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Improved density-dependent quark mass model with quark-σ meson and quark-ω meson couplings
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We present an improved quark mass density-dependent model with the nonlinear scalar sigma field and the
ω-meson field. By comparing with the quark-meson coupling model, we show that our model can successfully
describe saturation properties, the equation of state, the compressibility and the effective nuclear mass of nuclear
matter under the mean field approximation.
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I. INTRODUCTION

Owing to the nonperturbative nature of quantum chromody-
namics (QCD) in low energy regions, it is very difficult to study
nuclear system by using QCD directly. Phenomenological
models reflecting the characteristic of the strong interaction
are widely used in the studying of the properties of hadrons
and nuclear matter. The quantum hadrodynamics (QHD-I) is
a pioneering framework to describe the nuclear system as a
relativistic many-body system of baryons and mesons. Along
this direction, many important extensions of QHD-I model
had been made, for example, adding nonlinear scalar field
to improve the compressibility value of nuclear matter, adding
isovector ρ meson to study the isospin effects (QHD-II model),
adding pions to investigate the chiral symmetry and PCAC,
etc. The best review for the progress of QHD can be found in
Refs. [1–3], and references therein. Recently, this model has
been extended to include the hyperons for studying the strange
hadronic matter [4–7].

Since the QCD of quarks and gluons is the fundamental
theory of the strong interaction, it is natural to extend above
discussions to quark level. The first famous model, namely,
the quark-meson coupling (QMC) model was suggested by
Guichon [8]. It describes the nuclear matter as a collection
of nonoverlapping MIT bags, scalar σ meson and vector ω

meson. The quarks inside the MIT bag couple with the scalar
σ meson and vector ω meson self-consistently. By means of
this model and the mean field approximation (MFA), many
dynamical and thermal properties of nucleon systems have
been studied [9–11].

Although the QMC model is successful for describing the
physical properties of a nuclear system, two shortcomings arise
when one uses this model to discuss the quark deconfinement.
The first difficulty comes because that it is a permanent quark
confinement model and the MIT boundary condition cannot
be destroyed by temperature and density. The second difficulty
arises from MIT boundary condition. If we hope to do the
nuclear many-body calculations beyond MFA by quantum
field theory, it is essential to find the free propagators of quark,
σ meson and ω meson, respectively. But the constraint of

*wlqian@fudan.edu.cn
†rksu@fudan.ac.cn

the MIT bag boundary condition presents obstacles to get
the corresponding propagators in free space. Because the
interactions between quarks and mesons are limited within
the bag regions, and multireflection of quarks and mesons by
the boundary must be taken into account.

In order to keep the quark confined property and to give
up the MIT boundary condition, we focus our attention on the
quark mass density-dependent (QMDD) model suggested by
Fowler, Raha, and Weiner [12] first.

According to the QMDD model, the masses of u, d quarks
and strange quarks (and the corresponding antiquarks) are
given by

mq = B

3nB

(q = u, d, ū, d̄), (1)

ms,s̄ = ms0 + B

3nB

, (2)

where nB is the baryon number density, ms0 is the current
mass of the strange quark, and B is the bag constant. At zero
temperature

nB = 1
3 (nu + nd + ns), (3)

where nu, nd, ns represent the density of the u quark, d quark,
and s quark, respectively. The basic hypothesis (1) and (2)
in the QMDD model can be understood from the quark
confinement mechanism. A confinement potential, which is
proportional to r (or r2), must be added to a quark system in the
phenomenological effective models because the perturbative
QCD cannot give us the confinement solution of quarks. The
confinement potential kr prevents the quark from going to
infinity or to the very large regions. The large regions or the
large volume means that the density is small. This mechanism
of confinement can be mimicked through the requirement that
the mass of isolated quark becomes infinitely large so that the
vacuum is unstable to support it. Thus, for a system of quarks
at zero temperature, the energy density tends to a constant
value while the mass tends to infinity, as the volume increases
to infinity or the density decreases to zero [13,14]. This is
just the picture given by Eqs. (1) and (2). This confinement
mechanism is similar to that of the MIT bag model.

The boundary condition of confinement for MIT bag model
corresponds to that wherein the quark mass is zero inside the
bag but infinite at the boundary or outside the bag, Due to
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this similarity, Benvento and Lugones [15] investigated the
equation of state, the stability window of strange matter and
the M-R curves of strange star. They claimed that in almost
all cases they found that the properties of the strange matter
in the QMDD model are nearly the same as those obtained
in the MIT bag model [15]. Their conclusion had also been
confirmed by many other authors [16–18]. Here we emphasize
that the MIT bag boundary constraint has been given up in the
QMDD model.

As was shown in Ref. [14], the QMDD model cannot
describe the quark deconfinement phase transition and give
us a correct phase diagram as that given by lattice QCD. The
reason is that the temperature T tends to infinite when density
nB → 0. This result can easily be understood if we notice
the basic hypothesis Eqs. (1) and (2) of the QMDD model,
the quark masses are divergent when nB → 0. To excite an
infinite weight particle, one must prepare to pay the price
for infinite energy, i.e., infinite temperature. It means that
the confinement in the QMDD model is still permanent. To
overcome this difficulty, we have introduced a new ansatz that
the vaccum density B is a function of temperature T [14,16]:

B = B0[1 − (T/TC)2], 0 � T � TC, (4)

B = 0, T > TC. (5)

The masses of quarks not only depend on the density nB , but
also on the temperature T ,

mq = B

3nB

[1 − (T/TC)2], (q = u, d, ū, d̄), (6)

ms,s̄ = ms0 + B

3nB

[1 − (T/TC)2], (7)

and when T � TC,mq = 0,ms,s̄ = ms0, This quark mass
density- and temperature-dependent model (QMDTD) has
been employed to discuss the properties of strange quark
matter [14,16], the dibaryon system [19], and the strange
quark star [20,21]. Instead of the correspondence of MIT bag
to the QMDD model, we have proved that QMDTD model
mimicks the Freidberg-Lee (FL) soliton bag model [22,23].
In FL model, the confinement mechanism comes from the
interaction between quarks and a nonlinear nontopological
scalar soliton field. The vacuum density B equals to the
different value between the local false vacuum minimum and
absolute real vacuum minimum. It is a function of temperature.
The scalar field breaks the chiral symmetry spontaneously. The
nontopological soliton will disappear at a finite temperature
and the quark will deconfine at the critical temperature TC ,
where B(TC) = 0. To avoid the ad hoc ansatz Eqs. (4)–(7),
following the treatment of Friedberg and Lee, we introduced
a nonlinear scalar field to improve the QMDD model in
Refs. [24,25]. We found the wave functions of the ground
state and the lowest one-particle excited states. By using these
wave functions, we calculated many physical quantities such
as root-mean-square radius, the magnetic moment of nucleon
to compare with experiments and come to a conclusion that this
improved QMDD (IQMDD) model is successful to explain the
properties of nucleon [24]. In Ref. [25], we extended this model
to finite temperature and studied its soliton solution by means
of the finite temperature quantum field theory. The critical

temperature of quark deconfinement TC and the function of
temperature-dependent bag constant B(T ) are found as an
output.

This paper evolves from an attempt to employ the IQMDD
to investigate the physical properties of nuclear matter. As was
shown by the QHD model [1] and the QMC model [8] early,
a neutral vector field coupled to the conserved baryon current
is very important for describing bulk properties of nuclear
matter. The large neutral scalar and vector contributions have
been observed empirically from NN scattering amplitude. The
main qualitative features of the nucleon-nucleon interaction: a
short range repulsion between baryons coming from ω-meson
exchange, and a long-range attraction between baryons coming
from σ -meson exchange must be included in a successful
model. Obviously, if we hope to employ the IQMDD model
to mimic this repulsive and attractive interactions, except the
quark and σ -meson interaction, the ω meson and the qqω

coupling must be added. This motivate us to introduce ω

mesons and the qqω coupling in this paper. In this new IQMDD
model, the nonlinear scalar field coupling with quarks forms
a soliton bag, and the qqω vector coupling gives the repulsion
between quarks. We will prove that this model can give us a
successful description of nuclear matter.

Our second motivation is to compare the IQMDD model
with ω and σ mesons and the QMC model. Instead of the
MIT bag in QMC model, the confinement property of QMDD
model comes from the density-dependent quark mass and the
interaction between quark and nonlinear σ field. We will prove
that the results given by IQMDD model are similar to that of
the QMC model.

The organization of this paper is as follows. In the next
section, we give the main formulas of the IQMDD model
under the mean field approximation at zero temperature. In the
third section, some numerical results are presented. The last
section contains a summary and discussions.

II. FORMULAS OF THE IMPROVED QMDD MODEL

The Lagrangian density of the IQMDD model is

L = ψ̄[iγ µ∂µ − mq + gq
σσ − gq

ωγ µωµ]ψ

+ 1
2∂µσ∂µσ − U (σ ) − 1

4FµνF
µν + 1

2m2
ωωµωµ, (8)

where

Fµν = ∂µων − ∂νωµ (9)

and the quark mass mq is given by Eqs. (1) and (2), mσ

and mω are the masses of σ and ω mesons, g
q
σ and g

q
ω are

the couplings constants between quark-σ meson and quark-ω
meson, respectively. And

U (σ ) = 1

2
m2

σ σ 2 + 1

3
bσ 3 + 1

4
cσ 4 + B (10)

−B = m2
σ

2
σ 2

v + b

3
σ 3

v + c

4
σ 4

v , (11)

where σv is the absolute minimum of U (σ ), U (σv) = 0 and
U (0) = B. We omit the contribution of the s quark and the
couplings of hyperons here and consider the nuclear matter
only.
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It can easily show the equation of motion for u(d) quark
field in the whole space is

[
γ µ

(
i∂µ + gq

ωωµ

) − (
mq − gq

σσ
)]

ψ = 0. (12)

Under mean field approximation, the effective quark mass m∗
q

is given by

m∗
q = mq − gq

σ σ̄ . (13)

In nuclear matter, three quarks constitute a soliton bag [26,27],
and the effective nucleon mass is obtained from the bag energy
and reads

M∗
N = �qEq

= �q

4

3
πR3 γq

(2π )3

∫ K
q

F

0

√
m∗

q
2 + k2

(
dNq

dk

)
dk, (14)

where quark degeneracy γq=6, K
q

F is the Fermi energy of
quarks. dNq/dk is the density of states for various quarks in a
spherical cavity. It is given by [28]

N (k) = A(kR)3 + B(KR)2 + C(KR), (15)

where

A = 2γq

9π
, (16)

B
(mq

k

)
= γq

2π

{[
1 +

(mq

k

)2
]

arctan

(
k

mq

)
− mq

k
− π

2

}
,

(17)

C
(mq

k

)
= C̃

(mq

k

)
+

(mq

k

)1.45 γq

3.42
(mq

k
− 6.5

)2 + 100
,

(18)

C̃
(mq

k

)
= γq

2π

{
1

3
+

(
mq

k
+ k

mq

)
arctan

(
k

mq

)
− πk

2mq

}
.

(19)

Equations (16) and (17) are in good agreement with those
given by multireflection theory [29–31] and Eqs. (18) and (19)
are given by a best fit of numerical calculation for the MIT bag
model. The curvature term C̃ given by Madsen [29] cannot be
evaluated by the multireflection theory except for two limiting
cases mq → 0 and mq → ∞.

At zero temperature, the Fermi energy K
q

F of quarks reads

3 = 4
3πR3nB, (20)

where nB satisfies

nB = �q

γq

(2π )3

∫ K
q

F

0

(
dNq

dk

)
dk. (21)

The bag radius R is determined by the equilibrium condition
for the nucleon bag:

δM∗
N

δR
= 0. (22)

In nuclear matter, the total energy density is given by

εmatter = γN

(2π )3

∫ KN
F

0

√
M∗

N
2 + p2d3p + g2

ω

2m2
ω

ρ2
B + 1

2
m2

σ σ̄ 2

+ 1

3
bσ̄ 3 + 1

4
cσ̄ 4, (23)

where γN = 4 is degeneracy of nucleon, KN
F is Fermi energy

of nucleon, and ρB is the density of nuclear matter

ρB = γN

(2π )3

∫ KN
F

0
d3k. (24)

In Eq. (23), gω is the coupling constant between the nucleon
and the ω meson and it satisfies gω = 3g

q
ω. As that of the QMC

model [8–12], the σ̄ is yielded by the equation

m2
σ σ̄ + bσ̄ 2 + cσ̄ 3

= − γN

(2π )3

∫ KN
F

0

M∗
N√

M∗
N

2 + p2
d3p

(
∂M∗

N

∂σ̄

)
R

. (25)

Equations (13)–(25) form a complete set of equations and
we can solve them numerically. Our numerical results will be
shown in the next section.

III. NUMERICAL RESULTS

Before numerical calculation, let us consider the parameters
of this model first. As that of Refs. [1,36], the masses of
ω-meson and σ -meson are fixed as mω = 783 MeV, mσ =
509 MeV, respectively. We choose the bag constant B =
174 MeV fm−3 to fit the mass of nucleon MN = 939 MeV.
When B is determined, the parameters b and c are not
independent because of Eq. (11). we choose b as the free
parameter. There are still three parameters, namely, g

q
ω, g

q
σ , b

are needed to be fixed in this model.
To study the physical properties of nuclear matter, we

investigate the nuclear saturation, the equation of state and
the compressibility. The pressure of nuclear matter P is given
by

P = ρ2
B

∂

∂ρB

εmatter

ρB

, (26)

where ρB is the baryon density in the nuclear matter. The
compressibility for nuclear matter reads

K = 9
∂

∂ρB

P (27)

at saturation point, the binding energy per particle E/A =
−15 MeV, and the saturation density ρ0 = 0.15 fm−3.

Our numerical results are shown in Figs. 1–4. In Fig. 1, we
choose ω-meson and σ -meson satisfy σ̄ = 0, ω̄ = 0 and depict
the bag energy as a function of bag radius at zero temperature.
We find the stable radius of a “free” nucleon R = 0.85 fm.

In Figs. 2–4 we show the effective mass M� of nucleon,
the saturation curve and the equations of state of nuclear
matter at zero temperature for the IQMDD model, respectively,
where we fix the parameter b = −1460 (MeV), gσ = 4.67,
and gω = 2.44, respectively. We find E/A = −15 MeV and
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FIG. 1. The bag energy as a function of bag radius at zero
temperature for ω̄ = 0, σ̄ = 0.

ρ0 = 0.15 fm−3 and K(ρ0) = 210 MeV. Our model can
explain the properties of nuclear matter successfully.

To illustrate our results more transparently, we show
the dependence of the properties of nuclear matter on the
parameters b, g

q
σ , g

q
ω in Table I for fixing binding energy

E/A = −15 MeV and ρ0 = 0.15 fm−3. We find that the
compressibility K(ρ0) and effective nucleon mass M∗

N (ρ0)
at saturation point all decrease when g

q
σ , g

q
ω increase and b

decreases. At was shown in Table I, the variational regions for
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FIG. 2. Effective nucleon mass vs. baryon density at zero tem-
perature where the parameters gq

σ = 4.67, gq
ω = 2.44, b = −1460

(MeV).
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FIG. 3. Saturation curve of nuclear matter at zero temperature.
The parameters are same as those of Fig. 2.
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FIG. 4. Pressure of nuclear matter as a function of ρB . The
parameters are same as those of Fig. 2.

TABLE I. Variation of the nuclear matter properties to b.

b(MeV) gq
σ gq

ω K(ρ0)(MeV) M∗
N (ρ0)(MeV)

−800 4.59 2.35 218.8 782.9
−1000 4.61 2.38 215.5 781.2
−1200 4.64 2.40 213.6 778.5
−1400 4.66 2.43 211.2 776.8
−1600 4.69 2.46 208.1 774.3
−1800 4.71 2.48 205.7 772.6

015203-4



IMPROVED DENSITY-DEPENDENT QUARK MASS MODEL . . . PHYSICAL REVIEW C 77, 015203 (2008)

0.00 0.05 0.10 0.15

0

10

20

30

40

50

60

70

80

90

100

ρ
B
 (fm-3)

σ 
(M

eV
)

FIG. 5. The σ̄ field vs. baryon density for b = −3655 (MeV),
gq

σ = 5.23, gq
ω = 3.12.

K(ρ0) and M∗
N (ρ0) are small, and K(ρ0) and M∗

N (ρ0) decrease
slowly.

It was pointed out in Ref. [32] early, adding a nonlinear
scalar field in the model will cause unphysical behavior under
mean field approximation in nuclear matter. This can easily be
seen from Eq. (25) because the left hand side of Eq. (25) is a
cubic order function of σ̄ , and σ̄ = 0 is one of its solutions.
There are two solutions in low-density regions. In Figs. 5 and
6, these two solutions are shown explicitly for σ̄ vs. ρB curve
and for M�

N vs. ρB curve, respectively, where the parameters
are fixed as b = −3655 (MeV). Noting that the term of the
nonlinear scalar field is essential to form a soliton bag, we
conclude that the unphysical branch cannot be avoided for the
soliton solutions under mean field approximation. Fortunately,
the lower branch cannot be ended at the point (MN = 939 MeV,
ρB = 0). It is instable because for this branch its second
derivative of the potential is negative at ρB = 0. It cannot
give us experimental value of nucleon mass and is unstable.
We will give up this unphysical branch in our calculation.

Finally, it is of interest to compare the properties of nuclear
matter for IQMDD model and for the QMC model. Our results
are shown in Table II, the data of nuclear matter properties for

TABLE II. Comparison of properties for the IQMDD and QMC
models.

R

(fm)
gq

σ gq
ω K(ρ0)

(MeV)
M∗

N (ρ0)
(MeV)

QMC 0.80 5.53 1.26 200 851
IQMDD (b = 0) 0.85 4.54 2.21 227 798
IQMDD (b = −1460) 0.85 4.67 2.44 210 775
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FIG. 6. Effective nucleon mass M� vs. baryon density. The
parameters are same as those of Fig. 5.

the QMC model are adopted from Ref. [32]. We find their
results are very similar.

From Table II, we find that although the effective mass of
the nucleon at the saturation density given by the IQMDD
model is smaller than that of the QMC model, it is still too
large. A too large effective mass M∗/M will almost certainly
correspond to a too small spin-orbit splitting in finite nuclei
and in the hypernuclear system [33] because the mean fields
are small. To overcome this difficulty, a tensor term which
couples the antisymmetric spin current density ψ̄σµνψ to the
field strength of the vector meson field Fµν must be added to
the Lagragian (8) [34,35]. We leave this study for the future.

IV. SUMMARY AND DISCUSSION

In summary, we present an IQMDD model which has
the nonlinear σ meson field and ω meson field. The quark
and σ -meson coupling and the quark and ω-meson coupling
are introduced to mimic the attractive and the repulsive
interactions between quarks in this model. Compared with
our previous model [24,25], a new ω-meson field and a
new gωψ̄γ µωµψ coupling are presented. It is shown that
the present model is successful for describing the saturation
properties, the equation of state and compressibility of nuclear
matter.

Our IQMDD model is similar to that of QMC model.
The basic important advantage is that we drop out the MIT
boundary constraint and extend the interaction between quark
and meson to the whole space. Instead of the MIT bag in
QMC model, a FL soliton bag is introduced in IQMDD model.
In principle, we can discuss the quark deconfinement phase
transition by using this model.
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Although we can write down the free propagators of the
quark, σ -meson, and ω-meson in the whole space directly
and calculate the contributions of corresponding Feynman
diagrams, we have still employed MFA in this paper. The
reason is that it is enough for studying the saturation properties
and the equation of state of nuclear matter. If we want
to do a many-body calculation beyond MFA, for example,
RPA, polarization, quark scattering, etc., the advantage of the

IQMDD model is obvious. Perhaps the IQMDD model is a
good candidate to replace the QMC model.
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