaving the four-momentum
integration only in the two-particle meson-baryon propagators.
These quantities, often called loop functions, form a diagonal
matrix G. They are divergent and thus need to be regularized.
In the present work the cut-off method is adopted as it is
more appropriate than dimensional methods when dealing
with particles in a medium, as done in Refs. [27,28] where
it is applied in the study of K in nuclear matter.

The consequence of the on-shell ansatz is a set of linear
algebraic equations whose solution now reads,

T=[1-VG]'V, )

which is practically equivalent to the so-called N/D method
[25].

The meson-baryon transition interaction V' is characterized
here by the channel quantum numbers, charm C, strangeness
S, and isospin /. We implicitly fix the first two quantum
numbers and label V explicitly by I. For each (C, S) fixed,
the coupled-channel elements of the symmetric matrix V
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of a given isospin I are specified as Vli for a transition
i< j.For(C=1,5=0),i and j run through 7w £.(2589),
DN (2810), nA.(2835), K E.(2960), K E..(3071), D; A(3085),
and 1n'A.(3245) for the I =0 sector, and 7 A.(2425),
7 %:(2589), DN(2810), K E.(2960), nX.(3005), K &/.(3071),
DX (3160), and n'X.(3415) for the I = 1 sector. In the case
(C = —1, S = 0), there is only a single channel, DN (2810),
for each isospin / = 0 and I = 1 value. We note that, in the
above description, the value in the parentheses denotes the
channel threshold in MeV.

The concrete form for the matrix elements of V comes from
the s-wave Tomozawa-Weinberg (T-W) term as the zero-range
limit of the lowest-order interaction of the SU(4) pseudoscalar
meson and 1/2% ground-state baryon multiplets based on the
universal vector-meson coupling hypothesis equipped with the
extended KSFR condition (see Ref. [17] for details):

KC,"
Vi = — g s = M = M)
M; + E; V2 rar 4 E\V?
x Mi+ Ei Mj+Ej )
2M; 2M;

The coupling strength C;; derives from the SU(4) symmetry
for the i <> j transition; /s is the center-of-mass energy;
f = 1.15f;, where the value of f has been adopted from
Ref. [26], and M; and M; as well as E; and E; are the masses
and energies of baryons in channels i and j, respectively.
The breaking of the SU(4) symmetry in the T-W interaction
through the physical hadron masses is mostly eminent in
the reduction factor «, which is unity for transitions i < j,
driven by uncharmed vector-meson exchanges (o, w, ¢, K*)
but is equal to k. = (7iy /m¢)* ~ 1/4 for charmed vector-
meson exchanges such as D* and D}, where my () is
the mass of the typical uncharmed (charmed) exchanged
vector meson. The transition coefficients C‘,-_,- = kC;j, which
are symmetric with respect to the indices, are listed in Tables I
and II of Ref. [17] for the DN sector. For the DN system,
CL sy =0and Co1 - = —2. The reader is reminded
of the same situation for the KN coupling strengths due to
SU (3) symmetry. The T-W vector interaction is supplemented
by a scalar-isoscalar attraction, which turns out to be important
in kaon condensate studies (see Ref. [16,29]). The s-wave
projection of this interaction is equal to

Vs(V/s) = _f_f, <W) ) @

and it is independent of the C and I specification in the present
context. Here, fp is the D(D) meson weak decay constant and
¥ py is the strength of this interaction. Note that for simplicity
we introduce this only in the diagonal D(D)N interaction. The
most recent determination of fp = 157 MeV may be found
in Ref. [30]. As for the value of Xy, we simply follow what
a QCD sum-rule [15] and a nuclear mean-field approach of
Ref. [16] have suggested, and estimate it conservatively as
Ypny ~ 2000 MeV. Because we can aim only at qualitative
estimates, we set fp ~ 200 MeV and determine the strength
of the scalar-isoscalar interaction to be ¥ = Zpy/ff =
0.05 MeV~!. We also accommodate the case where no such
attraction is added, hence Xpy = 0. Based on the above
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interactions, the multichannel transition 7 matrices are solved
such that the momentum cut-off A is fixed to reproduce the
position and the width of the 7 =0 A.(2593) resonance.
The parameters for the two cases adopted from Ref. [17]
are used in the present work, model A: f =1.15f;, ¥ =
0.05MeV~!, A =727 MeV; and model B: f = 1.15f,, % =
0 MeV~!, A =787 MeV. These two model interactions pro-
duce a resonance in / = 1 channel whose position and width
are 2770 MeV, 20 MeV (model A), and 2795 MeV, 20 MeV
(model B), respectively, close to the nominal X.(2800) [31].

B. Coupled meson-baryon interaction in finite-temperature
nuclear matter with mean-field binding

The properties of the D(D) mesons in nuclear matter at
finite temperature and with mean-field binding are obtained
by incorporating the corresponding medium modifications in
the loop function matrix G only. That is, we assume that the
interaction matrix V stays unchanged in medium. In Eq. (3),
the two square-rooted factors come from the baryon spinor
normalization, hence should stay more or less the same.
The finite-temperature nuclear mean-field binding makes the
in-medium baryon masses M;(T) to be shifted from their
free space values M;, so the second factor in the expression
should be different in medium. We nevertheless retain the
vacuum mass values in this interaction as we have estimated
the effect to be at most a few percentages in magnitude. For
the same reason the scalar-isoscalar interaction Eq. (4) remains
unchanged. By implicitly understanding that G and T are now
to be interpreted as medium modified, the same multichannel
algebraic equation Eq. (2) is to be solved.

Let us now describe in detail the medium and temperature
modifications. First, the baryons in the coupled channel,
namely the nucleon, A, ¥, A, and X, change both their mass
and energy-momentum relations due to the finite-temperature
mean-field binding effect. We have adopted a temperature-
dependent Walecka-type ¢ — w model to account for this
change; see, for example, Ref. [32]. Within this model,
the nucleon energy spectrum in mean-field approximation is
obtained from

En(p,T)=/p>+My(T)?+ X", &)

with the vector potential X and the effective mass My (T)

given by
2
RO
1y
8s

2
M;\}(T) =My — ¥, withX® = (m—> Ps s
s

(6

where m; and m, are the meson masses, whereas g, and g, are
the density-dependent scalar and vector coupling constants,
respectively. These constants are obtained by reproducing the
energy per particle of symmetric nuclear matter at 7 =0
coming from a Dirac-Brueckner-Hartree-Fock calculation
(see Table 10.9 of Ref. [33]). The ordinary nuclear matter
(Lorentz) vector density (p) and (Lorentz) scalar density
(ps) are obtained from the corresponding vector n(p, T') and
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scalar ny(p, T) density distributions, defined in terms of the
Fermi-Dirac function as

- 1
n(pv T) = i ’
I +exp[(En(p, T) — )/ T] @
. M*(T)n(p, T)
ng(p, T) = —/——,
VB MA(T)?
by momentum integration, namely
=—— [ &pnp, 1), 8
P (2n)3/ pn(p,T) ®)

and similarly for p;. As may be clear from the above
development, Ey(p, T), M3 (T) and the chemical potential
W are obtained simultaneously and self-consistently for given
p and for the corresponding values of g; and g,. The values
of the nucleon scalar and vector potentials in nuclear matter
at po=0.16 fm™> and at T =0 are =* = 356 MeV and
XU =278 MeV.

The hyperon (Y) as well as the charmed baryon (Y, ) masses
and energy spectra can be easily inferred from those for the
nucleon as

Ev 5. T)= [P+ My TP+ %5, ©

2 (g )\ 2
v _ v
EY‘”_§<m_U> p=3E

M;;u)(T) = My(c) - E;(L) = MY(L‘) -

where

28\
3 \ my Ps
2
= My, — §[MN — My (T)1. (10)

Here we have assumed that the o and w fields couple only to
the u# and d quarks, as in Ref. [34], so the scalar and vector
coupling constants for hyperons and charmed baryons are:

Ye) 2 Y 2

8 =38 8 =38 (11)

We note that the quark-meson coupling (QMC) calculations of
Ref. [34], performed at T = 0, obtained a somewhat smaller
scalar potential (about half the present one) for the A and
> baryons due to the inclusion of an effective coupling for
each baryon species, C;(6), where “j” is the label for baryons.
This factor was introduced to mimic the baryon structure. To
the best of our knowledge, no temperature effects have been
studied within this framework.

The potential at zero momentum V = Ey)(p =0) —
My for different baryon species obtained in the present
work is shown in Fig. 1 as a function of the density for
different temperatures. Obviously, the potential for hyperons
and charmed baryons follows the simple light quark counting
rule as compared with the nucleon potential: Vy, = 2/3Vy.
The attraction at p = pg and T = 0 MeV is about —50 MeV,
the size of which gets reduced as temperature increases,
turning even into repulsion, especially at higher densities. This
behavior results from the fact that the temperature-independent
vector potential takes over the strongly temperature-dependent
scalar potential, which decreases with temperature.
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FIG. 1. (Color online) The potential at zero momentum for the
hyperons (¥ = A, ¥) and charmed baryons (Y. = A, £.) as a
function of the density for different temperatures. The thin solid line
displays the nucleon potential at 7 = 100 MeV.

The second medium effect is the Pauli exclusion principle
acting on the nucleon in the intermediate D(D)N loop
function. This is implemented by replacing the single free-
nucleon propagator in the loop function by the corresponding
in-medium one:

1—n(p,T)

n(p,T)
po—En(p,T) —ie’
where the effect of the temperature is contained in the nucleon

Fermi-Dirac distributions and single-particle energies.

The third medium effect is the dressing of the mesons,
due to their interactions with the surrounding nucleons in the
course of propagating through nuclear matter. In particular,
we will consider the dressing of pions and D(D) mesons. The
reason for not doing so for other mesons will be stated below.

The meson dressing is represented by the in-medium meson
self-energy I;(qo, G, T), where i = D, D, 7 in the present
case. This quantity appears in the corresponding in-medium
single meson propagator:

Gn(po, p, T) =

12)

1
9% —q*—m; —Ti(qo. 4. T)
In the Lehmann integral representation, the meson propagator

may be expressed in terms of the spectral function S;(qo, g, T)
as

- ® Si(w,q.T * Si(w,q, T
Di(CIO,CLT):f (a)—q.)da}_/ (a)—q.)dw
0 qo—wtie 0 gotw—1e

Di(CIO, Z]»T) = (13)

(14)

where i is the antiparticle to meson i. Then we easily relate
the self-energy and spectral function as

- 1 -
Si(QO: q, T) = _; Im Di(QO, q, T)

_ 1 Im I1;(g0, ¢, T) (15)
mlqd—q*—m?—T(qo.q,T) |
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For the case of pions, we incorporate the self-energy at
finite temperature given in the Appendix of Ref. [35], which
was obtained by incorporating the thermal effects tothe T = 0
pion self-energy model given, for instance, in Refs. [36,37]. We
recall that the pion self-energy in nuclear matter at 7 = 0 was
obtained by adding to a small repulsive and constant s-wave
part [38], the p-wave contribution coming from the coupling to
1p-1h, 1 A-1h, and 2p-2h excitations together with short-range
correlations. These correlations are mimicked by the Landau-
Migdal parameter g’, taken from the particle-hole interaction
described in Ref. [39], which includes m and p exchanges
modulated by the effect of nuclear short-range correlations.

In the case of the D(D) mesons, the self-energy is
obtained self-consistently from the s-wave contribution to the
in-medium D(D)N amplitude, as will be shown explicitly at
the end of this section.

With these medium modifications the propagator loop
functions are obtained by four-momentum convolution of
meson and baryon single-particle propagators:

dq My
QnY Ex(P—3,T)

o0
X |:/ dwSppy(w,q,T)
0

1—n(P—4,T)
X =
Po—a)—EN(P—é,T)+is

oo
0

G ppyn (Po, P.T)=

P—G,.T
x nP—4q 3 . (16)
Po+w—EN(P—¢q,T)—ic

for D(D)N states and
d3q MY‘_

2n) Ey (P —§.T)
o0
x/ Sy (@,3,T)
0

y 1 +n.G,T)
Po—w—Ey(P—§.T)+ie

Gy, (Py, P, T) =

a7)

for A, or mX, states, where P = (P, 13) is the total
two-particle four-momentum and g is the meson momentum
in the nuclear matter rest frame. Note that, for the DN
loop function, the Sj(w, ) spectral function appearing in the
subdominant second term on the right-hand side of Eq. (16) is
assumed to be a free-space & function. The 7 Y. loop function
incorporates the 1 +n,(g, T) term, with n,(g, T) being the
Bose distribution of pions at temperature 7', to account for the
contribution from thermal pions at finite temperature. Note
that, by assuming perfect isospin symmetry, we set the pion
chemical potential to zero in n, (g, T).

For n(n")Y., KE.(E.), and DY states, the corresponding
meson lines (propagators) are not dressed by self-energy
insertions. In the case of the 1, n” mesons, this is a reasonable
approximation, because the coefficients coupling the n(n")Y.
channels with the DN channel are small (see Tables I and II
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in Ref. [17]). Containing an § quark, the K couples weakly to
nucleons, and its spectral function may be approximated by
the free space one, viz. by a § function. We could include a
moderate repulsive in-medium shift to the kaon mass, consis-
tent with the repulsion predicted by a Tp approximation or
more sophisticated models [40], but our results are insensitive
to this shift due to the zero couplings of these channels to
DN. As for the spectral function of the D" meson appearing
in the in-medium D,Y channels, it has been shown [24]
that, in addition to the quasiparticle peak, it presents a lower
energy mode associated with an exotic resonance predicted
around 75 MeV below the DSJFN threshold [23]. Therefore,
with large coupling coefficients for transitions DN < DY,
one may eventually have to solve an extended in-medium
self-consistent coupled-channel problem combining the C =
1,§=0(DN)and C =1, § = 1(D4N) sectors. Work along
this line is in progress.

Last, we state that the in-medium D(D) self-energy is
obtained by integrating Tp5yy over the Fermi distribution
for nucleon momentum at a given temperature as

d? - - -
@§MnnV“W%mJ>

Npp)(q0.4.T) = f D(D)N

+3T 50 (Po, P, T, (18)
where Py =gqo+ Ex(p,T) and P =g+ p are the total
energy and momentum of the D(D)N pair in the nuclear matter
rest frame and the values (go, g ) stand for the energy and
momentum of the D(D) meson also in this frame. Recall that
I p5y(qo, ¢, T) must be determined self-consistently because
it is obtained from the in-medium amplitude T)pp)y that
contains the D(D)N loop function Gpp)y, and this last
quantity itself is a function of ITppy(qo, g, T). From this we
obtain the corresponding spectral function to complete the
integral for the loop function G 5 (Po, P , T) as in Eq. (16).

III. RESULTS AND DISCUSSION

A. The D meson spectral function in a hot nuclear medium

We start this section by looking at the in-medium behavior
of the I =0A. and I = 1X, resonances, which in the full
model of Ref. [17] appear at 2593 and 2770 MeV, respectively,
in free space. This is summarized in Fig. 2 by the imaginary
part of the in-medium 7(DN — DN) matrix at saturation
density po = 0.17fm™3 for I =0 (left column) and I = 1
(right column) as a function of the center-of-mass energy
Py for temperatures 7 = 0 (first row) and 7 = 100 MeV
(second row), respectively. For each of the four figures,
three different lines represent self-consistent calculations with
increasing sophistications, viz. (i) the self-consistent dressing
of D mesons only (dotted lines), (ii) D-meson dressing with
the inclusion of mean-field binding effect (MFB) on baryons
in the loop functions (dash-dotted lines), and (iii) D-meson
dressing with the inclusion of both baryon binding effects
and pion dressing (PD) in the loop functions (solid lines).
In the figures, the thick lines correspond to model A (viz.
Ypn # 0), whereas the thin dashed lines refer to the result
only for Case (iii) within model B (Xpy = 0). Recall that

015207-5



L. TOLOS, A. RAMOS, AND T. MIZUTANI
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FIG. 2. (Color online) Imaginary part of the in-medium
interaction for / =0 and / =1 at p, as a function of the center-
of-mass energy P, for T =0 MeV and 7 = 100 MeV, and for
three different approaches in the self-consistent calculation of the
D meson self-energy: (i) including only the self-consistent dressing
of the D meson, (ii) adding the binding of the different baryons in
the intermediate states, and (iii) including the baryon binding effects
and the pion self-energy.

our principal interest is in model A. Comparison of those two
model results will be found later in this section.

Our discussion is first for the zero temperature (7 = 0)
case. We begin by comparing the two first cases. We recall
that medium effects (excluding baryon binding potentials)
lowered the position of the A. and X, resonances with respect
to their free-space values [17]. When baryon binding effects
are incorporated, these resonances get even more lowered, as
can be seen by comparing the dotted and dash-dotted lines
in Fig. 2. If we had a mere attractive shift of the nucleon
mass of around 75 MeV (the value of the optical potential at
zero momentum) ina D N single-channel (non-self-consistent)
calculation, we would be expecting the same shift in the
corresponding MFB amplitude. The fact that the attractive
shifts induced by MFB effects are of only 6 and 22 MeV for
the in-medium A resonance (hereafter denoted as A,) and =,
(denoted as f)c), respectively, indicates that coupled-channel
effects, momentum dependence of the binding potentials, and
self-consistency play crucial roles in the determination of the
in-medium DN amplitudes.

The widths of both resonances differ according to the phase
space available. For the I = 0 sector, the lowest threshold in
free space is from the 7 . channel, which lies slightly below
the A .(2593) resonance position and constrains this resonance
to be narrow. This is also the case in nuclear matter. This
narrowness is somewhat relaxed by the processes A.N —
TNA;,, wN¥., which open up in medium through the
D-meson self-energy. The I = 1 £ resonance, which shows a
free-space width of 30 MeV [17], develops a large width of the
order of 200 MeV, due to the opening of new absorption pro-
cesses of the type $.N - nNA,, 1 NX., which is similar to
the case of the A, but has a much larger decaying phase space.

As for the effect of pion dressing (PD) implemented in Case
(iii), we expected it to be of minor importance in the present
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approach, in contrast to the findings in Refs. [27,35] for K N
amplitude in nuclear matter and also in Refs. [21,22] for in-
medium DN. This is due to the reduction factor k. & 1/4 inthe
DN < nY, transition [see Eq. (3)] due to the charm transfer as
shown in Ref. [17]. Still, a small effect is seen in the positions
and widths of the Y.(=A., X.) through the absorption of these
resonances by one and two nucleon processes (Y.N —> Y.N
and Y.NN — Y.NN), which open up through the 1p-1h and
2p-2h components of the pion self-energy.

With regard to the results for models A and B, we
observe that both models are qualitatively similar. However,
the absence of the ¥y term in model B produces in-medium
resonances at higher energies, therefore the corresponding
widths are larger due to the increased decaying phase space.
As compared with their free-space resonance positions, the A
lies 45 MeV lower and the 3, is at 40 MeV below the free
value for model A. In model B, the 1~\C lies 20 MeV lower,
whereas the ¥, moves up roughly by 10 MeV. These results
are consistent with those obtained in Ref. [17] where mean-
field baryon binding is absent. In the case of the I = 1 ampli-
tude, the attraction provided by a self-consistent calculation
using model B is not enough to fully compensate the repulsion
induced by Pauli blocking effects.

Now we come to the finite temperature case. The overall
effects from 7T # 0 result is the reduction of the Pauli
blocking factor because the Fermi surface is smeared out with
temperature. Therefore, both resonances move up in energy
to get closer to their position in free space, whereas they
are smoothed out. The inclusion of MFB [viz. Case (ii)] for
T = 100 MeV induces a shift of both resonances to higher
energies, opposite to what is found for 7 = 0, hence it appears
counterintuitive. The reason behind this is that the potential of
each baryon from MFB becomes less attractive with increasing
temperature and also with increasing momentum (see Fig. 1
for evolution in temperature of the baryonic potentials at
zero momentum). At a high enough value of temperature,
the single-particle potential may become repulsive already at
a relatively low momentum. It will then become more difficult
to excite intermediate states if they carry a repulsive potential
and, consequently, the resonance will be generated at higher
energies than in the absence of MFB effects, as is already the
case at T = 100 MeV and p = pg. Again, the PD does not
drastically alter the resonance positions. At T = 100 MeV, A,
is at 2579 MeV for model A and ¥, at 2767 MeV, whereas
model B generates both resonances at higher energies: A, at
2602 MeV and X, at 2807 MeV. The spreading of the resonant
structures in 7y with increasing temperature has an important
bearing in the temperature dependence of the D meson spectral
function as we shall discuss below.

In Fig. 3 we display the D meson spectral function at zero
momentum and normal saturation density pg for two distinct
values of temperature (7 =0 and 7 = 100 MeV) and for
Cases (i) to (iii) (thick lines) for model A. As in the previous
figure, we only show the result from Case (iii) for model B
with thin-dashed lines.

At T =0 the spectral function presents two peaks: the
one at lower energy is built up from the A.N~' excitation,
whereas the second one at higher energy is mainly driven by
the quasi(D)-particle peak but mixes considerably with the
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FIG. 3. (Color online) The zero-momentum D-meson spectral
function at p = py for T = 0 MeV and T = 100 MeV as a function
of the D-meson energy for the previous approaches.

Y. N~! state. The quasiparticle energy E,,(q ) may be found
from the solution of Re [Dp(qo, 4, T)]~' = 0 for g, hence

E;p(G)Y =q>+mp+RellplE,G).ql. (19

We observe that, once MFB is included [Case (ii)], the lower
peak in the spectral function due to the A.N~!' mode goes up
by about 50 MeV relative to the Case (i) result. This could be
understood in the following manner: as seen in Fig. 2, the A
resonance moves to lower energies by about 6 MeV upon going
from Case (i) to Case (ii), but at the same time the nucleon
energy goes down due to MFB, hence the peak in the D meson
spectral function goes up as the A.N~! excitation effectively
costs more energy. In other words, the meson requires to
carry more energy to compensate for the attraction felt by
the nucleon. The same characteristic feature is seen also for
the £.N~! configuration that mixes with the quasiparticle
peak. Just in line with the in-medium Tpy amplitude studied
earlier (Fig. 2), the PD installed in Case (iii) does not alter
much the position of A.N~! excitation or the quasiparticle
peak. From Eq. (19), the corresponding quasiparticle energy
is found at 1855 MeV, i.e., lower than the free mass by 12 MeV.
However, the actual peak appears slightly shifted upward due
to the energy dependence of the imaginary part of the D-meson
self-energy affected by the £.N~! configuration. For model
B [Case (iii) only], the absence of the X py term moves the
AN~ excitation closer to the quasiparticle peak, whereas the
latter fully mixes with the £.N~! excitation.

When the finite temperature effects are included (see the
right-hand side of Fig. 3 for T = 100 MeV), the quasiparticle
peak of the spectral function at zero momentum is found to
move closer to the free-space mass value due to the smearing
of the nuclear matter Fermi surface. The reason is that the self-
energy receives contributions from higher momentum DN
pairs that feel a weaker interaction. Furthermore, structures
from the Y.N~! modes seen at T = 0 are smeared out with
increasing temperature, an effect that was reported earlier in
Ref. [22]. Eventually, at 7 = 100 MeV we are left with a
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FIG. 4. (Color online) The D-meson spectral function for
qg = 0MeV/c and g = 450 MeV/c at py and 2p, as a function of the
D-meson energy for different temperatures and for the self-consistent
calculation, including the dressing of baryons and pions in model A
(Zpy #0).

quasiparticle peak at 1869 MeV (model A) and 1863 MeV
(model B), amazingly close to the free space mass, M(D) =
1867 MeV, but with a large width due to collisional broadening.
Again, due to the energy dependence of the self-energy, the
positions of these peaks differ slightly from the value of the
quasiparticle energies of 1864 and 1861 MeV, respectively.
The slow falloff on the left-hand side of the quasiparticle peak
corresponds mostly to the diluted A.N~! configuration.

The evolution of the spectral function as a function of
temperature is presented in Fig. 4 for two different densities,
po and 2pg, and two momenta, ¢ =0 MeV/c and g =
450 MeV/c, in the full self-consistent calculation [Case (iii)]
for model A. As already mentioned, we observe the dilution of
the AN~ and £.N~! structures with increasing temperature,
whereas the quasiparticle peak gets closer to its free value
and it becomes narrower. The widening of the quasiparticle
peak for larger nuclear density may be understood as due to
the enhancement of collision and absorption processes. As
a result, the quasiparticle peak position is difficult to extract
directly from the plot at high densities. As for the structure
in the lower values of go due to the A.N~! configuration, it
moves down with increasing nuclear matter density due to
the lowering in the position of the A. resonance induced by
the more attractive X py term, as based on our experience in
Ref. [17]. Then by picking up the case with ¢ =0, p = po
(upper left-hand panel in Fig. 4) as an example, we want
to analyze the behavior of the same structure as a function
of T. This A.N~! particle-hole configuration evolves from
a sharp/narrow peak with very little strength below ¢° =
1600 MeV for T =0 to a more diffused form at higher
temperatures where it extends even below gy = 1500 MeV.
First, we see from the left-hand panel of Fig. 2 that the
in-medium [ =0 A, resonance becomes broadened and
shifted to higher energies with increasing temperature. We
note, however, that a single nucleon-hole state may be created
at a higher energy for higher T because the nuclear matter
Fermi surface gets more diffused. In addition, at higher 7', the
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nucleon single-particle potential becomes repulsive already
at relatively low momenta. Hence, the resulting A N~
configuration which dictates the D spectral strength may
spread eventually to lower energies as well with increasing
temperature. So from what we see in Fig. 4, along with
the wide collision broadening of the quasiparticle structure
of D, this particle-hole structure as seen in the D spectral
function might well kinematically facilitate the decay process
J/YN — A.D in adense nuclear matter at finite temperature,
say, in high-energy heavy-ion collisions. This should of course
depend on how the D meson may behave in the same nuclear
matter environment, which we are studying below.

B. D meson in nuclear matter

With our models A and B introduced in Sec. II, we are able
to study the properties of the D meson in a hot and dense nu-
clear matter. In fact, as found in Subsection 2.2, this case is far
easier to deal with because the D N equation is a single-channel
one for both / = 0 and 1 isospin channels. Furthermore, the
T-W vector interaction in the / = 0 channel has a strictly
vanishing interaction strength, so the model B interaction
produces no contribution in this isospin channel. In other
words, the nonvanishing I = 0 channel contribution in the
DN channel comes entirely from the spin-isospin singlet £y
contribution in model A. The only available work to date on
the D in nuclear matter is found in Ref. [24] for the case of zero
(T = 0) temperature, with which we may compare our results.

We first present in Table I results for the effective DN
interaction in free space. In particular, we show the I = 0 and
I = 1 scattering lengths defined as

1 Mjp
apN = —E%TDA@DN (20)

at DN threshold, where Mpy is the total mass of the DN
system. We use three different models that will be discussed
in the following. The result from model A and B may not need
any special explanation in view of what has been stated so
far in the present subsection. However, we want to reiterate
that the 7 = O contribution in model A is entirely from the
¥ py contribution. On comparing these results with those from
Ref. [24] (alX = —0.26fm and afX, = —0.16fm) we see
immediately that while the / = 1 value is very close, there
is a disagreement in the I = 0 scattering length. In an attempt
to clarify this discrepancy we have adopted a dimensional
regularization method (DR) that was used in Ref. [24], but
with some minor modification in the subtraction point as well
as in the form of the interaction of Ref. [23], as discussed
in Ref. [17]. The results, presented as the “DR” entries in
Table I, are very close to the cut-off model B values, which

TABLE L. DN scattering lengths (fm)

Model A Model B DR
1=0 0.61 0 0
(Born approx.) (0.26) ) )
1=1 —0.26 —0.29 —0.24
(Born approx.)  (—0.61) (—0.88) (—1.16)
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is what one should have anticipated given the fact that the
modifications implemented in Ref. [17] alter the original
form of the Hofmann-Lutz T-W interaction [24] and the
unitarization of the amplitude only marginally, especially in
the present DN channel. Note also that in our DR approach
the value of the meson decay constant has been chosen to be
f = fr as compared with 1.15f,; in models A and B. The
I = 0 scattering length turns out as, of course, zero, with the
vanishing interaction strength. So the aZX; value quoted in
Ref. [24] remains to be somewhat puzzling to us.

A recent calculation of Haidenbauer and collaborators [41]
employs a meson-exchange approach supplemented by a short-
range one-gluon exchange (OGE) contribution. It presents
a similar / = 0 scattering length (af_, = —0.07 fm) but the
I =1 one is repulsive and almost twice our result (a}’, =
—0.45 fm). Because the OGE mechanism has no counterpart
within our model, the comparison of results may not be very
meaningful at this point. Nevertheless, it is worth noting that
about half of the repulsive scattering length af’ | comes from
the hadronic meson-exchange contributions, which can be
mapped to a certain extent to the T-W interaction used in
the present work.

To see whether the interaction is reasonably weak, hence
the Born approximation be appropriate or not, we have also
calculated the scattering lengths in that approximation as
shown in the table. We find a big discrepancy between the
exact and approximate values, thus concluding that one has
to sum up the whole iterative series even for this apparently
smooth DN interaction as noted also in Ref. [41]. Thus
the Born approximation is not adequate in studying the
in-medium D either. Note that, in the Born approximation,
the I = 1 scattering length is less repulsive in model A due
to the attractive contribution of the spin-isospin singlet Xpy
term, whereas the scattering lengths calculated from the fully
iterated amplitude are very similar in both models. Taking the
isospin-averaged scattering length from the results in Table I,
one establishes a repulsive nature for the DN interaction, even
in model A, which contains the attractive effect of the Xpy
term.

The D optical potential in the nuclear medium may be
defined as,

HD(E‘IP(‘_i )9 é)
2, /m%—) +q?

and, at zero momentum, it can be identified as the in-medium
shift of the D meson mass. Our results for the D mass shift
are displayed in Fig. 5 in the case of model A (solid line) and
B (dot-dashed line) including the MFB for nucleons.

The inclusion of an attractive X py term in model A gives
rise to a less repulsive mass shift at p = pg, of 11 MeV,
in contrast to the 20 MeV repulsion found for model B.
The absence of resonant states close to threshold in this
DN scattering problem suggests extending the validity of
the low-density theorem to normal nuclear matter densities or
beyond. However, the low-density or Tp results, obtained by
replacing the medium-dependent amplitude by the free-space
one and displayed by the dashed and dotted lines for models
A and B, respectively, deviate quite substantially from the

Up(g) = ey
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FIG. 5. (Color online) The D mass shift in model A and B
(Zpny = 0), including the MFB for nucleons as well as the low-
density approximation as a function of density.

corresponding fully self-consistent results at a relatively low
value of nuclear matter density. The additional sources of
density dependence present in a full calculation can also be
visualized by the deviation of the solid and dot-dashed lines
from a linear behavior. At normal nuclear matter density, the
low-density mass shift for model B is 15 MeV, whereas the
fully self-consistent result increases this value to 20 MeV.
The same difference of about 5 MeV between the mass shifts
obtained in both approaches is found for model A, as can be
seen in Fig. 5. Our mass shift of 20 MeV at p, for model B is
similar to the one in Ref. [24] within 10%.

C. In-medium D and D optical potentials at finite temperature

In this last subsection we compare in Fig. 6 the D and D
optical potentials at g = 0 MeV/c as functions of temperature
for two different densities (g and 2,09) and for models A and
B. The D-meson potential is calculated self-consistently with
MEFB on baryons and with PD, and the D meson is obtained

D meson D" meson
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FIG. 6. (Color online) The D and D potentials for the full
self-consistent calculation at ¢ = 0 MeV/c for py and 2y in models
A and B (Xpy = 0) as a function of temperature.
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also in a self-consistent manner only with MFB, because pion
dressing does not enter here. The mass shift for D and D
mesons is reduced with temperature because, as observed
for the spectral functions in Fig. 4, the quasiparticle peak
moves toward the free position. This effect was also observed
previously in Ref. [22] and it is due to the reduction of the self-
energy as temperature increases because the meson-baryon
interaction is averaged over larger momentum components
where it is weaker. For model A (B) and at T = 0, we obtain an
attractive potential of —12(—18) MeV for D meson, whereas
the repulsion for D is 11 (20) MeV. A similar shift in the mass
for D mesons is obtained in Ref. [22]. The imaginary part and,
hence, the width of the spectral function for the quasiparticle
tends to increase slightly with temperature for D mesons due to
the increase in the collisional width, whereas for D mesons it is
somewhat reduced. Note, however, the different energy scales
usedinthe D and D plots. In fact, the situation is more involved
for D mesons. On the one hand, the collisional width due to
DN — DN processes also increases with temperature, but at
low T the D meson width is largely dominated by the mixing
of the quasiparticle peak to the £.N~! components of the D-
meson self-energy. This is also the reason why the quasiparticle
peak is located at a lower energy for model B, contrary to
what one expects, as explained in the subsequent paragraph
below. As T increases, the . resonance gets diluted and,
correspondingly, the width decreases. It is expected, however,
that the width will eventually increase with T when it becomes
mostly of collisional origin at high-enough temperatures.
With regard to the effect of the Xy term, we find that, for
D mesons, its inclusion substantially reduces the repulsion,
independently of the temperature and density, because the
dominant repulsive I = 1 scattering length is partly compen-
sated by the attractive I = 0 one. However, this simple picture
cannot be applied to the D meson due to the presence of the
I = 1%, close to the DN threshold. We see that, in this case,
there is a crossover when we go from py to 2. The inclusion
of the Xpy term alters the position of the ¥, close to the
DN threshold (as seen in Fig. 2). Therefore, while it has the
expected attractive effect to the real part of the potential at 2,
it effectively induces a repulsive effect for py. The imaginary
part increases with the inclusion of X py term for both mesons.

IV. SUMMARY AND CONCLUSIONS

We have performed a hadronic self-consistent coupled-
channel calculation of the D and D self-energies in symmetric
nuclear matter at finite temperature taking an effective meson-
baryon Lagrangian that combines the charmed meson degree
of freedom in a consistent manner with the chiral unitary
models. This interaction consists of a broken s-wave SU(4)
T-W contribution supplemented by a scalar-isoscalar Xpy
term interaction. The corresponding in-medium solution at
finite temperature obtains the dressing of D(D) by Pauli
blocking effects, dressing of 7 (PD), and the nuclear mean
field binding effect (MFB) not only on the nucleons but also
on the charmed and strange hyperons by a finite-temperature
o-w mean-field calculation.

In nuclear matter at 7 = 0, the dynamically generated I =
0 A.and I =1 £, resonances in the C = 1 charm sector lie
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around 40 MeV below their free space values. Also at 7 = 0,
the baryon binding results in an attractive mass shift for those
resonances as compared to the case with no such effect. But,
as we incorporate finite temperature, those resonances tend to
move back to their free position acquiring a remarkable width
due to the smearing of the Fermi surface.

The A, and ¥, resonances induce resonant-hole exci-
tation modes that are clearly seen in the low-temperature
D-meson spectral function. The width of the distribution
in fact reflects the overlap of the quasiparticle peak with
the . N~! components of the D-meson self-energy. As
temperature increases, these modes tend to smear out and
the D-meson spectral function becomes a single pronounced
quasiparticle peak close to the free D-meson mass with fairly
extended tails, particularly to the lower-energy side of the
distribution. At high temperature the width of the quasiparticle
peak gets reduced slightly, so most of the distribution of
the spectral function concentrates around the quasiparticle
energy, although maintaining the overall strength in its lower
energy part. As density increases, the quasiparticle peak
broadens and the low-energy strength, associated to the A N~
components and related to Y.t N~', Y, NN~2, ... absorption
modes, obviously increases.

Inthe DN sector, we have first obtained the free space ] =0
and I = 1 scattering lengths. While our repulsive / = 1 value
of aj—; ~ —0.3 fm is in good agreement with Lutz and Korpa
results [24], the finite value for the I = 0 scattering length
found in this latter reference is in contrast to the zero value
found here for model B due to the vanishing / = 0 coupling
coefficient of the corresponding pure T-W DN interaction.
Our results are, however, consistent with a recent calculation
based on a meson-exchange model supplemented by a short-
range one-gluon exchange contribution [41]. For model A, we
obtain a nonzero value of the / = 0 scattering length, dictated
entirely by the magnitude of the X py term, which takes a
rather conservative value in our present work. We have also
observed that, in spite of the weakness of the DN interaction
and the absence of resonances close to threshold, the Born
approximation is not sufficient to describe the free-space DN
interaction at low energies.

As for medium effects, they induce a repulsive shift in
the D meson mass of 11 MeV (20 MeV) for model A (B)
in nuclear matter at saturation density. Although the medium
modifications of the DN interaction are more moderate than in
the case of DN, we observe that the low-density approximation
breaks down at relatively low densities. At nuclear matter
saturation density, the D-meson mass shifts obtained from
a fully self-consistent calculation are 5 MeV larger than
those of the low-density approximation. The temperature
dependence of the repulsive real part of the D optical potential
is very weak, whereas the imaginary part increases steadily
due to the increase of collisional width. The picture is
somewhat different for the D meson. At low temperature,
the corresponding quasiparticle peak is already quite broad
due to the overlap with the £.N~' mode. As temperature
increases the later mode tends to dissolve and, with the
overlap being reduced, one observes an overall decrease in the
width of the distribution in spite of the increase of collisional
broadening.
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Taking into account our results, we might look at the
question of possible D bound states once discussed in
Ref. [13]. While D™ -mesic nuclei systems will always be
bound by the Coulomb interaction, it would be interesting
to see whether strongly bound nuclear states or even bound
DO nuclear systems might exist. From the results of Fig. 5
we see that, even for model A, the D-nucleus optical
potential at zero momentum is repulsive, hence ruling out
this possibility. However, as mentioned earlier, the ¥ py term,
which contributes attractively to both isospin channels of the
DN interaction, has been given a conservative value in our
present approach. Although the magnitude of the Xpy term
may be made larger, we recall that it is not a free parameter but
is constrained by the coupled DN channel, in particular by the
properties of the A.(2593) resonance. Therefore, it will be first
necessary to see whether a larger X py term constrained by the
properties of the DN interaction may still produce an attractive
isospin averaged interaction, which could then even allow for
the existence of D’-nucleus bound states. In any event, it
is clear that D~ -mesic nuclei provide a valuable source of
information for determining the sign and size of the D mass
shift at subnuclear densities. An experimental observation of
bound D nuclear states is ruled out by the large width and
moderate attraction found for the D-meson optical potential.

The other point of interest from the present study is related
to the possible hadronic mechanism for the suppression of
the J/W production in relativistic heavy-ion collisions. As
stated in the introduction, a good part of the earlier interest
was to see if the masses of D and D get reduced so that
the J/W — DD may proceed exothermically [13,14,16,24]
in nuclear matter, hence contributing to the J/\W suppression.
The difference in the two thresholds in vacuo for this process
is AE = Eq(D + D) — Ex(J/ W) ~ 650 MeV, which should
be overcome in one way or another for this to go spontaneously
or at the cost of small energies. Because charmonia, including
the J/ W, are ¢¢ bound states that contain no light quarks, one
normally assumes that the medium modification they might
undergo should be minimum, thus their in-medium masses
are not expected to be very different from those in vacuo.
In the present work, we have observed that in-medium D
mass increases typically by 10-20 MeV. On the other hand,
as mentioned in the last section, from Fig. 4, the tail of the
quasiparticle peak of the D spectral function extends with
a non-negligible strength to lower “mass” values due to the
thermally spread Y.N~! particle-hole configurations. So one
might expect that some spontaneous leakage for J/WN —
Y.D — Y.nD,J/WNN — Y.ND, ... might effectively be
possible. However, it looks very unlikely that the lower part of
this spectral function tail extends from the quasiparticle peak
as far down by 600 MeV while keeping relevant strengths.
So the disappearance of the J/W through such processes,
even if helped by the thermally excited nucleons, will not
proceed. These processes might still go endothermically
through collisions induced by a surrounding large collection of
comoving hadrons for which the effective reaction threshold
may get lowered. But its efficiency is very questionable. So the
direct disappearance of the existing J/ W looks improbable.

Then, what about the possibility of reducing the sup-
ply of this charmonium from its excited state partners
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such as x.(1P),(£ =0,1,2) because it is known that
an appreciable fraction of J/W production comes from
the radiative decay of these charmonia [42]? To look
for such a possibility, we may consider here the fol-
lowing reactions: x.(1P)N — A.(2285)D, x.(1P)N —
A(2285)m D, x.¢(1P)N — X.(2445)D, and x.(1P)N —
A.(2593)D. Note that the masses of these . s are 3415, 3511,
and 3556 MeV in ascending order for £. Before proceeding,
we note that in free space the first three reactions are already
endothermic for all three y.,’s, whereas the last one is closed
for the two lowest ones. On taking into account the MFB effects
studied in the present work, it should be safe to speculate that
the same first three reactions do take place in a hot nuclear
matter as well. As for the last one, we might also claim that
it could proceed in medium because the A, will develop a
sufficient width as seen, for example, in the in-medium DN
amplitudes of Fig. 2 or reflected in the extended low-energy
tail of the D-meson spectral functions in Fig. 4. Therefore part
of the feeding of the J/W from its excited state partners will
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certainly be reduced. A similar mechanism might well reduce
the feeding of J/W from the decay of the W’. The arguments
presented here are only kinematical in nature, so even a simple
dynamical model for the relevant in-medium reactions may
need to be employed to support them further.
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