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The fast Monte Carlo procedure of hadron generation developed in our previous work is extended to describe
noncentral collisions of nuclei. We consider different possibilities to introduce appropriate asymmetry of the
freeze-out hypersurface and flow velocity profile. For comparison with other models and experimental data, we
demonstrate the results based on the standard parametrizations of the hadron freeze-out hypersurface and flow
velocity profile assuming either a common chemical and thermal freeze-out or the chemically frozen evolution
from chemical to thermal freeze-out. The C++ generator code is written under the ROOT framework and is
available for public use at http://uhkm.jinr.ru/.
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I. INTRODUCTION

In the preceding work [1], we developed a Monte Carlo
(MC) simulation procedure, and the corresponding C++
code allowing for a fast but realistic description of multiple
hadron production in central relativistic heavy ion collisions.
A high generation speed and easy control through input
parameters make our MC generator code particularly useful
for detector studies. The generator code is quite flexible and
allows the user to add other scenarios and freeze-out surface
parametrizations as well as additional hadron species in a
simple manner. We have compared the BNL Relativistic Heavy
Ion Collider (RHIC) experimental data on central Au+Au
collisions with our MC generation results obtained within the
single freeze-out scenario with Bjorken-like and Hubble-like
freeze-out surface parametrizations. Although simplified, such
a scenario nevertheless allowed a reasonable description of
particle spectra and femtoscopic momentum correlations to
be obtained. This description can be further improved by
introducing finite emission duration and extending the table
of the included resonances; the single freeze-out scenario is,
however, less successful in describing the data on elliptic flow
(see Sec. III).

The particle densities at the chemical freeze-out stage
are too high (see, e.g., Ref. [2]) to consider particles as
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free streaming and to associate this stage with the thermal
freeze-out one. In this work, we have implemented as an
option a more sophisticated scenario of thermal freeze-out:
the system expands, hydrodynamically with frozen chemical
composition, cools down, and finally decays at some thermal
freeze-out hypersurface. The RHIC experimental data are
compared with our MC generation results obtained within this
thermal freeze-out scenario. We do not consider here a more
complex freeze-out scenario taking into account continuous
particle emission (see, e.g., Ref. [3]).

In the present paper, we also extend the fast Monte Carlo
procedure of hadron generation developed in our previous
work [1] to describe noncentral collisions of nuclei. One
of the most spectacular features of the RHIC data is large
elliptic flow [4]. The development of a strong flow is well
described by the hydrodynamic models and requires short
time scale and large pressure gradients, attributed to strongly
interacting systems. However, results of hydrodynamic models
significantly disagree with the data on femtoscopic momentum
correlations (compare Ref. [5] with, e.g., Ref. [6]), related
with the space-time characteristics of the system at freeze-
out. Usually, the hadronic cascade models underestimate
the momentum anisotropy and overestimate the source sizes
(e.g., Refs. [7–9]). Some sophisticated hybrid models (e.g.,
a multiphase transport (AMPT) model [10]) reproduce the
elliptic flow and the correlation radii but with different sets of
model parameters.

Successful attempts to describe simultaneously the
momentum-space measurements and the freeze-out
coordinate-space data were done in several models which
make experimental data fitting within some parametrizations
of freeze-out hypersurface: the Kiev-Nantes model [3],
blast-wave parametrizations [11–13], and the Buda-Lund
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hydrodynamic approach [14]. All these approaches use the
hydrodynamically inspired parametrizations of freeze-out
hypersurface and help in understanding the full freeze-out
scenario at RHIC.

In this article, we analyze the RHIC data at
√

sNN =
200 GeV and try to use the same set of model parameters
for the description of both the momentum-space observables,
i.e., transverse mass mt spectra and pt dependence of elliptic
flow, and the freeze-out coordinate-space observables, i.e.,
kt dependence and azimuthal angle � dependence of the
correlation radii. The chemical composition of the fireball
was fixed in our previous article [1] by the particle ratios
analysis.

The paper is organized as follows. Section II is devoted to
the description of the main modifications of the model [1]
needed to take into consideration noncentral collisions. In
Sec. III, the example calculations are compared with the RHIC
experimental data. We summarize and conclude in Sec. IV.

II. FREEZE-OUT SURFACE PARAMETRIZATIONS

The extension of our MC generator to noncentral collisions
demands mainly the modification of freeze-out hypersurface
parametrizations (Sec. V of Ref. [1]) and does not practically
influence the generation procedure itself (Sec. VI of Ref. [1]).
Therefore, we focus on these modifications only in consid-
ering the popular Bjorken-like and Hubble-like freeze-out
parametrizations used, respectively, in the so-called blast
wave [11] and Cracow [15] models as the example options
in our MC generator. Similar parametrizations have been used
in the hadron generator THERMINATOR [12]. As usual, in
the Bjorken-like parametrization, we substitute the Cartesian
coordinates t, z by the Bjorken ones [16]

τ = (t2 − z2)1/2, η = 1

2
ln

t + z

t − z
, (1)

and introduce the the radial vector �r ≡ {x, y} =
{r cos φ, r sin φ}, i.e.,

xµ = {τ cosh η, �r, τ sinh η}
= {τ cosh η, r cos φ, r sin φ, τ sinh η}. (2)

For a freeze-out hypersurface represented by the equation
τ = τ (η, r, φ), the hypersurface element in terms of the
coordinates η, r, φ becomes

d3σµ = εµαβγ

dxα dxβ dxγ

dη dr dφ
dη dr dφ, (3)

where εµαβγ is the completely antisymmetric Levy-Civita
tensor in four dimensions with ε0123 = −ε0123 = 1. Generally,
the freeze-out hypersurface is represented by a set of equations
τ = τj (η, r, φ), and Eq. (3) should be substituted by the sum
of the corresponding hypersurface elements. For the simplest
and frequently used freeze-out hypersurface τ = const, one
has

d3σµ = nµ d3σ = τd2�r dη{cosh η, 0, 0,− sinh η},
(4)

d3σ = τ d2�r dη, nµ = {cosh η, 0, 0, sinh η}.

In noncentral collisions, the shape of the emission region
in the transverse x–y plane can be approximated by an ellipse
(as usual, the z–x plane coincides with the reaction plane).
The ellipse radii Rx(b) and Ry(b) at a given impact parameter
b are usually parametrized [11,17–19] in terms of the spatial
anisotropy ε(b) = (R2

y − R2
x)/(R2

x + R2
y) and the scale factor

Rs(b) = [(R2
x + R2

y)/2]1/2, that is,

Rx(b) = Rs(b)
√

1 − ε(b), Ry(b) = Rs(b)
√

1 + ε(b). (5)

Then from the ellipse equation,

x2

R2
x

+ y2

R2
y

= 1, (6)

follows the explicit dependence of the fireball transverse radius
R(b, φ) on the azimuthal angle φ:

R(b, φ) = Rs(b)

√
1 − ε2(b)√

1 + ε(b) cos 2φ
; (7)

particularly, R(b, 0) = Rx(b) and R(b, π/2) = Ry(b). To re-
duce the number of free parameters, we assume here a simple
scaling option [20]

Rs(b) = Rs(b = 0)
√

1 − εs(b), (8)

where Rs(b = 0) ≡ R is the fireball freeze-out transverse
radius in central collisions. It means that the dimensionless
ratio Rs(b)/Rs(0) at the freeze-out moment depends on the
collision energy, the radius RA of the colliding (identical)
nuclei, and the impact parameter b through a dimensionless
εs(b) only. It should be noted that both εs(b) and the fireball
freeze-out eccentricity ε(b) are determined by the eccentricity
ε0(b) = b/(2RA) of the elliptical overlap of the colliding nuclei
at the initial moment, when

Rs(b)

Rs(b = 0)

∣∣∣
ε(b)=ε0(b)

≡ Rs(b)initial

RA

=
√

1 − ε0(b). (9)

Since εs(0) = ε(0) = ε0(0) = 0, one can assume that εs(b) �
ε(b) at sufficiently small values of the impact parameter b. It
appears that the use of the simple ansatz εs(b) = ε(b) allows
one to achieve the absolute normalization of particle spectra
correct within ∼10% up to b � RA (see Sec. III C).

If the system evolution were driven by the pressure gradi-
ents, the expansion would be stronger in the direction of the
short ellipse x axis (in the reaction plane), where the pressure
gradient is larger than in the direction of the long ellipse
y axis (see, e.g., Ref. [6]). The typical hydrodynamic evolution
scenario is shown in Fig. 1. During the evolution, the initial
system coordinate anisotropy ε0(b) is transformed into the
momentum anisotropy δ(b). According to the hydrodynamic
calculations, the spatial eccentricity almost disappears and the
momentum anisotropy saturates at rather early evolution stage
before freeze-out. As we do not trace the evolution here, we
will consider the spatial and momentum anisotropies ε(b) and
δ(b) as free parameters.

For central collisions, the fluid flow four-velocity
uµ(t, �x) = γ (t, �x) {1, �v(t, �x)} ≡ γ (t, �x) {1, �v⊥(t, �x), vz(t, �x)}
at a point �x and time t was parametrized [1] in terms of the
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FIG. 1. Typical hydrodynamic evolution scenario.

longitudinal (z) and transverse (⊥) fluid flow rapidities

ηu(t, �x) = 1

2
ln

1 + vz(t, �x)

1 − vz(t, �x)
,

(10)

ρu(t, �x) = 1

2
ln

1 + v⊥(t, �x) cosh ηu(t, �x)

1 − v⊥(t, �x) cosh ηu(t, �x)
,

where v⊥ = |�v⊥| is the magnitude of the transverse component
of the flow three-velocity �v = {v⊥ cos φu, v⊥ sin φu, vz}, i.e.,

uµ(t, �x) = {cosh ρu cosh ηu, sinh ρu cos φu, sinh ρu sin φu,

cosh ρu sinh ηu}
= {(1 + u2

⊥)1/2 cosh ηu, �u⊥, (1 + u2
⊥)1/2 sinh ηu},

(11)

�u⊥ = γ �v⊥ = γ⊥ cosh ηu�v⊥, and γ⊥ = cosh ρu. However, un-
like the transverse isotropic parametrization (φu = φ), now
the azimuthal angle φu of the fluid velocity vector is not
necessarily identical to the spatial azimuthal angle φ, because
of the nonzero flow anisotropy parameter δ(b) [18,19], that is,

uµ(t, �x) = {γφ cosh ρ̃u cosh ηu,
√

1 + δ(b) sinh ρ̃u cos φ,√
1 − δ(b) sinh ρ̃u sin φ, γφ cosh ρ̃u sinh ηu},

(12)

where

γφ =
√

1 + δ(b) tanh2 ρ̃u cos 2φ, (13)

tan φu =
√

1 − δ(b)

1 + δ(b)
tan φ. (14)

The transverse flow rapidity ρu is related to ρ̃u by

u⊥ = sinh ρu =
√

1 + δ(b) cos 2φ sinh ρ̃u. (15)

Note, that for δ(b) = 0 (i.e., φu = φ), Eq. (12) reduces to
Eq. (11) which was applied in Refs. [20,21]. In Ref. [19], δ(b)
is obtained by fitting the model prediction to the measured
elliptic flow coefficient v2.

Further, we assume the longitudinal boost invariance [16]
ηu = η, which is a good approximation for the highest
RHIC energies at the midrapidity region. To account for the
violation of the boost invariance, we have also included in
the code an option corresponding to the substitution of the

uniform distribution of the space-time longitudinal rapidity
η in the interval [−ηmax, ηmax] by a Gaussian distribution
exp(−η2/2η2) with a width parameter η = ηmax. The
presence of the “oscillation term”

√
1 + δ(b) cos 2φ in the

transverse component u⊥ of the flow velocity in Eq. (15)
allows us to use the simple linear profile for ρ̃u without
introducing additional parameters for each centrality (b) unlike
other models, namely,

ρ̃u = r

Rs(b)
ρmax

u (b = 0), (16)

where ρmax
u (b = 0) is the maximal transverse flow rapidity

for central collisions. At such normalization and δ(b) > ε(b),
the maximal transverse flow (u⊥, ρu) is achieved at φ = 0,
i.e., along the x axis as it should be according to the
hydrodynamic scenario described above (Fig. 1). (Although
ρ̃u has a maximum at φ = π/2!).

Here one should note that the “popular parametrization” of
transverse flow rapidity used in Ref. [11] (and implemented as
an option in our MC generator also), i.e.,

ρu = r̃[ρ0(b) + ρ2(b) cos 2φu], (17)

where

r̃ ≡
√( r cos φ

Rx

)2
+

( r sin φ

Ry

)2
= r

R(b, φ)
, (18)

is the “normalized elliptical radius,” in which ρ0(b) and ρ2(b)
are the two fitting parameters, is close to our parametrization,
and gives similar results for the observables under considera-
tion. In the parametrization of Ref. [11], the boost is perpen-
dicular to the elliptical subshell on which the source element
is found: tan φu = (R2

x/R
2
y) tan φ = (1 − ε)/(1 + ε) tan φ and

δ(b) = 2ε(b)/(1 + ε2(b)). It is interesting to note that for
sufficiently weak transverse flows, ρu � 1, considered here,
one can put sinh ρu � ρu and obtain our parametrization from
that of Ref. [11] by the substitutions

ρ0(b)

R(b, φ)
→ ρmax

u (b = 0)

Rs(b)
,

1 + ρ2(b)

ρ0(b)
cos 2φu →

√
1 + δ(b) cos 2φ. (19)

Thus, in the case of moderate transverse flows, one can obtain
the same result either by fixing the direction of the flow
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velocity vector but allowing for the azimuthal dependence
of the flow rapidity or by allowing for arbitrary direction of
the flow velocity vector but assuming azimuthally independent
flow rapidity.

At τ = const, the total effective volume for particle pro-
duction in the case of noncentral collisions becomes

Veff =
∫

σ (t,�x)
d3σµ(t, �x)uµ(t, �x)

= τ

∫ 2π

0
dφ

∫ R(b,φ)

0
(nµuµ)rdr

∫ ηmax

ηmin

dη, (20)

where (nµuµ) = cosh ρ̃u

√
1 + δ(b) tanh2 ρ̃u cos 2φ.

We also consider the Cracow model scenario [15] corre-
sponding to the Hubble-like freeze-out hypersurface τH =
(t2 − x2 − y2 − z2)1/2 = const. Introducing the longitudinal
space-time rapidity η according to Eq. (1) and the transverse
space-time rapidity ρ = sinh−1(r/τH ), one has [22]

xµ = τH {cosh η cosh ρ, sinh ρ cos φ,

× sinh ρ sin φ, sinh η cosh ρ}, (21)

τH = τB/ cosh ρ. Representing the freeze-out hypersurface by
the equation τH = τH (η, ρ, φ) = const, one finds from Eq. (3):

d3σ = τ 3
H sinh ρ cosh ρ dη dρ dφ = τH dηd2�r,

(22)
nµ(t, �x) = xµ(t, �x)/τH .

With the additional flow anisotropy parameter δ(b), the flow
four-velocity is parametrized as [19]

uµ(t, �x) = {
γ H

φ cosh ρ cosh η,
√

1 + δ(b) sinh ρ cos φ,

×
√

1 − δ(b) sinh ρ sin φ, γ H
φ cosh ρ sinh η

}
, (23)

where

γ H
φ =

√
1 + δ(b) tanh2 ρ cos 2φ. (24)

The effective volume corresponding to r = τH sinh ρ <

R(b, φ) and ηmin � η � ηmax is

Veff =
∫

σ (t,�x)
d3σµ(t, �x)uµ(t, �x)

= τH

∫ 2π

0
dφ

∫ R(b,φ)

0
(nµuµ)r dr

∫ ηmax

ηmin

dη, (25)

with

(nµuµ) = cosh2 ρ
[√

1 + δ(b) tanh2 ρ cos 2φ

− tanh2 ρ
(√

1 + δ(b) cos2 φ

+
√

1 − δ(b) sin2 φ
)]

� 1 + o(δ2(b)). (26)

Our MC procedure for generating the freeze-out hadron
multiplicities, four-momenta, and four-coordinates for central
collisions has been described in detail in Ref. [1]. For
noncentral collisions, only the generation of the transverse
radius r is slightly different, taking place in the azimuthally
dependent interval [0, R(b, φ)].

III. INPUT PARAMETERS AND EXAMPLE
CALCULATIONS

A. Model input parameters

First, we summarize the input parameters which control the
execution of our MC hadron generator in the case of Bjorken-
like and Hubble-like parametrizations and should be specified
for different energies, ion beams, and event centralities.

(i) Thermodynamic parameters at chemical freeze-out:
temperature T ch and chemical potentials per unit charge
µ̃B, µ̃S, µ̃Q. As an option, an additional parameter
γs � 1 takes into account the strangeness suppression
according to the partially equilibrated distribution
[23,24]

fi(p
∗0; T ,µi, γs) = gi

γ
−ns

i
s exp ([p∗0 − µi]/T ) ± 1

,

(27)

where ns
i is the number of strange quarks and antiquarks

in a hadron i, p∗0 is the hadron energy in the fluid
element rest frame, and gi = 2Ji + 1 is the spin
degeneracy factor Optionally, the parameter γs can be
fixed using its phenomenological dependence on the
temperature and baryon chemical potential [25].

(ii) Volume parameters: the fireball transverse radius
R(b = 0) [determined in central collisions; in non-
central collisions, we use the scaling option (8,9),
to recalculate R(b) from R(b = 0)], the freeze-out
proper time τ , and its standard deviation τ (emission
duration) [26].

(iii) Maximal transverse flow rapidity ρmax
u (b = 0) for

Bjorken-like parametrization in central collisions.
(iv) Maximal space-time longitudinal rapidity ηmax which

determines the rapidity interval [−ηmax, ηmax] in the
collision center-of-mass system. To account for the
violation of the boost invariance, we have included in
the code an option corresponding to the substitution of
the uniform distribution of the space-time longitudinal
rapidity η in the interval [−ηmax, ηmax] by a Gaussian
distribution exp(−η2/2η2) with a width parameter
η = ηmax (see, e.g., Refs. [20,27]).

(v) Impact parameter range: minimal bmin and maximal
bmax impact parameters.

(vi) Flow anisotropy parameter δ(b) in Bjorken-like and
Hubble-like parametrizations [or ρ0(b) and ρ2(b) in the
blast-wave parametrization of Ref. [11]].

(vii) Coordinate anisotropy parameter ε(b).
(viii) Thermal freeze-out temperature T th (if single freeze-

out is considered, T th = T ch).
(ix) Effective chemical potential of π+ at thermal freeze-out

µeff,th
π (0, if single freeze-out is considered).

(x) Parameter which enables/disables weak decays.

The parameters used to simulate central collisions are given
in Table I. The parameters determined in central collisions for
T th = 0.1 GeV with τ = 8.0 fm/c, R(b = 0) = 10 fm, τ =
2.0 fm/c, and ρmax

u (b = 0) = 1.1 (fourth column in Table I)
were used to simulate Au+Au collisions at

√
sNN = 200 GeV
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TABLE I. Model parameters for central Au+Au colli-
sions at

√
sNN = 200 GeV for different thermal freeze-out

temperatures T th (GeV). Chemical freeze-out parameters
are T ch = 0.165 GeV, µ̃B = 0.028 GeV, µ̃S = 0.007 GeV,
and µ̃Q = −0.001 GeV.

Parameter T th = 0.165 T th = 0.130 T th = 0.100

τ , fm/c 7.0 7.2 8.0
τ , fm/c 2.0 2.0 2.0
R(b = 0), fm 9.0 9.5 10.0
ρmax

u (b = 0) 0.65 0.9 1.1
µeff, th

π 0 0.10 0.11

at different centralities. The additional parameters needed only
for noncentral collisions are given in Table II.

B. Different chemical and thermal freeze-outs

Since the assumption of a common chemical and thermal
freeze-out can hardly be justified (see, e.g., Ref. [2]), we
consider here a more complicated scenario with different
chemical and thermal freeze-outs.

The mean particle numbers N̄ th
i at thermal freeze-out can be

determined using the following procedure [2]. In our preceding
article [1], we fixed the temperature and chemical potentials
at chemical freeze-out by fitting the ratios of the numbers
of (quasi)stable particles. The common factor V ch

eff and thus
the absolute particle and resonance numbers was fixed by
pion multiplicities. Within the concept of chemically frozen
evolution, these numbers are assumed to be conserved except
for corrections due to decay of some part of the short-lived
resonances that can be estimated from the assumed chemical to
thermal freeze-out evolution time. Then one can calculate the
mean numbers of different particles and resonances reaching
a (common) thermal freeze-out hypersurface. At a given
thermal freeze-out temperature T th these mean numbers can
be expressed through the thermal effective volume V th

eff and
the chemical potentials for each particle species µth

i . The latter
can no longer be expressed in the form µi = �qi

�̃µ, which is
valid only for chemically equilibrated systems. For a given
parametrization of the thermal freeze-out hypersurface, the

TABLE II. Model parameters for Au+Au collisions at
√

sNN =
200 GeV at different centralities (c). Chemical freeze-out param-
eters are T ch = 0.165 GeV, µ̃B = 0.028 GeV, µ̃S = 0.007 GeV,
and µ̃Q = −0.001 GeV. Thermal freeze-out parameters are T th =
0.1 GeV, µeff, th

π = 0.11 GeV. Volume parameters determined in the
central collisions are R(b = 0) = 10.0 fm, τ = 8.0 fm/c, ρmax

u (b =
0) = 1.1.

Parameter c =
0–5%

c =
5–10%

c =
10–20%

c =
20–30%

c =
30–40%

c =
40–60%

bmin/RA 0 0.447 0.632 0.894 1.095 1.265
bmax/RA 0.447 0.632 0.894 1.095 1.265 1.549
ε(b) 0 0 0 0.1 0.15 0.15
δ(b) 0.05 0.08 0.12 0.25 0.34 0.36

thermal effective volume V th
eff (and thus all µth

i ) can be fixed
with the help of pion interferometry data.

In practical calculations, the particle number density
ρ

eq
i (T ,µi) is represented in the form of a fast converging

series [1], that is,

ρ
eq
i (T ,µi) = gi

2π2
m2

i T

∞∑
k=1

(∓)k+1

k
exp

(
kµi

T

)
K2

(
kmi

T

)
,

(28)

where K2 is the modified Bessel function of the second order,
and mi and gi = 2Ji + 1 are the mass and the spin degeneracy
factor of particle i, respectively.

Using Eq. (28) and the assumption of the conservation of the
particle number ratios from the chemical to thermal freeze-out
evolution time, we obtain the following ratios for the i-particle
specie to π+:

ρ
eq
i (T ch, µi)

ρ
eq
π

(
T ch, µch

i

) = ρ
eq
i

(
T th, µth

i

)
ρ

eq
π

(
T th, µ

eff, th
π

) . (29)

The absolute values of particles densities ρ
eq
i (T th, µth

i ) are
determined by the choice of the free parameter of the model:
effective pion chemical potential µeff, th

π at the temperature
of thermal freeze-out T th. Assuming for the other particles
(heavier then pions) the Boltzmann approximation in Eq. (28),
one deduces from Eqs. (28) and (29) the chemical potentials
of particles and resonances at thermal freeze-out:

µth
i = T th ln

(
ρ

eq
i

(
T ch, µch

i

)
ρ

eq
i (T th, µi = 0)

ρ
eq
π

(
T th, µeff, th

π

)
ρ

eq
π

(
T ch, µch

i

) )
. (30)

The correct way to determine the best set of model
parameters would be to fit all the observables together, as
suggested in Ref. [27]; but for our MC-type model, this is
technically impossible. For the example calculations with
our model at RHIC energies, we choose T ch = 0.165 GeV
and the thermal temperatures as in the analytical models
which performed the successful fitting of RHIC data: T th =
T ch = 0.165 GeV (Cracow model [15]) and T th = 0.100 GeV
(blast-wave model [11]), and some arbitrary intermediate
temperature T th = 0.130 GeV. It is well known (see, e.g.,
Ref. [2]) that the pion transverse spectra at thermal freeze-
out can be described in two regimes: low temperature and
large transverse flow on the one hand, and higher temper-
ature and nonrelativistic transverse flow on the other hand
(see Sec. III C). The low temperature regime seems to be
preferable, because the strong transverse flow is expected to
describe better the large inverse slopes of transverse spectra of
the heavy hadrons (especially protons) and small correlation
radii obtained at RHIC [3,11]. We present the calculated
correlation radii in Sec. III E.

In the last version of FASTMC considered here, the new
table of resonances was included. It contains 360 resonances
and stable particles, instead of the 85 included in the previous
versions. This particle table is produced from the SHARE [28]
particle table excluding any not well established resonances
states. The decays of resonances are controlled by the decay
lifetime 1/�, where � is the resonance width specified in
the particle table, and the decays occur with the probability
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FIG. 2. mt spectra (in c4/GeV2) measured by
the STAR Collaboration [29] for π+ (circles),
K+ (squares), and p (up-triangles)at 0–5% cen-
trality in comparison with model calculations at
T th = 0.165 (a), 0.130 (b), 0.100 (c) GeV, with
the parameters from Table I, for protons with
weak decays taken into account (solid lines);
for protons with weak decays not taken into
account (dashed lines). The direct π+, K+, and
p contributions are shown on (c) by dotted lines.

density � exp(−�τ ) in the resonance rest frame. Then the
decay products are boosted to the reference frame in which
the freeze-out hypersurface was defined. Because we need to
compare our calculations with data from different experiments,
we made it possible to switch on/off different decays based on
their lifetimes (i.e., turn on/off weak decays). Only the two- and
three-body decays are considered in our model. The branching
ratios are also taken from the particle decay table produced
from the SHARE decay table [28]. The cascade decays are
also possible.

C. mt spectra

In Fig. 2, the mt spectra measured by the STAR
Collaboration [29] at 0–5% centrality are shown for π+,K+,

and p in comparison with the model calculations under the
assumption of the common chemical and thermal freeze-out at
T th = T ch = 0.165 GeV [Fig. 2(a)] and under the assumption
that the thermal freeze-out at T th = 0.100, 0.130 GeV occurs
after the chemical one [Figs. 2(b) and 2(c)].

The correction on weak decays was introduced by the STAR
Collaboration in pion spectra only [29]. It was approximately
12% and was estimated from the measured K0

s and � decays.
In Ref. [29], the STAR Collaboration does not introduce the
weak decay correction in proton spectra. To reproduce the
STAR weak decay correction procedure, we excluded pions
from K0

s and � decays from pions mt spectra in Fig. 2. The
contribution of weak decays in the simulated proton spectra
can be estimated from Fig. 2 by comparison of the solid lines
(protons from K0

s and � decays are included) and the dashed

lines (without contribution of protons from the weak decays).
The model parameters at different temperatures are presented
in Table I. The parameters were optimized this way to obtain
a good description of the pion mt spectra and the correlation
radii. The best description of the mt spectra was achieved at
T th = 0.100 GeV [Fig. 2(c)].

The same set of parameters T , ρmax
u , R, and τ which was de-

termined for central collisions (Table I) was used for noncentral
ones. The additional parameters of the model for noncentral
collisions were coordinate and momentum asymmetries: ε and
δ (Table II). At the freeze-out moment, we consider them as
free parameters because we do not trace the evolution here.
The influence of the choice of ε and δ on mt spectra averaged
over azimuthal angle ϕ is negligible. The decrease of the
effective volume in noncentral collisions [Eq. (20)] due to
nonzero values of ε and δ allows us to obtain the correct
absolute normalization of mt spectra without introduction of
the additional parameters. In Fig. 3, the mt spectra measured
by the STAR Collaboration [29] are shown for π+,K+ and
p at centralities: 0–5%, 5–10%, 10–20%, 20–30%, 30–40%,
and 40–50% in comparison with the model calculations
which assume that the thermal freeze-out at T th = 0.1 GeV
occurs after the chemical one (solid lines). It appears that
the procedure described in Sec. II allows one to achieve the
absolute normalization of pion spectra correct within ∼13%.

D. Elliptic flow

Following a standard procedure [30,31], we make a Fourier
expansion of the hadron distribution in the azimuthal angle ϕ
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FIG. 3. mt spectra (in c4/GeV2)
measured by the STAR Collaboration
[29] for π+ (circles), K+ (squares),
and p (up-triangles) at different cen-
tralities compared with our FASTMC
calculations at T th = 0.100 GeV (solid
lines) with the parameters from
Tables I and II.

at mid-rapidity:

dN

d2pt dy

= dN

2πpt dpt dy
(1 + 2v2 cos 2ϕ + 2v4 cos 4ϕ + · · ·). (31)

The elliptic flow coefficient v2 is defined as the second-
order Fourier coefficient,

v2 =
∫ 2π

0 dϕ cos 2(ϕ − ψR) d3N
dy dϕpt dpt∫ 2π

0 dϕ d3N
dy dϕ pt dpt

, (32)

where ψR is the reaction plane angle (in our generation, ψR =
0), and y and pt are, respectively, the rapidity and transverse
momentum of the particle under consideration.

The value of v2 is an important signature of the physics
occurring in heavy ion collisions. According to the typical
hydrodynamic scenario shown in Fig. 1, the elliptic flow is
generated mainly during the high density phase of the fireball
evolution. The system driven by the internal pressure gradients
expands more strongly in its short direction (into the direction
of the impact parameter x in Fig. 1, which is chosen as a
“positive” direction) than in the perpendicular one (“negative”
direction, y in Fig. 1) where the pressure gradients are
smaller. Figure 1 illustrates qualitatively that the initial spacial
anisotropy of the system disappears during the evolution,
while the momentum anisotropy grows. The developing of
strong flow observed at RHIC requires a short time scale and
large pressure gradients, which are characteristics of a strongly
interacting system. The reason for the generation of v2 at the

early times is that the system should be hot and dense; when
the system cools and become less dense, the development
of large pressure gradients becomes impossible. The elliptic
flow coefficient v2 depends on the transverse momentum pt ,
the impact parameter b or centrality, as well as, the type of
the considered particle. All these dependencies have been
measured at RHIC [32].

The pt dependence of v2 measured by the STAR
Collaboration [32] for charged particles at centralities
0–5%, 5–10%, 10–20%, 20–30%, 30–40%, and 40–60% is
shown in Fig. 4 in comparison with our MC calculations
obtained with the optimal model parameters from Table II.
The calculations were performed under the assumption that
thermal freeze-out at T th = 0.1 GeV occurs after the chemical
one at T th = 0.165 GeV.

The calculations under the assumption of the common
chemical and thermal freeze-out at T th = T ch = 0.165 GeV
do not demonstrate good agreement with the experimental
data at small pt < 0.4 GeV/c for centralities larger than 20%;
irrespective of the choice of ε and δ, one cannot get a
satisfactory description in the whole pt range (see e.g., Fig. 5).

E. Correlation radii

The parameters of the model presented in Table I were
optimized to obtain the best description of the pion mt spectra
and the correlation radii in the following cases: under the
assumption of the common chemical and thermal freeze-out
at T th = T ch = 0.165 GeV and under the assumption that the
thermal freeze-out at T th = 0.100, 0.130 GeV occurs after the
chemical one. In Fig. 6, the fitted correlation radii Rout, Rside,
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FIG. 4. pt dependence of v2 mea-
sured by the STAR Collaboration [32]
(points) for charged particles at differ-
ent centralities in comparison with our
FASTMC calculations (solid lines) at
T th = 0.100 GeV with the parameters
from Tables I and II.

and Rlong are compared with those measured by the STAR
Collaboration [5]. The three-dimensional correlation function
was fitted with the standard Gaussian formula:

CF(p1, p2) = 1 + λ exp
(−R2

outq
2
out

−R2
sideq

2
side − R2

longq
2
long

)
, (33)
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t
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FIG. 5. pt dependence of v2 measured by the STAR Collaboration
[32] (points) for charged particles at centrality 20–30% compared
with our FASTMC calculations under assumption of the single
freeze-out at T th = T ch = 0.165 GeV. The different sets of coordinate
and momentum asymmetry parameters were tried: ε = 0.1, δ = 0.3
(lower solid line), ε = 0.2, δ = 0.4 (lower dotted line), ε = 0.1, δ =
0.4 (upper solid line), ε = 0.2, δ = 0.5 (upper dotted line), ε =
0.15, δ = 0.4 (dashed line).

where �q = �p1 − �p2 = (qout, qside, qlong) is the relative three-
momentum of two identical particles with four-momenta p1

and p2. The form of Eq. (33) assumes azimuthal symmetry
of the production process [33]. Generally, e.g., in the case
of the correlation analysis with respect to the reaction plane,
all three cross terms qiqj can be significant [27]. We will
consider this case below. We choose the longitudinal comoving
system (LCMS) as the reference frame [34]. In the LCMS, each
pair is emitted transverse to the reaction axis so that the pair
rapidity vanishes. The parameter λ measures the correlation
strength.

The regime with the large temperature T th = T ch =
0.165 GeV was tested in Ref. [1]. We repeated this test here
with the new resonances table and the additional parameter τ

[Fig. 6(a), dashed line]. We have found that these modifications
lead to a better description of the correlation radii. In Fig. 6(a),
bottom panel (dashed line), the intercept λ is larger than the
experimental one, but taking into account the secondary pions
from the weak decays essentially improves the description of
the λ [Fig. 6(a), bottom, solid line].

In Figs. 6(b) and 6(c), we consider the lower thermal
freeze-out temperatures: 0.130, 0.100 GeV. The secondary
pions coming from the weak decays were taken into
account.

It is worth to note a good description of the correlation radii
(within ∼10% accuracy) altogether with the absolute value of
the mt spectra in the scenario with a low temperature thermal
freeze-out of chemically frozen hadron-resonance gas. There
are three important reasons for this success. First, a relatively
small (compared with dynamic models) effective volume of
the system ∼τR2 that reduces the correlation radii. Second,
relatively large transverse flow in the model that further
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FIG. 6. π+ correlation radii at
midrapidity in central Au+Au col-
lisions at

√
sNN = 200 GeV from

the STAR experiment [5] (open cir-
cles) and MC calculations within
the Bjorken-like model with the
parameters presented in Table I
in different intervals of the pair
transverse momentum kt . The full
calculation with resonances (a),
(b). (a) Single freeze-out T ch =
T th = 0.165 GeV, no weak decays
(dashed line), with weak decays
(solid line); (b) thermal freeze-out
at T th = 0.130 GeV occurs after
the chemical one, weak decays
are taken into account (solid line);
(c) the full calculation with reso-
nances, weak decays are taken into
account at T th = 0.100 GeV (solid
line), the direct pions only (dotted
lines).

reduces the radii. Third, a rather large effective pion chemical
potential which is needed to describe the absolute value of the
pion spectra at relatively small effective volumes; it reduces
correlation radii at small pt and so makes their mt behavior
flatter. This reduction happens because the homogeneity length
of the Bose-Einstein distribution for low-pt pions vanishes
when the pion chemical potential approaches the pion mass
(see also Ref. [35] for the analysis of the reduction of the
pion correlation radii near the point of the Bose-Einstein
condensation in static systems). We do not consider here
the question of whether such conditions could be realized in
realistic dynamical models.

It should be noted that the description of the kt dependence
of the correlation radii has been achieved within ∼10%
accuracy for all three considered thermal temperatures: T th =
0.165, 0.130, 0.100 GeV. However, at lower temperatures
there is more flexibility in the simultaneous description of
particle spectra and correlations because the effective volume
is not strictly fixed as it is in the case of the single freeeze-out
(T th = T ch = 0.165 GeV). In the present work, we have not
attempted to fit the model parameters (T th, R, τ, µeff, th

π ) since
it is a rather complicated task requiring a lot of computer time.
We have performed only example calculations with several
sets of the parameters.

In noncentral collisions, the measurement of azimuthally
sensitive correlation radii provides additional information
about the source shape. For the corresponding femtoscopic
formalism with respect to the reaction plane, see, e.g.,
Refs. [18,27]. In the absence of azimuthal symmetry, the three

additional cross terms contribute to the Gaussian parametriza-
tion of the correlation function in Eq. (33):

CF(p1, p2) = 1 + λ exp
( − R2

oq
2
out − R2

s q
2
side − R2

l q
2
long

−2R2
osqoutqside − 2R2

olqoutqlong − 2R2
slqsideqlong

)
.

(34)

In the boost-invariant case, the transverse-longitudinal cross
terms R2

ol and R2
sl vanish in the LCMS frame, while the

important outside R2
os cross term is present.

In the Gaussian approximation, the radii in Eq. (34) are
related to space-time variances via the set of equations [18,27]

R2
s = 1/2(〈x̃2〉 + 〈ỹ2〉) − 1/2(〈x̃2〉

− 〈ỹ2〉) cos(2�) − 〈x̃ỹ〉 sin(2�),

R2
o = 1/2(〈x̃2〉 + 〈ỹ2〉)

+ 1/2(〈x̃2〉 − 〈ỹ2〉) cos(2�) + 〈x̃ỹ〉 sin(2�))
(35)

− 2β⊥(〈t̃ x̃〉 cos(�) + 〈t̃ ỹ〉 sin(�)) + β2
⊥〈t̃2〉,

R2
l = 〈z̃2〉 − 2βl〈t̃ z̃〉 + β2

l 〈t̃2〉,
R2

s = 〈x̃ỹ〉 cos(2�) − 1/2(〈x̃2〉 − 〈ỹ2〉) sin(2�)

+β⊥(〈t̃ x̃〉 sin(�) − 〈t̃ ỹ〉 cos(�)),

where βl = kz/k0, β⊥ = k⊥/k0, and � =  (�k⊥, �b) is the
azimuthal angle of the pair three-momentum �k with respect to
the reaction plane z-x determined by the longitudinal direction
and the direction of the impact parameter vector �b = (x, 0, 0);
the space-time coordinates x̃µ are defined relative to the
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FIG. 7. Simulated with FASTMC
squared correlation radii vs the az-
imuthal angle � of the π+π+

pair with respect to the reac-
tion plane, 20–30% centrality events
in kT (GeV/c) intervals: 0.15 <

kT < 0.25 (solid line), 0.25 < kT <

0.35 (dashed line), 0.35 < kT <

0.45 (dotted line), 0.45 < kT < 0.60
(dotted-dashed line). Simulation was
done with the special set of pa-
rameters: T th = 0.1 GeV, ρmax

u (b =
0) = 1.0; R(b = 0) = 11.5 fm, τ =
7.5 fm/c, τ = 0 fm/c, ε = 0.1 and
δ = 0.25; weak decays were not taken
into account.

effective source center 〈xµ〉: x̃µ = xµ − 〈xµ〉. The averages
are taken with the source emission function S(t, �x, k) [18]

〈f (t, �x)〉 =
∫
d4xf (t, �x)S(t, �x, k)∫

d4xS(t, �x, k)
. (36)

The illustrative calculations of the correlation radii as a
function of the azimuthal angle � were done with the following
fast MC parameters: T th = 0.1 GeV, ρmax

u (b = 0) = 1.0;
R(b = 0) = 11.5 fm, τ = 7.5 fm/c,τ =0. fm/c, ε = 0.1,

and δ = 0.25. The azimuthal dependence of the correlation
radii in different kt intervals is shown in Fig. 7.

The R2
s oscillates downward, in the same phase as the RHIC

source extended out of plane [36], which means the larger
sideward radius viewed from the x direction (in the reaction
plane) than from the y direction (out of plane). The source has
small coordinate asymmetry ε = 0.1, and it is almost round (as
in Fig. 1 step 3); however, the emission zone, or “homogeneity
region,” varies with � because of the nonisotropic flow.

IV. CONCLUSIONS

We have developed a MC simulation procedure, and
the corresponding C++ code, that allows a fast realistic
description of multiple hadron production both in central and
noncentral relativistic heavy ion collisions. A high generation
speed and an easy control through input parameters make our
MC generator code particularly useful for detector studies.
As options, we have implemented two freeze-out scenarios
with coinciding and with different chemical and thermal
freeze-outs. We have compared the RHIC experimental data
with our MC generation results obtained within the single and

separated freeze-out scenarios with Bjorken-like freeze-out
surface parametrization.

Fixing the temperatures of the chemical and thermal freeze-
outs at 0.165 and 0.100 GeV, respectively, and using the same
set of model parameters as for the central collisions, we have
described single-particle spectra at different centralities with
the absolute normalization correct within ∼13%.

The comparison of the RHIC v2 measurements with our MC
generation results shows that the scenario with two separated
freeze-outs is more favorable for the description of the pt

dependence of the elliptic flow.
The description of the kt dependence of the correlation radii

has been achieved within ∼10% accuracy. The experimentally
observed values of the correlation strength parameter λ has
been reproduced because the weak decays were accounted for.

The analysis of the azimuthal dependence of the correlation
radii indicates that the source considered in the model
oscillates downward, in the same phase as RHIC source
extended out of plane.

The understanding achieved of the reasons leading to a good
simultaneous description of particle spectra, elliptic flow, and
femtoscopic correlations within the considered simple model
could be useful for building the complete dynamic picture of
the matter evolution in A+A collisions.
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[34] T. Csörgö and S. Pratt, In Proceedings of the Workshop on Heavy

Ion Physics, KFKI-1991-28/A, p. 75 (unpublished).
[35] R. Lednicky, V. Lyuboshitz, K. Mikhailov, Yu. Sinyukov,

A. Stavinsky, and B. Erazmus, Phys. Rev. C 61, 034901 (2000).
[36] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 93,

012301 (2004).

014903-11


