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Aspects of causal viscous hydrodynamics
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We investigate the phenomenology of freely expanding fluids, with different material properties, evolving
through the Israel-Stewart (IS) causal viscous hydrodynamics, and compare our results with those obtained in
the relativistic Eckart-Landau-Navier-Stokes (ELNS) acausal viscous hydrodynamics. Through the analysis of
scaling invariants we give a definition of thermalization time that can be self-consistently determined in viscous
hydrodynamics. Next we construct the solutions for one-dimensional boost-invariant flows. Expansion of viscous
fluids is slower than that of one-dimensional ideal fluids, resulting in entropy production. At late times, these flows
are reasonably well approximated by solutions obtained in ELNS hydrodynamics. Estimates of initial energy
densities from observed final values are strongly dependent on the dynamics one chooses. For the same material,
and the same final state, IS hydrodynamics gives the smallest initial energy density. We also study fluctuations
about these one-dimensional boost-invariant backgrounds; they are damped in ELNS hydrodynamics but can
become sound waves in IS hydrodynamics. The difference is obvious in power spectra due to clear signals of
wave-interference in IS hydrodynamics, which is completely absent in ELNS dynamics.
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I. INTRODUCTION

Hydrodynamics is an effective long-distance theory of
fluids close to thermal and chemical equilibrium. The hydro-
dynamic modes are the fields that enter the theory and can
be identified from the symmetries of the microscopic theory.
They include the energy-momentum tensor and densities of
conserved quantities such as the baryon number and electric
charge. The theory contains several unknown quantities, the
transport coefficients and relaxation times, which one must
obtain from microscopic computations in kinetic theory [1] or
through measurements.

The relativistic version of the Navier-Stokes equation was
first explored by Eckart [2] and subsequently by Landau
[3], who developed what we call the ELNS formalism. The
relativistic equations for ideal fluids are widely used in the
contexts of heavy-ion collisions [4–7] and cosmology [8].
It has been suggested that the fluid produced in heavy-ion
collisions at the Relativistic Heavy Ion Collider (RHIC) is
very close to ideal. Such a claim must be substantiated by a
study of viscous fluid dynamics. Until now there have been
very few studies of nonideal fluids in this context [9–17].

ELNS theory for nonideal fluids is known to violate
causality [18]. The problem can be traced to the linear relation
between fluxes and thermodynamic forces, which is inherent
in the Chapman-Enskog method of obtaining the ELNS
equations from kinetic theory. It was realized by Israel and
Stewart [19] that the problem with causality could be repaired
by simply going beyond the linear relation between fluxes
and forces. Their formulation of hydrodynamics is variously
known as second-order theory, causal viscous hydrodynamics,
or Israel-Stewart (IS) hydrodynamics. It contains an expanded
set of material parameters when compared to ELNS theory.
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There are other attempts to repair the loss of causality
in Navier-Stokes theory. It was shown that the introduction
of a phenomenologically motivated lag between the appli-
cation of a thermodynamic force and the material response,
through a memory kernel, could restore causality [20]. Such
a phenomenological approach contains a smaller number of
material parameters than IS hydrodynamics. In any case, little
is known about some of the new parameters that appear in IS
hydrodynamics. Even the relation between current correlation
functions in a thermal quantum field theory and these quantities
[21] has not been studied comprehensively.

In fact, once the problems of principle were resolved,
further investigations of causal viscous hydrodynamics lagged
because of an apparent paucity of applications. One expects
that the main applications would be in situations where either
the mean-free path is comparable to the size of the region of
interest or the relaxation time approaches the time scale of the
phenomena of interest. It turns out that such applications are
not hard to come by today. The former are possibly realized
in heavy-ion collisions [12–14] and the diffusion of neutrinos
through supernovae and the latter in astrophysical shock waves
and freeze-out in relativistic reactive fluids. Interest in such
systems is on the increase.

Very little is presently known about the nature of fluid
flows in IS hydrodynamics. The present article is a step toward
repairing this neglect, keeping future applications to heavy-ion
physics in mind. In common with [11–14] we investigate
the equations for a fluid characterized completely by the
energy-momentum tensor, i.e., neglecting net baryon number
and electric charge, keeping only the shear part of the viscous
stress tensor. We set up the equations in curvilinear coordinates
appropriate to the approximate boost-invariant geometry of
heavy-ion collisions and reduce the tensor equations to
coupled scalar equations. By examining the symmetries of the
hydrodynamic equations we obtain laws of physical similarity.

Because an ideal fluid has zero viscosity and zero mean-free
path, the ideal hydrodynamic equations are unable to predict

0556-2813/2008/77(1)/014902(21) 014902-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.014902


R. S. BHALERAO AND SOURENDU GUPTA PHYSICAL REVIEW C 77, 014902 (2008)

their own failure. All estimates of thermalization and freeze-
out in ideal hydrodynamics are imposed from outside. Because
causal viscous hydrodynamics contain the relaxation time, τπ ,
one expects to improve on this. We present a preliminary
analysis.

Next we analyze boost-invariant solutions with three sets of
constitutive relations for the fluid. In each case, we compare the
ELNS and IS descriptions of boost-invariant flow and find that
the former approximates the latter at late times. Our results for
the case of the massless Boltzmann fluid are consistent with
those given in Ref. [11,12,14]. We also examine the prop-
agation of fluctuations around the boost-invariant solutions.
Here the differences between ELNS and IS descriptions are
remarkable: no propagating solutions exist in ELNS dynamics,
whereas IS dynamics gives rise to damped sound waves.

The plan of the article is as follows. The next section
introduces the hydrodynamic equations and extracts scaling
laws from them. This section also contains a discussion of
the properties of materials that are needed in the remainder
of the article. Following this, we present the well-known
Bjorken solution and illustrate our method with the analysis of
fluctuations around this solution for the ideal fluid. The next
three sections examine a simple fluid, a Boltzmann fluid, and
conformal fluids, respectively. In each case we examine the
boost-invariant solution in IS hydrodynamics, its approach to
ELNS hydrodynamics at late times, entropy production, and
fluctuations around the boost-invariant solution. Through this
analysis we build up a picture of general properties of the
flow, as opposed to those that are specific to certain kinds of
fluids. We summarize our understanding in the final section.
The appendices contain details of the tensor analysis, the
reduction of the tensor hydrodynamic equations to coupled
scalar equations, and an analysis of transients.

II. THE HYDRODYNAMIC EQUATIONS

Throughout this article we investigate the hydrodynamic
equations in the limit of zero net quarks, i.e., vanishing baryon
and charge density, because this is a good approximation
to the actual situation realized in ultrarelativistic heavy-ion
collisions. We also ignore the heat flux as in Refs. [11–14].
References [22,23] extend this to the case where the heat flux,
thermal conductivity, and baryon density are all included.
It is strongly suspected that in the high-temperature phase
of quantum chromodynamics (QCD), not very close to the
crossover temperature Tc, the bulk viscosity is negligible.
In view of this we investigate the equations where the bulk
viscosity has been set to zero. With these simplifications the
explicit form of the equations of IS hydrodynamics was written
down in Refs. [11,13,14].

Having set the baryon and charge densities to zero, one is
left with three independent hydrodynamic variables: a scalar,
a vector, and a tensor. The scalar is the energy density, ε. It
is related to the pressure, p, by the equation of state p = c2

s ε,
where cs is the speed of sound. Because all three quantities
in the equation of state can be written as a function of the
temperature, T , we sometimes trade ε for T . This variable
specifies the part of the stress tensor from which external work
can be extracted. Another of the hydrodynamic variables is

the velocity four-vector uµ (various choices of u are discussed
in Refs. [3] and [19]). Finally one has the dissipative part of
the stress tensor. When bulk viscosity is neglected, this is a
traceless symmetric tensor, πµν . Because this part expresses
shear, it must vanish on contraction with uµ.

Because we will discuss longitudinal flow, it is con-
venient to go from Galilean coordinates (t, x, y, z) to the
curvilinear coordinates (τ, η, r, φ), where τ = √

t2 − z2, η =
tanh−1(z/t), r =

√
x2 + y2, and φ = tan−1(y/x). The metric

becomes gµν = diag(1,−τ 2,−1,−r2). The only nonvanish-
ing Christoffel symbols are �τ

ηη = τ, �r
φφ = −r, �η

τη = �η
ητ =

1/τ , and �
φ
rφ = �

φ
φr = 1/r [24]. We will write covariant

derivatives as dµ and partial derivatives as ∂µ. The action of
dµ on a scalar field is the same as the action of ∂µ. In terms of
the proper time T = √

τ 2 − r2, one defines the components
of the velocity four-vector uµ = dxµ/dT . One can show that
uµuµ = 1.

Longitudinal flow is an approximation applicable to ul-
trarelativistic heavy-ion collisions when the hydrodynamic
variables at any point of space-time depend on τ and η but
not on r and φ. Clearly such an approximation is valid far
from the edges of the fluid volume, and at times τ � R/cs ,
where R is a typical transverse size. We will parametrize the
velocity vector by a quantity y in the form

uµ = (cosh y, 1
τ

sinh y, 0, 0). (1)

We note that the rapidity is y + η. Scaling flow corresponds to
y = 0 in our notation, as we discuss later. A fluid element
with y = 0, in our notation, moves along a world line of
fixed η, corresponding to a constant velocity v = tanh η. The
divergence of u is

	 = dµuµ = yτ sinh y + (yη + 1) 1
τ

cosh y. (2)

This defines a macroscopic time scale for a hydrodynamic
flow. Here, and later, we use the notation fτ , etc., to denote
the derivative of a scalar f with respect to the variable τ , etc.
We also define the material derivative D = uµdµ, and through
it the spacelike vector Duµ and its norm S2 = −DuµDuµ. A
straightforward computation shows

S = yτ cosh y + (yη + 1) 1
τ

sinh y. (3)

Then it is easy to write down the unit spacelike vector vµ =
(Duµ)/S,

vµ = (sinh y, 1
τ

cosh y, 0, 0). (4)

One also defines another directional derivative operator D̃ =
vµdµ. In the local rest frame one finds that D is the derivative
with respect to time and D̃ is the longitudinal spatial derivative.

Using the methods outlined in the appendices, one finds the
hydrodynamic equations

Dε + B	ε = 	πV ,

c2
s D̃ε + BSε = D̃πV + SπV , (5)

τπDπV + πV = 4
3ηV 	,

where B = 1 + c2
s , ηV is the coefficient of shear viscosity and

τπ is the relaxation time associated with the shear stress, πV .
Recall that such a relaxation time is necessary to construct
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causal hydrodynamics [18,19]. For longitudinal flow we have
reduced the tensor equations of hydrodynamics to three
coupled scalar equations for the three scalar hydrodynamic
quantities ε, y, and πV .

ELNS hydrodynamics is recovered when τπ = 0, so that the
last of Eqs. (5) reduces to πV = 4ηV 	/3. One expects that for
fluids which evolve inertially, i.e., in the absence of external
forces acting during the evolution, the solutions of Eqs. (5)
should approach the solutions of ELNS hydrodynamics at
times τ � τπ . This conclusion may clearly change when a
fluid is acted on by external forces at all times. In such cases,
of course, driving terms have to be added to the equations.

A. Material properties at vanishing chemical potential

For an ideal fluid, the equation of state can be cast into
the form p = c2

s ε, where p, ε, and cs , could all be functions
of the temperature, T . Straightforward dimensional analysis
shows that ε = bT 4, where b is dimensionless. In general
there are various intrinsic mass scales, µi , in the fluid, and b

could have an implicit dependence on T through the functional
dependence, b(T/µ1, T /µ2, · · ·). If c2

s = 1/3 at all tempera-
tures, then the trace of the stress tensor vanishes identically.
This implies a special symmetry called scale symmetry or
conformal symmetry [25]. One aspect of conformal symmetry
is that uniform scaling of external scales such as T by a
constant leaves material properties unchanged. Clearly, then,
b cannot depend on T and must be constant.

For a nonideal fluid, the stress tensor has an additional
viscous part. When the trace of the full stress tensor vanishes,
the bulk viscosity vanishes identically. Conformal symmetry
implies that the physics of such fluids can be expressed in terms
of dimensionless combinations of material properties that are
temperature independent. One such combination that has been
used in the literature is ηV /s, where ηV is the coefficient of
shear viscosity and s = (ε + p)/T is the entropy density. In
passing we note that for a conformal fluid, s = γ ε3/4, where
γ is a dimensionless constant.

Causal viscous hydrodynamics requires another material
property of the fluid, the relaxation time for the shear part
of the viscous stress tensor, τπ . Dimensionally, τπ = a/T ,
where a is dimensionless and becomes constant when the
fluid has conformal symmetry. This dimensionless number
is proportional to the quantity called liquidity [28], which, in
nonrelativistic fluids, measures the mean-free path (propor-
tional to τπ ) in units of the interparticle spacing (proportional
to 1/s1/3 ∼ 1/T ). In a gas, this number is very large and in
liquids is small. It follows from the expressions for s, τπ , and
the equation of state that s = Kετπ , where the dimensionless
constant K = 4/3a. This implies that the dimensionless
material property ετπ/ηV = s/KηV . We call this combination
χ and discuss it extensively in the next subsection.

In reality, the fluids that we are interested in are not
conformal [29]. At temperatures below Tc the fluid of hadron
resonances has a plethora of mass scales, which breaks
conformal symmetry and manifests itself in deviations of c2

s

from the value 1/3. It is not a big stretch of the imagination
to expect that bulk viscosity will be nonvanishing in this fluid.

A fluid of quarks and gluons also breaks conformal symmetry
through the conformal anomaly, which results in the running
of the strong coupling and the appearance of the QCD scale
�QCD and explicitly through the quark masses. One question of
interest is how important are these departures from conformal
symmetry.

One might expect that at very large T , when the QCD
coupling is close to zero, and all the quark masses are much
less than T , one might have conformal symmetry to a good
approximation, by virtue of the fluid being well approximated
by a massless ideal gas. In fact, this is the limit in which
the Boltzmann fluid approximation is seen to hold in weak
coupling theory, with χ = 3/2c2

s = 9/2. In this limit, one has,
additionally, bulk viscosity much smaller than shear viscosity
[30], c2

s ≈ 1/3, and the energy density close to an ideal gas
value.

Lattice computations show, surprisingly, that approximate
conformal symmetry is obtained also at substantially smaller
T/Tc ≈ 2–3, where the pressure deviates significantly from
its ideal gas value [31]. Toy models of QCD with substantially
enhanced (N = 4 super-) symmetries, which give up the
running of the coupling and asymptotic freedom, have been
used to model this observation. They are bound to fail in
the vicinity of Tc where the conformal measure [31] is large,
and bulk viscosity cannot be neglected [32]. One prediction
from these toy models, using the AdS/CFT conjecture, is that
ηV /s = 1/4π , yielding χ = 4π/K. A recent computation in an
appropriate N = 4 SYM theory has found a = (1 − ln 2)/6π

[33], which then yields χ = (1 − ln 2)/2 ≈ 0.15.
In this article we shall examine three models of viscous

fluids. The first, which we call a simple fluid, is one in which the
material properties cs, ηV , and τπ are constant. Lattice results
show that cs is almost constant over a range of T [31]. However,
preliminary lattice computations of transport coefficients are
almost consistent with the power counting in T over the same
range [34]. As a result, the main motivation to study this model
of a simple fluid is not its direct application to heavy-ion
physics, but the fact that it allows explicit computation of the
hydrodynamics and contains qualitatively all the phenomena
that we find with other models of viscous fluids, as we show
in a later section.

The more restricted models of materials that we use have
the property that χ is constant. A Boltzmann fluid has been
examined in the literature [14] and is defined by the specific
value χ = 9/2. We devote one section to detailed hydrody-
namics of the Boltzmann fluid. In addition, in a subsequent
section, we examine the whole class of conformal fluids with
χ = 3πa for various a. Note that the hydrodynamics of the
conformal fluid with a = 3/2π (i.e., τπ = 3/2πT ) is exactly
equivalent to that for a Boltzmann fluid. As a result, it does
not seem possible to use hydrodynamics alone to distinguish
a conformal fluid from a Boltzmann fluid. We discuss this in
greater detail later.

B. Laws of physical similarity

The equations of ideal hydrodynamics are obtained by
setting πV = ηV = 0 in Eqs. (5). Then the equations for the
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remaining hydrodynamic variables, ε and y, are

Dε + B	ε = 0, c2
s D̃ε + BSε = 0. (6)

Consider the symmetries of these equations. The solutions are
unchanged by the independent scalings ε → λε and τ → ζ τ .
Introduce the variables e = ln(ε/ε0) and θ = ln(τ/τ0), where
the arbitrary scales ε0 and τ0 can be chosen to be the initial
conditions. This removes the freedom of scaling, so the
solutions of the equations can be written in the form e(θ, η) and
y(θ, η). Thus, the scale symmetries of the ideal hydrodynamic
equations connect solutions with different initial conditions.

Nonideal hydrodynamics breaks both these symmetries
by the introduction of the time scale τπ and the scale of
energy density � = ηV /τπ . In other words, the scaling ε → λε

(simultaneously πV → λπV ) and τ → ζ τ are not symmetries
unless one simultaneously scales τπ → ζ τπ and ηV → λζηV .
Thus, the scalings relate flows of fluids with different material
properties. This is the relativistic analog of scaling laws called
“physical similarity” [3] that one finds in nonrelativistic fluids.
Such similarities are the basis of scaling invariants, also known
as dimensionless variables, such as the Reynolds number, Re,
which are used to relate flows of different fluids.

The analysis here gives three scaling invariants

χ = ε

�
, ϕ = πV

�
, and S = πV

ε
. (7)

The dimensionless ratios lead to physical similarities between
flows. We can relate these variables with quantities familiar
from Navier-Stokes hydrodynamics by examining what they
become in the appropriate limit.

As pointed out earlier, the ELNS limit of Eqs. (5) is
obtained when τπ = 0. In that case, πV = 4ηV 	/3. The
quantity 	 is the inverse of a characteristic scale for the
flow, τc. In the nonrelativistic, i.e., the Navier-Stokes, limit,
τc is a characteristic time scale. In this limit we can define a
characteristic length scale for the flow by the relation Lc = τcv,
where v is the flow velocity. Then, one finds

S = 4ηV

3ετc

= 4c2
s

3

(
v

cs

)2
ηV

εLcv
= 4c2

s

3

M2

Re
, (8)

where M = v/cs is the Mach number of the flow and Re =
εLcv/ηV is the Reynolds number. The first of the expressions
on the right comes from taking the ELNS limit, whereas the
last expression involves taking, additionally, the nonrelativistic
limit. In Navier-Stokes hydrodynamics the ratio of inertial and
viscous forces is Re [3]. In this case one may therefore suspect
that S ∝ 1/Re. The exact relation above bears this out, with
corrections needed to translate between the fully relativistic
and nonrelativistic formulas. Similarly, one finds that

ϕ = 4τπ

3τc

= 4

3ξ

λ

Lc

v

cs

= 4

3ξ
MK (9)

where a mean-free path, λ = ξcsτπ , ξ is some numerical
constant, and K = λ/Lc is the Knudsen number.

The third variable

χ = ϕ

S
= 1

c2
s ξ

KRe

M
(10)

is interesting, because the combination KRe/M is nearly
unity in Navier-Stokes theory. For Boltzmann and conformal
fluids this combination is constant. The Navier-Stokes relation
is obtained for these fluids when ξ is chosen appropri-
ately. For the Boltzmann fluid, this happens when ξ � 2/3.
Equations (8), (9), and (10) provide the connection between
S, ϕ, and χ and Re,M , and K in the appropriate limit.

In ideal hydrodynamics thermalization and freeze-out are
notions that are imposed from the outside. In nonideal hydro-
dynamics, however, some understanding of these phenomena
could be possible [35]. In the Navier-Stokes theory, for
example, K � M/Re must be smaller than unity for the
solutions to describe valid flows. Because a solution of the
Navier-Stokes equation allows us to compute both M and
Re, one can use the solution to compute K and determine its
own validity. A solution of the equations of IS hydrodynamics
gives τc = 1/	. When τc is larger than τπ , i.e., when ϕ <

4/3, the solution corresponds to a physical flow. In the
case of scaling flow (discussed below), this gives an initial
time, τ0, at which the solutions begin to describe physical
fluid flows. Thus we have a self-consistent description of
thermalization. For scaling flow, ϕ decreases with time. Hence,
after thermalization, IS hydrodynamics is always applicable;
i.e., we lack a description of freeze-out. That phenomenon
requires us to examine radial flow. As argued before, radial
flow becomes important at a time τT = R/cs , where R is the
transverse size. Thus, one-dimensional IS hydrodynamics in
the scaling approximation is expected to be valid in the range
τ0 � τ � τT . A description of freeze-out at late times has to be
sought in the full three-dimensional hydrodynamics.

C. Scaling solutions and fluctuations

Solutions with y = 0 are called scaling solutions or boost-
invariant solutions. It was argued by Bjorken that asymptotic
freedom implies that, at sufficiently high energies, hadron mul-
tiplicities must become invariant under longitudinal boosts.
Assuming further that these multiplicities have their origin
in the hydrodynamic distribution of the entropy density, he ar-
gued that the relevant flows in high energy heavy-ion collisions
must be boost invariant [4]. Although the phenomenological
relevance of this argument may be questioned, boost invariance
is simply analyzed. One uses y = 0, as a consequence of which
S = 0 and 	 = 1/τ . Substituting these into Eqs. (5), one finds
that

τDε = πV − Bε,

D̃πV = c2
s D̃ε, (11)

τDπV = − τ

τπ

πV + 4

3
�,

where D = ∂τ and D̃ = (1/τ )∂η [see Eq. (A4)]. Now, Fourier
transforming in η decouples the Fourier modes, labeled by
k. The second equation implies that the identity πV (τ, k) =
c2
s ε(τ, k) must hold for all k 	= 0. However the other two

equations cannot be manipulated to give D(πV /ε) = 0. Con-
sequently, only the k = 0 mode is allowed to be nonzero,
i.e., the solutions to these three equations must have both
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ε and πV independent of η. This demonstrates the well-known
equivalence of the conditions of boost invariance and y = 0.
Of course, the second of the three equations above becomes
redundant and the problem can be treated with the remaining
two equations.

In the next few sections we will investigate the scaling so-
lutions for fluids with various different constitutive equations
and analyze their stability [5,26]. Some numerical studies of
the correlations of fluctuations were reported in Ref. [27].
We note that the IS hydrodynamic equations can be written
in the form xθ = f(θ, x, xη), where x is the vector of three
hydrodynamic variables and θ is the “time” variable. Now,
setting to zero the component corresponding to y in x results
in the boost-invariant equations, whose solutions we represent
by x0. Represent the fluctuations around this solution by �x1,
where � � 1 is a dimensionless book-keeping parameter. The
equations for these fluctuations can be written to linear order
in �,

x1
θ = M0(θ, x0)x1 + M1(θ, x0)x1

η, (12)

where M0 and M1 are the Jacobian matrices of the derivatives
of f with respect to x and xη, respectively. For the stability
analysis one asks whether a given x1 increases or decreases
with time. Fourier transforming in η decouples the derivatives
with respect to the variables and gives independent linear
evolution equations for each mode: x1

θ (θ, k) = Mx1(θ, k),
where M = M0 + ikM1. The question of stability then reduces
to examining M and checking whether the solutions for x1

decrease faster than the scaling solution. We demonstrate the
method with the ideal fluid in the next section.

III. IDEAL FLUID: THE BJORKEN SOLUTION AND
SOUND WAVES

The scaling solution in ideal hydrodynamics is obtained by
setting ηV = πV = 0 in Eqs. (11). Introducing the variables
e = ln(ε/ε0) and θ = ln(τ/τ0), the equations become

de

dη
= 0, and

de

dθ
= −B. (13)

This gives the Bjorken solution

e(θ, η) = −Bθ, i.e., ε(τ, η) = ε0

(τ0

τ

)B

. (14)

The entropy density is defined as s = (ε + p)/T . Entropy is
conserved in an ideal fluid [3]. All this is well known.

The linearized equations for sound waves are extracted by
introducing a dimensionless parameter � � 1, which sets
the scale of quantities involved in the propagation of sound
relative to the boost-invariant background, as discussed earlier.
Then one proceeds by setting y(θ, η) = �y1(θ, η) and writing
e(θ, η) = e0(θ ) + �e1(θ, η). Inserting these into the ideal fluid
equations (6), one finds to order �0, the equations (13). At
order � one finds—

e1
θ = −By1

η, and y1
θ = −

(
1 − 1

B

)
e1
η + (B − 2)y1.

(15)

A Fourier transformation in η reduces the partial differential
equations above to uncoupled evolution equations for each
Fourier mode. Because these linear first-order evolution
equations are autonomous, i.e., they do not involve the variable
θ anywhere explicitly, the solutions are in the form of waves
exp[i(ωθ + kη)].

Before proceeding, a point about wave solutions may
need comment. Plane waves in Galilean coordinates have
the form exp[i(ωt + k · x)], unlike the one above. However,
the functional form of a wave solution is dependent on the
geometry of the situation; for example, in spherical geometry
a wave solution has the form exp[i(ωt + k|x|)]/|x|. Wave
solutions in boost-invariant geometry have the specific form

ei(ωθ+kη) =
(

τ

τ0

)iω

eikη =
(

t + z

τ0

)i(ω+k)/2 (
t − z

τ0

)i(ω−k)/2

.(16)

A real value for ω corresponds to an oscillatory solution. In
the form on the right it is manifest that the real parts of ω

and k are not inverses of typical time and length scales for
oscillation. If θn and θn−1 are, respectively, the n-th and n − 1st
times that the phase of the wave repeats at a given space-
time rapidity, then clearly θn − θn−1 = 2π/ω, so that τn =
τn−1 exp(2π/ω). In other words, the “period” of oscillation
increases geometrically in the number of periods. The n-th time
that the phase recurs after the initial time τ0 is given by τn =
τ0 exp(2πn/ω). In the same way, at fixed t , the “wavelength”
increases with z. Both these scalings are direct consequences
of boost-invariant expansion—the longitudinal expansion red
shifts sound waves. The analogy with the red shifting of light
in an expanding universe is clear; both follow from the fact
that the spatial components of the metric depend on the time.
If ω is complex, then the real part gives oscillations exactly as
described above. The imaginary part of ω, i.e., −Re iω, gives
rise to power law behavior in τ . The scaling solution is stable
when Re iω < 0, so fluctuations are damped. Hence we will
give the name damping exponent to −Re iω.

Substituting the form of the wave solution in Eq. (16) into
Eq. (15), one obtains the dispersion relations

iω = −1

2

(
1 − c2

s

) ± 1

2

√
4c2

s

(
k2

0 − k2
)
,

(17)

where k0 = 1 − c2
s

2cs

.

For k < k0 the modes are overdamped; the two damping
exponents are equally spaced around (1 − c2

s )/2. Only for
k > k0, are there propagating modes. These are damped due to
the expansion of the scaling solution. The slowest decreasing
part corresponds to the positive sign above. As a result, this is
the part that is visible to experiments. This dispersion relation
is shown in Fig. 1. A general solution for e1 can be written in
the form

e1(θ, k) = c+eiω+θ + c−eiω−θ , (18)

where c± depend on the initial conditions and ω± are the
solutions in Eq. (17) with the corresponding signs. Similar
solutions can be written for y1. Because the real parts of iω

are nonpositive, the fluctuations do not grow, and the scaling
solution is stable [5,26].

014902-5



R. S. BHALERAO AND SOURENDU GUPTA PHYSICAL REVIEW C 77, 014902 (2008)

0.2 0.4 0.6 0.8 1 1.2 1.4
k

0.2

0.4

0.6

0.8

1

ω

2 4 6 8 10 12 14
k

0.02

0.04

0.06

0.08

0.1

P
o
w
e
r

FIG. 1. (Color online) On the left is the dispersion relation for sound waves in the Bjorken solution for c2
s = 1/3. The real part of ω is

shown in blue as a function of k and the damping exponent, i.e., the imaginary part, is in red (the straight line in black is the line ω = csk).
There are no propagating waves for k < 1/

√
3. On the right is the power spectrum resulting from the evolution of Pε(θ = 0; k) = 1 at θ = 1

(upper curve) and 3/2 (lower curve).

The physics of sound can be captured in the evolution of
the power spectrum of fluctuations of the energy density,

Pε(τ ; k) = ∣∣ε1(τ ; k)
∣∣2

,
(19)

where ε1(τ ; k) =
∫

dη√
2π

e−ikηε1(τ, η).

Because ε1(τ, η) = e1(τ, η)ε0(τ ), for the ideal fluid one may
write asymptotically, when the component in c− can be
neglected,

Pε(τ ; k) = Pε(τ0; k)
(τ0

τ

)2ωd

,

where ωd (k) = B + 1

2

(
1 − c2

s

) − cs

√
k2

0 − k2H(k0 − k),

(20)

k0 is given in Eq. (17), and H denotes the unit step function.
At not so late times, the interference between the frequencies
ω+ and ω− (when k > k0) gives rise to beats. The shape of the
power spectrum resulting from an initially flat power spectrum
of fluctuations through exact solution of Eqs. (15) with initial
conditions c+ = c− is shown in Fig. 1. At short times it is
dominated by beats. The expression in Eq. (20) is asymptotic.
As shown in Fig. 1, it is not recovered for θ = 3/2. It is
clear that if the initial conditions contain fluctuations around
the boost-invariant values, then after sufficient evolution,
these fluctuations are damped. The longer the duration of
hydrodynamic evolution, the more damped the fluctuations.
A detailed analysis of the growth of transients at short times
is given in Appendix C.

If the initial conditions, i.e., the power spectrum at time
τ0, for an ideal fluid were known, then an event-by-event
measurement of the power spectrum of the acoustic energy
density would be able extract the value of cs and thereby give
a measurement of the equation of state. Conversely, if the
equation of state were known, then the same data could be
used to extract, event by event, the initial conditions.

The power spectrum studied here is closely related to the
correlation function of fluctuations studied in Ref. [27]. In
Fourier space the correlation function corresponds to studying

the joint distribution of fluctuations at different k, whereas
the power spectrum gives the variance in the fluctuations at
a single k. Sonic peaks are visible in both the quantities. The
analysis of the power spectrum in terms of interference, and the
consequent clear relation with cs , is a little harder to establish
for the correlation function.

IV. A SIMPLE FLUID

The simple nonideal fluid model defined in Sec. II A has
constant values of all constitutive parameters—cs, τπ , and ηV .
Using the variables χ and ϕ introduced in Eq. (7) and ϑ =
τ/τπ , we make the decomposition

χ (ϑ, η) = χ0(ϑ) + �χ1(ϑ, η),

ϕ(ϑ, η) = ϕ0(ϑ) + �ϕ1(ϑ, η), (21)

y(ϑ, η) = �y1(ϑ, η).

These expansions have to be substituted into the Eqs. (5)
and the material properties of the simple fluid used to extract
equations for the boost-invariant solution χ0 and ϕ0 and the
fluctuations χ1, y1, and ϕ1. In the next two subsections we
examine these two problems.

A. The scaling solution

The equations satisfied by the scaling solution are

dχ0

dϑ
= −B

ϑ
χ0 + ϕ0

ϑ
and

dϕ0

dϑ
= −ϕ0 + 4

3ϑ
. (22)

One solves the second equation and then inserts the solution
into the first. It is easy to check that

ϕ0(ϑ) = e−ϑ

[
b + 4

3
Ei(ϑ)

]
,

(23)

b = −4

3
Ei(ϑ0) + eϑ0ϕ0(ϑ0),

where Ei(x) denotes the exponential integral [36] and ϑ0 =
τ0/τπ . We will use ϑ0 = 1 in numerical work. The asymptotic
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FIG. 2. (Color online) Comparison of ELNS hydrodynamics (lines in black) and IS hydrodynamics (in red). The evolution of normalized
energy density, χ 0, normalized shear stress, ϕ0, and S = ϕ0/χ 0, are shown as a function of the normalized time, τ/τπ . The initial condition
ϕ0(1) = 4/3 in both cases.

expansion of the exponential integral,

Ei(x) ∼ ex

x

(
1 + 1

x

)
, (24)

can be used to write down the asymptotic expression—

ϕ0(ϑ) ∼ be−ϑ + 4

3ϑ

(
1 + 1

ϑ

)
. (25)

Note that the solution of the homogeneous equation decays
much faster than the particular integral. Hence, the long-time
behavior of πV is nearly independent of the initial conditions
on this quantity.

Inserting the solution in Eq. (23) into the first of Eq. (22)
gives a solution in terms of the Meijer G functions [36,37].
Instead, by inserting the asymptotic expansion in Eq. (25) into
the equation, we can find a simplified solution

χ0(ϑ) = a

ϑB
− b

�(B, ϑ)

ϑB
+ 4

3c2
s ϑ

+ · · · (26)

where a is determined by the initial condition χ0(ϑ0) and the
remaining terms decay as higher integer powers of 1/ϑ . The
incomplete � function is defined to have the values �(B, 0) =
�(B) and �(B,∞) = 0. The solution of the homogeneous
equation gives the Bjorken solution. However, this is not the
slowest falling part; that is given by the 1/ϑ term, which
arises from the inhomogeneous part of the equation and has no
dependence on initial conditions. In the very late time limit, one
finds ϕ0 � 4/3ϑ and χ0 � 4/3c2

s ϑ , so the Bjorken solution is
never recovered. The expansion is slowed down with respect to
the ideal fluid because of dissipation—in expanding against the
vacuum, an ideal fluid pumps all its energy into the expansion,
whereas a nonideal fluid dissipates energy, thus slowing the
expansion. Similar results were also obtained in Ref. [9] for
the case of ELNS hydrodynamics.

1. Comparison of ELNS and IS hydrodynamics

The differences between ELNS and IS hydrodynamics are
illuminating. The ELNS limit of IS hydrodynamics is obtained
formally by setting τπ = 0, or, equivalently, by dropping the
term DπV in Eqs. (5). Now, a comparison of the two theories
makes sense only after appropriate normalization of both time
and energy. So in ELNS hydrodynamics one must introduce

artificially a unit of time that is numerically equal to the value
of τπ used in IS hydrodynamics.

Then, rewriting the ELNS equations, one obtains scaled
quantities χ0 and ϕ0 that are directly comparable to the same
quantities in IS. The equations of ELNS are then obtained
from Eqs. (22) by dropping the term dϕ0/dϑ so ϕ0 = 4/3ϑ .
Inserting this into the equation for χ0, one has

dχ0

dϑ
= −Bχ0

ϑ
+ 4

3ϑ2
,

(27)

so χ0(ϑ) = 4

3(B − 1)ϑ
+ χ0(1) − 4/3(B − 1)

ϑB
.

A comparison of the resulting solutions is shown in Fig. 2.
The initial conditions for ϕ0 are chosen to be the same; in IS
hydrodynamics it corresponds to the smallest time at which
the equations are valid, i.e., τ0 = τπ . As in Refs. [11,14],
we find clear differences between ELNS and IS evolution.
In earlier works the difference in the evolution of the energy
density was investigated for equal initial conditions. We have
chosen the initial conditions for χ0 to be different but tuned
so that the ELNS and IS solutions approach each other at
large times. Because initial conditions are not detectable in
heavy-ion collisions, it is of interest to see that large-time
behavior cannot, by itself, distinguish between ELNS and IS
hydrodynamics. Moreover, the same final energy density can
lead to different estimates of the initial energy density in the
two kinds of dynamics.

2. Entropy production

Assuming that s = γ ε3/4, where γ is a dimensionless
quantity that is almost temperature independent, σ = (χ0)3/4

is a dimensionless quantity proportional to the entropy density.
The first of Eqs. (22) can be easily manipulated into the form

dσ

dϑ
= −σ

ϑ
+ 3ϕ0

4ϑσ 1/3
. (28)

Using the solutions for ϕ0 and χ0 in Eqs. (25) and (26),
one finds that at late times the right-hand side is negative.
This is in accord with the exact solution for χ0 shown in
Fig. 2. Depending on the initial conditions, σ may increase
initially. However, at sufficiently large time it must decrease.
If there is initial growth in σ , then the turnover comes when the
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right-hand side of the above equation passes through zero, i.e.,
at the value of ϑ when χ0 = 3ϕ0/4.

Note, however, that the element of three-volume contains
a scale factor τ from the metric. This implies that the total
entropy scales as � = σϑ . It is a straightforward exercise to
rewrite Eq. (28) to obtain

d�

dϑ
= 3ϕ0

4

(
ϑ

�

)1/3

. (29)

The right-hand side is manifestly positive definite, indicating
that the total entropy increases with time. Using the asymptotic
expansion of ϕ0 in Eq. (25), we find that � grows asymptot-
ically as ϑ1/4. One has the same power law growth of � in
ELNS dynamics.

B. Sound waves

Using the decomposition of Eq. (21), we examine small
fluctuations around the scaling solution. At large ϑ we may
use the asymptotic solutions χ0 = 4/3c2

s ϑ and ϕ0 = 4/3ϑ in
the fluctuation equations. We also transform to the variable
θ = ln ϑ and use y1 = g exp θ . After Fourier transforming in
η, the equations for fluctuations take the form—

∂θ

(
χ1

g

ϕ1

)
= M

(
χ1

g

ϕ1

)
, where M = ikM1 + M0,

M1 =
 0 − 4

3c2
s

0

− 3c4
s

4 0 3c2
s

4
0 4

3 eθ 0

 , (30)

M0 =
( −B 0 1

0 −2 0
0 0 −eθ

)
.

In contrast to the equations for fluctuations in an ideal fluid,
i.e., Eqs. (15), these equations are not autonomous. As a result,
they cannot be solved by Fourier expansion in θ . A numerical
solution is always possible, and we can examine the limits of
large and small k analytically. At every τ there is an upper
cutoff on k imposed by the requirement of the applicability of
hydrodynamics. This cutoff increases with τ .

In the limit k → 0, one may set M = M0. Then, because M0

is diagonal, one can read off the solutions easily. χ1 and g (and
hence y1) are overdamped, whereas ϕ1 decays exponentially

in τ . The exact solutions are

χ1(k → 0, τ ) = χ1(k → 0, τ0)
(τ0

τ

)B

−ϕ1(k → 0, τ0)eτ0/τπ

(τπ

τ

)B

×
[
�

(
B,

τ

τπ

)
− �

(
B,

τ0

τπ

)]
, (31)

y1(k → 0, τ ) = y1(k → 0, τ0)
(τ0

τ

)
,

ϕ1(k → 0, τ ) = ϕ1(k → 0, τ0) exp

(
τ0 − τ

τπ

)
.

In the regime k � 1, a first approximation would be to
neglect M0. As a result, one expects ω ∝ k, where iω is an
eigenvalue of M . Because ω is very large, exp θ changes
little over many oscillations. Consequently, one could treat
this factor as constant whenever it appears inside M . Within
this approximation the equations above can be treated as
autonomous and therefore generically describe oscillations.

Because the eigenvalues of M1 are real, within the approx-
imation where one neglects M0, the solutions are not damped.
To go beyond this and obtain the damping exponent, one
sets up a perturbation theory in powers of 1/k by writing
iω = ikλ1 + λ0 + O(1/k). The simplest way to proceed is
to substitute this form into the characteristic equation for
M . One finds then that this equation has a leading term of
order k3 (which solves the eigenvalue problem for M1) and a
first perturbation term of order k2. The latter shows growing
solutions in the unphysical region exp θ � 1 but damping with
iω = −2 + O(1/k) when exp θ � 1. Note that this damping
exponent is independent of c2

s .
The numerical solutions to Eqs. (30) are shown for a range

of k in Fig. 3. There is clear evidence of overdamped solutions
for k � 2 and damped oscillatory solutions for k > 2. In
Fig. 4 we show that χ1, which is proportional to the energy
density of fluctuations, is damped fairly rapidly. However, for
θ � 1 there are clear signs of transients; a detailed discussion
of which is given in Appendix C. Numerically we see that χ1

is damped as a power of τ at large τ , making it easy to extract
the damping exponent numerically. As shown in the figure,
and in agreement with our analysis above, at small k this goes
to 1 + c2

s and climbs to the neighborhood of 2 at large k.
The power spectrum of fluctuations starting from an initially

flat spectrum, Pε(0; k) = 1, is easily amenable to computation,
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FIG. 3. (Color online) Solutions of the linearized equations for fluctuations around the scaling solution in a simple fluid. The normalized
energy, χ 1, shear, ϕ1, and y1 are shown for k = 1/2 (red), 1 (green), 2 (blue), 4 (purple), and 8 (orange). The first three values of k are
overdamped, but the last two show oscillatory behavior. The frequency of oscillation increases with k.

014902-8



ASPECTS OF CAUSAL VISCOUS HYDRODYNAMICS PHYSICAL REVIEW C 77, 014902 (2008)

0 1 2 3 4 5
Θ

− 8

− 6

− 4

− 2

0
χ

ln

2.5 5 7.5 10 12.5 15 17.5 20
k

1.2

1.4

1.6

1.8

2

D
am

pi
ng

ex
po

ne
nt

FIG. 4. (Color online) The panel on the left shows ln χ1(k, τ ) as a function of θ = ln(τ/τπ ) for the simple fluid with c2
s = 1/3 for k = 1/2

(red), 1 (green), 2 (blue), 4 (purple), 8 (light blue), and 16 (orange). The panel on the right shows the damping exponent, i.e., the imaginary
part of ω, for c2

s = 1/5 and 1/3, plotted as a function of k.

and is shown in Fig. 5. The transient growth phenomenon gives
rise to several peaks for θ � 1. By θ � 1.5 the effect of the
damping exponent is clearly visible. A complete analysis is
given in Appendix C.

1. Sound in ELNS hydrodynamics

Sound propagation in ELNS hydrodynamics is quite differ-
ent. The equations for sound can be obtained from Eqs. (30), by
simply dropping the term dϕ1/dθ , i.e., by setting ϕ1 = 4ikg/3
and treating τπ as an arbitrary scale of time, set equal to the
value it would have in IS hydrodynamics. When this relation
is inserted into the equation for gθ , a term in gηη is generated.
This is the diffusive term we expect in ELNS hydrodynamics
and arises directly from the neglect of the relaxation time in
shear pressure.

As before, we transform to variables θ = ln ϑ and write
y1 = g exp θ . The equations for sound in ELNS hydrodynam-
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FIG. 5. (Color online) The power spectrum obtained from an
initially flat power spectrum of fluctuations at θ = 1 (red), 1.1 (blue),
and 1.5 (black). Here c2

s = 1/3 and τ0 has been set equal to τπ . Initial
conditions are χ 1(0) = y1(0) = ϕ1(0) = 1.

ics are

∂θ

(
χ1

g

)
= M

(
χ1

g

)
,

where M = −
[

1 + c2
s

4(1−c2
s )ik

3c2
s

3
4 ic4

s k 2 + c2
s k

2

]
. (32)

In the limit of small k, i.e., k � 1, it is clear that χ1 ∝ τ−B

and y1 ∝ 1/τ . This is similar to the results in Eq. (31).
In this limit the solutions of ELNS and IS hydrodynamics
are not qualitatively different. This is expected because the
characteristic time scale of the wave is much larger than τπ .

In this case, an exact solution is possible for all k, because
the equations are autonomous. The eigenvalues of M are

iω =
{

−(
B + c2

s k
2
)
,

−2,
(33)

where the combinations 4(1 − c2
s )χ1/3c4

s − ikg and
4ikχ1/3c2

s + g decay, respectively, with these damping
exponents. Not only is y1 diffusively damped at large k,
but there are no propagating modes at all. This behavior is
characteristic of parabolic equations.

In the absence of propagating modes there are no beats.
Transient growth can occur, but there is only a single peak in
the power spectrum of the fluctuations of energy. The transient
analysis is given in Appendix C. The power spectrum resulting
from an exact numerical solution, starting from Pε(0; k) = 1,
is shown in Fig. 6. Comparing this with Fig. 5, we see that there
is a clear difference between diffusive damping of fluctuations
in ELNS hydrodynamics and sound in IS dynamics.

V. A BOLTZMANN FLUID

A Boltzmann fluid is defined by the constitutive relation
χ = ετπ/ηV = 3/2c2

s = 9/2, where, as discussed in Sec. II A,
the three quantities ε, ηV , and τπ all depend on the temperature.
We rewrite the hydrodynamic equations in terms of the
variables S, y, u = T τ/(T0τ0), and θ = ln(τ/τ0), where the
initial conditions are applied at the time τ0, i.e., at θ = 0.
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FIG. 6. (Color online) The power spectrum obtained in ELNS
hydrodynamics for a simple fluid from an initially flat power spectrum
of fluctuations at θ = 2 (red) and 2.5 (blue). Here c2

s = 1/3 and τ0

has been set equal to τπ .

We analyze the scaling solution and its stability by the usual
technique of writing u(τ, η) = u0(τ ) + �u1(τ, η), S(τ, η) =
S0(τ ) + �S1(τ, η) and y(τ, η) = �y1(τ, η). Substituting these
into Eqs. (5), using the material properties, and separating out
the equations to orders �0 and �, we obtain the equations that
lead to the scaling solution from the former, and the equations
for fluctuations from the latter.

A. The scaling solution

The equations for the scaling flow become

∂θ

(
u

S

)
= V, where V =

{
u

[
S + 3 − c2

s

]
/4

A− S2 + S
[(

1 + c2
s

) −Bu
]}

,

(34)

A = 4/3χ,B = τ0/τπ (0), and c2
s are non-negative. In this

subsection we lighten the notation by writing u for u0 and
S for S0. Three numbers are needed to fix the initial condition
in the original formulation of the problem [Eq. (5)], i.e., the
initial time τ0 and the values of ε(τ0) and πV (τ0). The initial
condition on u is, by definition, u(θ = 0) = 1. The two free
parameters in the initial conditions are transformed into the
value of S(0) and the value of the parameter B which appears
in the equation. Note that B < 1 is disfavored. A dimensional
quantity is needed to complete the specification of the initial

conditions, and we can choose this to be T0 = aB/τ0. Next,
choosing c2

s = 1/3 (and hence χ = 9/2), one has A = 8/27.
Because the equations are autonomous, one can analyze them
using the phase plane method [38].

1. Phase plane structure

The idea of the phase plane method is that the right-hand
sides of Eqs. (34) define the local direction of derivatives,
which is uniquely given by coordinates (u, S) on the phase
plane. Knowing this vector field, the solutions of the equations
are simply integral curves obtained by following the vector
field starting from any initial condition. A special role is played
by the zeros of this vector field, i.e., stable solutions or fixed
points of the differential equations, and by nullclines, which
are the lines along which one or the other derivative vanishes.

The nullclines of u are the lines η0, which corresponds to
u = 0, and η∗, which is S = c2

s − 3. The nullcline η0 happens
to be an integral curve, because the vector field is everywhere
tangent to this line. The nullclines of S are the hyperbolae
S2 + BS[u − (1 + c2

s )/B] = A. This has two branches, σ− has
S < 0 and is asymptotic to the u axis at u = −∞, σ+ has S > 0
and is asymptotic to the u axis at u = ∞.

These two sets of nullclines cross at three fixed points—
P+ = (u+, S+) is the intersection of η0 and σ+, P− =
(u−, S−), which is the intersection of η0 and σ− and P∗ =
(u∗, S∗) which lies on η∗ and σ−, and

u± = 0, S± = 1

2

(
1 + c2

s ±
√

4A + (
1 + c2

s

)2
)

,

u∗ = 1

B

( A
c2
s − 3

+ 4

)
, S∗ = c2

s − 3. (35)

These features are shown in Fig. 7.
In a small interval around any fixed point (uf , Sf ) one can

linearize the equations to get

∂θ

(
u − uf

S − Sf

)
= M(uf , Sf )

(
u − uf

S − Sf

)
,

where M(u, S) =
{ 1

4

[
S + 3 − c2

s

]
u/4

−BS −2S + (
1 + c2

s

) −Bu

}
.

(36)
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FIG. 7. (Color online) The panel on
the left shows structural elements of the
phase plane: the nullclines, i.e., the lines
along which one of the derivatives van-
ishes (that of u vanishes on η0 and η∗,
that of S vanishes on σ±), and the fixed
points, at which both derivatives vanish.
The panel on the right shows the vector
field of derivatives and the fixed points.
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At P± one of the off-diagonal components vanishes as a result
of which one can write down the eigenvalues by inspection.
P+ is a hyperbolic fixed point. P− is a repulsive fixed point
for a Boltzmann fluid, but changes into a hyperbolic point
for large enough A. One also finds that P∗ is a hyperbolic
point for a Boltzmann fluid but changes into a repulsive fixed
point for sufficiently large A. The reason for this is not hard
to understand. At A = 4(3 − c2

s ) the points P− and P∗ are
coincident and exchange character, leading to a saddle-node
bifurcation at this value of A.

2. The unstable manifold of P+: a physically relevant solution

We concentrate on the physical flows, i.e., those originating
on the half-line u = 1 and having S � 0. Because the vector
V points into the part of the plane bounded by u = 1 and
S = 0, one sees that physical flows remain in this portion
of the phase plane. Also, since there are no fixed points in
this part of the plane, one finds that flows cover the whole
quadrant. Using Bendixson’s theorems [39], one can prove
the intuitively obvious fact that there are no periodic or
quasiperiodic solutions starting from these initial conditions.

The main organizing element behind the physical flows
is a special solution, U , i.e., a curve in the phase plane,
called the unstable manifold of P+. This is the solution with
initial conditions in the infinitesimal neighbourhood of P+,
the explicit numerical solution for which is exhibited in Fig. 8.
Because P+ is a hyperbolic fixed point, all solutions starting
from initial conditions above U are attracted to it from above,
and those starting below it are attracted toward it from below.
Clearly, then, an important element of the analysis is SU ,
the point at which U intersects the line of physical initial
conditions u = 1.

Two varieties of stability in the solutions should be noted.
At late times the flows are stable against changes in initial
conditions, because they are always attracted to U . One
useful consequence is that fairly crude PDE solvers suffice
to integrate Eqs. (34). There is a deeper level of stability,
called structural stability, arising from the fact that P+ does
not collide with any of the other fixed points on changing
the parameters c2

s ,A, and B. This means that for all values of
these parameters, the nature of physical flows is determined by
the corresponding solution for U . The usefulness of structural

stability is that extraction of parameters from data becomes
particularly simple.

The first step to solving for the flows is to determine U .
In the neighbourhood of P+ it coincides with the eigenvector
corresponding to the positive eigenvalue of M(u+, S+). Using
Eqs. (35) and (36), it is easy to see that this is the line 4BS+u =
(1 + 5c2

s − 9S+)(S − S+). Using A = 8/27,B = 1 and c2
s =

1/3 gives SU = 0.975913 in this linear approximation. The
numerical continuation of the straight line is easy, because any
initial condition close to P+ will quickly settle down toU . Such
a construction using the parameter values above gives SU =
1.02545, showing that the slope of U decreases marginally
beyond the linear analysis.

Solving for the distant part of U is equivalent to finding
the physical flows at long times. For this, we examine u � 1.
From the phase-space analysis we see that S decreases as u

increases when both are in the physical region. Hence, in the
second of Eqs. (34) we can neglect the term in S2 with respect
to the others. Also, the term in (1 + c2

s )S can be neglected
with respect to the remaining two terms. Then the system of
coupled equations to be solved is

∂θ

(
u

S

)
=

(
u
[
S + 3 − c2

s

]
/4

A − BuS

)
. (37)

Initial conditions u0 and S0 are imposed at θ = 0 to match this
asymptotic solution with the full solution. Unfortunately, even
this equation is too complicated for an analytic solution.

We do not need all solutions of Eq. (37), as it happens.
Because ϕ < 4/3 for hydrodynamics to apply, we must have
S < 4/3χ = A. For the Boltzmann fluid, then, S < 8/27.
Of course, this does not restrict all physical trajectories to
approach U from below; trajectories can approach this curve
from above, but they correspond to a different B. An explicit
asymptotic form is easy to write down when S � 3. Then S
can be neglected in the equation for u, and one gets

u(τ ) = u0

(
τ

τ0

)(3−c2
s )/4

implying ε(τ ) = ε0

(τ0

τ

)1+c2
s

,

S(τ ) = exp

[
−4Bu(τ )

3 − c2
s

] {
S0 + 4A

3 − c2
s

Ei

[
4Bu(τ )

3 − c2
s

]}
. (38)

Because these forms are asymptotically valid, the constants
S0, u0, and ε0 are free parameters that ensure that the
asymptotic solution matches the exact solution at large τ . The
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FIG. 8. (Color online) The solutions corresponding to the unstable manifold for the normalized energy, ε/ε0 = u(θ )4e−4θ , the quantity S,
and the normalized shear stress, Su(θ )4e−4θ , plotted against τ/τπ . In the figure for the normalized energy, the curve in yellow shows the Bjorken
solution normalized to match the exact numerical solution at large τ/τπ .
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forms above are not to be extrapolated down to small τ . In this
limit one recovers Bjorken scaling, i.e., the boost-invariant
solution of the ideal gas. Not only is this a satisfactory
mathematical result, it could also be of physical relevance,
if late freeze-out occurs. For later reference we note that at late
times one has

S(τ ) = A
Bu0

(τ0

τ

)(3−c2
s )/4

, (39)

using the asymptotic expansion of the exponential integral.
The solution illustrated in Fig. 8 shows that, as a result of
viscosity, the expansion is slower than Bjorken, so the energy
density is diluted less rapidly. As a result, the initial energy
density, as inferred from an observed final energy density, is
very much smaller than the Bjorken estimate.

From the phase-plane analysis, it is clear that physical
flows with initial conditions lying below SU are attracted
to U from below. For such solutions S increases initially
before decreasing. Such solutions have been exhibited in
Refs. [11,14]. Other initial conditions for physical flows give
rise to monotonically decreasing solutions for S. The solution
exhibited in Fig. 8 is the critical solution, U , which separates
these two types of solutions. The long time behavior of all
solutions is arbitrarily close to U .

3. The ELNS approximation

As discussed, the ELNS limit of the equations can be
obtained by dropping the term in the derivative of πV and
then introducing an arbitrary scale of time called τπ . In this
approximation, the equations for the Boltzmann fluid become

uθ = 1
4u

(
S + 3 − c2

s

)
, and BuS = A. (40)

Substituting the expression for S obtained from the second
equation into the first, the equation can be easily integrated
with the initial condition u(θ = 0) = 1, to give

u(θ ) = eθ(1−B/4)f (θ ),
ε(θ )

ε0
= e−Bθf 4(θ ),

(41)

wheref (θ ) = 1 + A
B(4 − B)

(1 − e(B/4−1)θ ),

and B = 1 + c2
s . This is in the form of the Bjorken solution

modified by a factor that goes to a constant at large θ . As
before, the ELNS solution matches the IS solution at times
much larger than the intrinsic time scale τπ .

4. Entropy production

For a Boltzmann fluid the entropy density is proportional to
σ = u3 exp(−3θ ). One can then manipulate Eq. (34) into the
form

dσ

dθ
= 3

4
σ

(
S − 4

3

)
, (42)

where we have used the value c2
s = 1/3. Because S decreases

with time, it is clear that at sufficiently late time the factor
S − 4/3 becomes negative, and hence the entropy density must
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FIG. 9. The normalized entropy � as a function of τ/τπ . Note
the saturation at large τ . The numerical solution is for A = 8/27
and B = 1. The upper curve is for S0(0) = 8/27 and the lower for
S0(0) = 2/27.

decrease. The total entropy scales as � = σ exp θ , because the
spatial volume element picks up a scale factor of τ from the
metric. For this quantity we find the equation

d�

dθ
= 3

4
�S, (43)

which is positive definite since the factors on the right-hand
side are all positive. Hence the total entropy must increase.
Using the expression for S in Eq. (38), one finds that ln � can
be written in terms of Meijer G functions. Using instead the
asymptotic expansion of S in Eq. (39), one obtains the simpler
long-time limit

�(τ ) = �(τ0) exp

{
9A

8Bu0

[
1 −

(τ0

τ

)2/3
]}

. (44)

In contrast to the simple fluid, where the entropy increases
without bound, the entropy of an expanding Boltzmann fluid
reaches a finite limit. The solution is shown in Fig. 9.

B. Sound waves

The linearized equations for fluctuations in a Boltzmann
fluid are

u1
θ = 1

4

(
3 − c2

s + S0)u1 − 1

4
(B − S0)u0y1

η + 1

4
u0S1,

y1
θ = 4

(
c2
s − S0

)
u0(S0 − B)

u1
η + B

(
1 − c2

s

) −A+ S0
(
Bu0 − 1 + c2

s

)
S0 − B

y1

− 1

S0 − B
S1

η,

S1
θ = −BS0u1 − [(S0)2 − BS0 −A]y1

η − (Bu0 + 2S0 − B)S1,

(45)

where we have made the expansion f (θ, η) = f 0(θ ) +
�f 1(θ, η), where f is any of u, y, and S. As before, y0 = 0,
and u0 and S0 are obtained as the solution of Eqs. (34), and
we can Fourier transform in η to examine the evolution of
each mode, k. Explicit solutions for u0 and S0 can be written
only in the long-time limit, when these tend to the unstable
manifold U . However, some physically interesting phenomena
are likely to occur before this time. Hence, the method of
choice is to numerically solve Eqs. (34) and (45) together for
the five variables at the leading and first order in �. The initial
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FIG. 10. (Color online) Solutions of the linearized equations for fluctuations around the scaling solution in a Boltzmann fluid. The normalized
temperature, T , the quantity, S, and y are shown for k = 1/4 (red), 1/2 (green), 1 (blue), 2 (purple), and 3 (orange) for S0(0) = 8/27. The other
initial conditions are u1(0) = 1/

√
2, S1(0) = y1(0) = 1/2.

conditions for u0 and S0 have been discussed before. Those
for u1, y1, and S1 can be chosen to lie between −1 and 1 for
� to give the right order of the magnitude of fluctuations.

The results obtained using c2
s = 1/3,A = 8/27,B = 1 are

shown in Fig. 10. For large values of k, there are quasiperi-
odic solutions. For smaller values of k the solutions are
overdamped. The critical value, k0, which separates damped
and oscillatory solutions depends on S0(0). The solutions
do not change qualitatively if B is changed by an order of
magnitude. From the solutions displayed, it is clear that a
damping exponent can be extracted.

A quantity that encapsulates the physics, and is perhaps
better suited to making a connection with experiments, is
the power spectrum. In Fig. 11 we display the evolution of

the power spectrum starting from an initially flat spectrum.
Qualitatively, the behavior is reminiscent of the simple fluid
examined earlier. Evolution produces peaks in the power
spectrum. The positions of these peaks evolve with time—
moving to smaller k due to the redshifting discussed earlier.
The position and magnitude of the peaks depend very strongly
on initial conditions and cs . For the relation between the power
spectrum studied here and the correlation function in Ref. [27],
see Sec. III.

The connection with ELNS hydrodynamics is made, as
before, by dropping the term in the time derivative of πV . As
mentioned, this results in the hyperbolic equations turning into
a parabolic set. As a result, fluctuations are diffusively damped
and do not turn into propagating sound waves. This is seen in
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FIG. 11. (Color online) The power spectrum of fluctuations after evolution from an initially flat spectrum at θ = 0.8 (red), 1 (green), 1.25
(blue), and 1.5 (black). The numerical solution is obtained for c2

s = 1/3,B = 1,A = 8/27 for four different values of S0(0). The other initial
conditions are u1(0) = −0.95, y1(0) = −0.5, and S1(0) = 0.3. Note the difference in the scales.
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FIG. 12. (Color online) Boost-invariant flow for conformal fluids
in the plane of ϕ0 and u0, starting from the same initial conditions,
with B = 1, but with varying χ , i.e., A. As A increases from 1 to 9 in
steps of 1 (A increases from top to bottom), the long-time behavior
remains universal but is approached faster.

numerical solutions, and will be dealt with more completely
in the next section.

VI. A CONFORMAL FLUID

As discussed in Sec. II A, a conformal fluid differs from
a Boltzmann fluid only in the T -independent value χ =
ετπ/ηV = 3πa, where a = τπT . The hydrodynamics of such
a conformal fluid can then be taken over from that of the
Boltzmann fluid with the simple replacement A = 4/3χ =
4/9πa. In a strongly interacting fluid one might expect
a = τπT to be small and hence A to be large. The separation
into boost-invariant and fluctuation equations and the analysis
of each is very similar to the details presented in Sec. V. For
this reason, we do not repeat the material here but only point
out the differences.

The boost-invariant flows follow Eqs. (34). As discussed in
Sec. V A, the global structure of the flows is determined by the

three fixed points P∗, P−, and P+. WhenA is large enough, the
roles of the fixed points P− and P∗ are interchanged. However,
physical flows are governed by the unstable manifold of P+
and its behavior remains unchanged. In particular, one may
take over the expressions for the long-time behavior of the
unstable manifold.

The boost-invariant flows, starting from the same initial
conditions, as χ changes, are shown in Fig. 12. The late-time
behavior of the trajectories in ϕ0 = χS0 and u0 is independent
of the value of A. This is clear by using Eqs. (39) to write

ϕ0 = Aχ

Bu0
= 4

3Bu0
. (46)

This universality is a consequence of the structural stability
of the hydrodynamic equations for this class of fluids. From
the figure one can also see that for A ≈ 1, ϕ0 increases before
decreasing. Thermalization can be said to occur only when
the solution enters the physical domain ϕ0 < 4/3 for the last
time.

From Eq. (44) it is clear that for all conformal fluids the
amount of entropy generated during the flow, proportional
to �, has a finite upper bound. However, this bound in-
creases exponentially with A, starting from the initial value
�(τ0) = 1, independent of A. Note that this means that
at fixed value of ηV /s, the maximum entropy production
has exponential dependence on the inverse relaxation time,
1/τπ .

Because the longitudinal flow can be continued to times
of order τT , and τT is independent of any material prop-
erty other than cs , for conformal fluids, the ratio τT /τπ

could become large as τπ decreases. One might then expect
that ELNS evolution should suffice to describe the system.
Figure 13 illustrates several interesting points. First, the late
time evolution of the energy density can be approximated by
an appropriately tuned Bjorken solution, the tuning parameter
being the initial energy density. However, as shown in the
figure, this gives a gross overestimate of the energy density;
in the example, by more than two orders of magnitude.
Second, a solution of ELNS hydrodynamics can be tuned to
reproduce the energy density at late times. Once this tuning
is performed, it also reproduces the total entropy production
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FIG. 13. (Color online) Exact numerical solutions for (a) the energy density and (b) total entropy along the unstable manifold for conformal
fluids. In (a) the line in black shows the exact solution for A = 8, the line in gold is a Bjorken solution matched to it asymptotically, and the
line in blue is the corresponding solution in ELNS hydrodynamics matched asymptotically. In (b) the coloured lines show the time evolution
of � as A varies from 1 to 9 in steps of 1; the larger the A, the higher the curve. The line in black is the prediction from the ELNS solution
matched to the energy density.
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FIG. 14. (Color online) The power spectrum for the energy density at θ = 0.8 (red), 1.05 (green), 1.25 (blue), and 1.5 (black), starting
from a constant unit distribution with initial conditions S0(0) = min(1,A), u1(0) = −0.95, y1(0) = −0.55, and S1(0) = 0.30 for all k. The
successive figures are for (a) A = 2, (b) A = 1, (c) A = 1/2, (d) A = 1/3.

at late times and hence furnishes a far superior description
of the flow than the Bjorken solution could. Note, however,
that the ELNS solution has larger entropy production than the
true IS solution at initial times and that there are quantitative
lacunae in this approximation even at τ = 40τπ . With lower
A, we have seen that these discrepancies are larger. Finally,
we note that the maximum entropy production occurs in the
very early stages of the flow, and probes of this stage of the
expansion would best discriminate between different values
of τπ . A different approach to extracting τπ is advocated in
Ref. [17].

A possible discriminant between ELNS and IS hydrody-
namics is the fate of fluctuations around the scaling solution.
An analysis of fluctuations can be performed numerically using
Eqs. (45), as before. At small k all solutions are overdamped,
as can be seen by investigating the k → 0 limit, as before.
At large k the fluctuations develop into damped propagating
waves. The evolution of the power spectrum of the fluctuations
in energy density, starting from a uniform spectrum is shown
in Fig. 14. For generic initial conditions, increasing A, i.e.,
decreasing τπ , seems to damp fluctuations faster. However, the
equations become stiff for A > 2 and the numerical solutions
are hard to extract for the interesting case of N = 4 SYM
theory that yields A = 8.69.

However, in that case, we can take another approach. The
asymptotic solutions exhibited in Eqs. (38) and (39) are reliable
for large θ . One can investigate the fate of fluctuations around
the scaling solution at late times by inserting the asymptotic
formulæ into Eqs. (45). The asymptotic solutions can be
written as u0 = u0 exp(pθ ) and S0 = (A/Bu0) exp(−pθ ),
where p = 1 − B/4. We expand Eqs. (45) in powers of
z = exp(pθ ) and retain all non-negative powers of z in the

equations. This gives

∂θ

(
u1

y1

S1

)
= M

(
u1

y1

S1

)
, where M = ikM1 + M0,

M1 =
 0 −Bu0

4 epθ 0
0 0 1

B

0 A 0

 , (47)

M0 =
 p 0 u0

4 epθ

0 −(
1 − c2

s

)
0

0 0 −u0Bepθ

 .

Note that the set y1 and S1 can be solved independently of u1,
and this last variable is then driven by the others.

For orientation, let us examine some analytical approxima-
tions first. As k → 0, one may set M = M0. The equations are
then exactly solvable, and yield

S1(τ ) = S1
0 exp

{
u0B
p

[
1 −

(
τ

τ0

)p]}
,

y1(τ ) = y1
0

(τ0

τ

)1−c2
s

,

(48)

u1(τ ) =
(

τ

τ0

)p (
u1

0 − u0S1
0

4p
eBu0/p

{
Ei

(
−Bu0

p

)
− Ei

[
−Bu0

p

(
τ

τ0

)p]})
.

All these expressions must be truncated at order z0 by dropping
all terms of order 1/z or smaller, because the equations were
obtained similarly. At large τ , the temperature fluctuation,
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FIG. 15. (Color online) The late-time power spectrum for the energy density at θ = 0.8 (red), 1.05 (green), 1.25 (blue), and 1.5 (black),
starting from a constant unit distribution in (a) IS hydrodynamics with A = 8 and initial conditions u1(0) = −0.95, y1(0) = 0.95, and
S1(0) = −0.75 for all k and (b) ELNS hydrodynamics with the same initial values of u1 and y1.

u1τ0/τ decreases as 1/τ 1−p, y1 decreases as 1/τ 1−c2
s , and S1

decreases exponentially.
At large k, neglecting M0, one finds that the solutions for

S1 and y1 are oscillatory with frequencies iω = ±ik
√
A/B.

The solution for u1 is entirely driven by y1 and hence is
oscillatory with a growing amplitude. The growth exponent
precisely matches the growth exponent of u0, hence u1/u0 is
purely oscillatory in this approximation. Damping arises with
the inclusion of M0. Then the equations are not autonomous,
and one could hesitate to treat the matrices M1 and M0

as time independent. However, by choosing k to be large
enough, one may be able to treat exp(pθ ) as a constant
over many periods of oscillation. The simplest approach to
computing the damping exponent then is to treat the problem
in perturbation theory. This is best done, as before, by assuming
that iω = ikλ1 + λ0 + O(1/k), introducing this expansion
into the characteristic equation for M and then solving for λ0,1.
As expected, λ1 = ±√

(A/B) and 0. The damping exponent
is −λ0. We find that y1 and S1 have the common damping
exponent [1 − c2

s + u0epθ ]/2. The temperature fluctuations,
u1/u0 are also damped.

The equations of ELNS hydrodynamics can be recovered
from those of IS hydrodynamics by the method we have
explained at length earlier. In this case, the ELNS equations
are obtained by first setting S0 = A/Bu0 [see Eq. (37)], an
approximation that is equivalent to the late-time solution
in Eq. (39) and reducing the last of Eqs. (47) through the
further identification S1 = Ay1

η/B. Then the equation for
y1 turns into a diffusion equation, which has a completely
different character from three equations of IS hydrodynamics
that together give rise to wave propagation. The qualitative
difference between the two kinds of hydrodynamics is very
clear from the evolution of the power spectrum of temperature
fluctuations, as shown in Fig. 15. The propagation of damped
sound waves in IS hydrodynamics is signaled by the formation
of beats, and its absence in the case of ELNS signals the
diffusive nature of the dynamics.

VII. CONCLUSIONS

In this article we examined freely expanding fluids using
causal viscous hydrodynamics [19] in the longitudinal one-

dimensional approximation. We chose coordinates appropriate
to a description of longitudinal flow, performed a tensor
analysis, and reduced the tensor equations of hydrodynamics to
three scalar equations. The hydrodynamic modes are described
by three scalars, the energy density, ε, shear viscous part of
the energy-momentum tensor, πV , and a parametrization of the
velocity, y. Details of this procedure are given in Appendices
A and B.

Material properties expected of the QCD fluid were dis-
cussed in Sec. II A, and three models of the fluid were put
forward. We gave the name “simple fluid” to a model in which
cs, ηV , and τπ are temperature independent. Other toy models,
which go by the names of Boltzmann fluid and conformal
fluids, have c2

s = 1/3 and χ = ετπ/ηV , both independent of
the temperature. Different such fluids are distinguished by the
value of χ . For the same value of ηV /s, one can have any value
for χ ; large values of the latter corresponding to gaseous fluids
and small values to more liquidlike behavior.

In Sec. II B we performed an analysis of the symmetries
of the hydrodynamic equations and extracted dimensionless
scaling variables that are combinations of the hydrodynamic
variables and material properties. These express laws of
physical similarity and can be related, in the nonrelativistic
limit, to the familiar dimensionless variables, i.e., the Reynolds
number, Re; the Mach number, M; and the Knudsen number,
K . For Boltzmann and conformal fluids, the condition that χ

does not depend on the temperature implies the combination
KRe/M is constant. We discussed how IS hydrodynamics
provides a self-consistent description of thermalization.

In scaling flow of an ideal fluid, the initial energy density
entirely goes into driving the expansion. This leads to the
Bjorken expansion with its characteristic power law behavior,
ε ∝ 1/τB (where B = 1 + c2

s ). In contrast, in a viscous fluid,
some part of this energy density is dissipated, leading to
entropy production. Viscous effects are sufficiently strong in
the simple fluid that the power law is modified to ε � 1/τ

asymptotically (Sec. IV A). As a result, the total entropy of
the system increases without bound (Sec. IV A2); we find
� ∝ τ 1/4 asymptotically.

We made a phase-plane analysis of flows for conformal
fluids, including the Boltzmann fluid (see Sec. V A1). Our
analysis shows that the long-time behavior of any phys-
ical flow is arbitrarily close to a special solution of the
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hydrodynamic equations that we call the unstable manifold,
U . We investigated this solution in detail (see Secs. V A2 and
V A4), in particular, the approach to the Bjorken solution and
rates of entropy production.

In the Boltzmann fluid, Bjorken scaling is recovered
asymptotically (Sec. V A2). However, the initially slower
expansion means that the energy density is diluted slower;
Bjorken estimates of the initial energy density, given the final,
are therefore overestimates. The total entropy is saturated
reasonably early (Sec. V A4). Such behavior also holds for
conformal fluids (Sec. VI). However, for fixed ηV /s, the
saturation value for the entropy depends exponentially on the
relaxation time τπ . The rate of growth of the entropy does not
depend uniquely on ηV /s, because the parameter τπ also plays
a role.

When the relaxation time for the shear stress, τπ , is very
small, in units of 1/T (i.e., the fluid behaves like a liquid),
then the late time solution for a conformal fluid is reasonably
well approximated in ELNS hydrodynamics by tuning a free
parameter. This free parameter is equivalent to the initial
energy density (Sec. VI). After performing such a fit, the
entropy density can also be fitted provided an appropriate unit
of time is chosen. Hence, the extraction of initial conditions
and material properties from observed final data remain as
equivalently hard problems in ELNS and IS hydrodynamics.
Furthermore, the initial conditions inferred from a given final
energy density in the two kinds of dynamics differ by a large
factor. Hence, in making inferences about the system produced
in heavy-ion collisions, one must be careful to use the right
type of hydrodynamics.

For an ideal fluid, the fluctuations around the scaling
solution are overdamped for spatial Fourier modes k < k0 =
(1 − c2

s )/2cs . For larger k, the fluctuations become damped
sound waves. The energy density in the fluctuations is damped
as a power law in τ (Sec. III). These qualitative features
persist in IS hydrodynamics of viscous fluids (Secs. IV B, V B,
and VI). When k is small enough, the solutions are over-
damped. At larger k damped sound waves are obtained. The
scaling solutions are therefore stable against small fluctuations.
The power spectra of fluctuations contain interesting structure,
which, if observable, could give information on fluid properties
or initial conditions.

Although the scaling solutions obtained using IS hy-
drodynamics can be well approximated at asymptotically
late times by the solutions of ELNS hydrodynamics
(Secs. IV A1, V A3, and VI), fluctuations behave completely
differently in these two kinds of dynamics. In the latter, there
are no sound modes: all fluctuations are diffusively damped.
In IS dynamics, however, modes with large enough k give rise
to true sound waves. These two kinds of behavior are easy
enough to distinguish through power spectra of the energy
density (Figs. 14 and 15). Similar effects are also to be seen
in the fluctuations of y. Note the rather precise analogy of
acoustically produced peaks in the power spectrum of the
temperature fluctuations in heavy-ion collisions with those in
the blackbody radiation in the early universe.

One object of great modern interest in heavy-ion collisions
has been the coupling between hard and soft particles, for
example, jet-quenching. An effective theory description of

this is to treat the soft particles through fluid dynamics and
describe the hard particle as forcing a shock wave in this
medium. The behavior of acoustics is an important ingredient
in such an analysis. In view of the difference between ELNS
and IS hydrodynamics in their treatment of fluctuations, they
could potentially give rise to different predictions for such
observables.

The purpose of this article was to explore the kind of
phenomena that arise in IS causal viscous hydrodynamics
and find qualitative features that are different from either
ELNS hydrodynamics or ideal gases. The changes in the
scaling solution are features that distinguish IS hydrodynamics
from ideal gases. The propagation of fluctuations around
these solutions as sound waves gives a qualitative distinction
between IS and ELNS hydrodynamics, because these modes
are diffusively damped in the latter case and do not propagate.

Comparison with data and fits to initial conditions and
material properties are outside the scope of this article. These
questions require a proper treatment of radial and anisotropic
flows, as well as the incorporation of bulk viscosity (due to its
importance near and below Tc). These questions are left to the
future.

APPENDIX A: TENSOR DECOMPOSITIONS

In longitudinal flow there are only two vectors intrinsic to
the problem—the timelike u and the spacelike v. One could
construct two more spacelike vectors to complete a tetrad, but
because these vectors are completely arbitrary, no physics can
depend on them. To express the rank-two tensors that enter the
hydrodynamic equations, we can only use combinations of u

and v and the metric tensor.
The symmetric rank-two tensors can be chosen to be the

projections Lµν = uµuν, V µν = −vµvν , and �µν = gµν −
Lµν − V µν . In addition there is the traceless symmetric tensor
Aµν = uµvν + uνvµ, and the antisymmetric tensor Aµν =
uµvν − uνvµ. The double contraction of the antisymmetric
and any of the four symmetric tensors vanishes. For notational
convenience we also define the spacelike projection �µν =
gµν − Lµν = �µν + V µν . Contractions of this with the other
tensors can be worked out using Table I. Any rank-2 symmetric
tensor, which arises in consideration of longitudinal flow, can
be expressed as a linear combination of L,V , and � (or
alternatively, L,V , and A). Any similar rank-2 antisymmetric
tensor can only be a scalar multiple of A.

TABLE I. Contractions of the symmetric basis tensors.
The entries are the contractions of the tensors in the row and
column. The contraction in the first column is the trace.

gµν Lλ
µ V λ

µ �λ
µ Aλ

µ

Lµν 1 Lνλ 0 0 1
2 (Aνλ + Aνλ)

V µν 1 V νλ 0 1
2 (Aνλ − Aνλ)

�µν 2 �νλ 0
Aµν 0 −Lνλ − V νλ

014902-17



R. S. BHALERAO AND SOURENDU GUPTA PHYSICAL REVIEW C 77, 014902 (2008)

The vorticity tensor is defined as

ωµν = �µα�νβ 1
2 (dβuα − dαuβ) (A1)

and is spacelike (orthogonal to u) and antisymmetric by
construction. Due to its antisymmetry, ωµν has to be pro-
portional to A. However, A is not orthogonal to u, so the
only possible constant of proportionality is zero. In other
words, vorticity vanishes for longitudinal flow. Another way
to understand this is to note that ωµν , being an antisymmetric
spacelike tensor, is equivalent (technically, dual) to an axial
vector that is spacelike. Such a vector can be constructed
by the three-dimensional vector product of two vectors. For
longitudinal flow, there is only one spacelike vector v that is
intrinsic to the problem. Hence one cannot construct an axial
vector. A tedious proof of the vanishing of the vorticity can
also be given by direct manipulation of the definition.

In the presence of viscous shear but vanishing bulk
viscosity, one of the hydrodynamic variables is the dissipative
part of stress tensor, πµν . The fact that it is symmetric can
be derived from the symmetry of the stress tensor. Because it
expresses shear, it is orthogonal to u. It is traceless because we
have assumed bulk viscosity to vanish. Hence one can write
uniquely,

πµν = πV

[
V µν − 1

2�µν
]
, (A2)

i.e., for longitudinal flow, the shear tensor is equivalent to
a single scalar. Note that the tensor multiplying πV has the
following properties

V µν − 1
2�µν = 3

2V µν − 1
2�µν

(A3)
and

[
V µν − 1

2�µν
][

Vµν − 1
2�µν

] = 3
2 .

We will need to consider derivatives of the basis tensors.
This is facilitated by considering first the derivatives of the
unit vectors. The condition uµuµ = 1 yields uµDuµ = 0 and
therefore the orthogonality of u and v. Now D2uµ can be
written as a linear combination of u and v. It is easy to
work out that D2uµ = S2uµ + (DS) vµ. Furthermore, one can
show that Dvµ = Suµ. Two other special cases of interest for
longitudinal flow are dµvµ = S and vµD̃uµ = −	. For later
use we also set down the actions of D = uµdµ and D̃ = vµdµ

on any scalar field f

Df = fτ cosh y + 1
τ
fη sinh y and

(A4)
D̃f = fτ sinh y + 1

τ
fη cosh y.

Using the orthogonality of u and v, we find the derivative

∇µuµ = dµuµ = 	, where ∇µ ≡ �ν
µdν. (A5)

Another derivative that appears repeatedly in the hydrody-
namic equations is

〈∇µuν〉 ≡ �λ
µdλuν + �λ

νdλuµ − 2
3	�µν, (A6)

where the notation 〈· · ·〉 denotes the traceless, symmetric part.
Because this tensor is also orthogonal to u, one should be able
to write [see Eq. (A2)]

〈∇µuν〉 = D
(
Vµν − 1

2�µν

)
, (A7)

where D is to be determined. Multiplying through by Vµν , one
immediately finds

〈∇µuν〉 = −2
(
vλD̃uλ + 	

3

) (
Vµν − 1

2�µν

)
= 4

3	
(
Vµν − 1

2�µν

)
. (A8)

Now we are ready to write the derivatives of the basis tensors.
Because covariant derivatives of the metric tensor vanish,

one has

dλ�µν = −(dλuµ)uν − (dλuν)uµ. (A9)

We examine its projections parallel and orthogonal to u. One
of the parallel projections is

D�µν = −SAµν. (A10)

One of the orthogonal projections is

�µ
σ ∇ρ�

σρ = �µ
σ �λ

ρdλ�
σρ = 0. (A11)

For Vµν one has

dλVµν = −(dλvµ)vν − (dλvν)vµ. (A12)

A parallel projection that we will use later is

DVµν = −(Dvµ)vν − (Dvν)vµ = −SAµν. (A13)

One of the orthogonal projections that we need is

�µ
σ ∇ρV

σρ = [S − dρv
ρ]vµ. (A14)

Because vµvµ = −1, one has vµD̃vµ = 0, i.e., D̃vµ is parallel
to u. As a result, one finds D̃vµ = (uλD̃vλ)uµ, from which the
last form of the derivative follows.

APPENDIX B: THE EQUATIONS OF LONGITUDINAL
HYDRODYNAMICS

The dynamical equations are supplemented by the equation
of state, which provides a relation between ε and p and
hence determines the entropy density s = (ε + p)/T . Because
the the hydrodynamic equations are valid only for a fluid in
local thermodynamic equilibrium, or so close to it that linear
response theory works, one may use the equation of state to
eliminate one of ε and p from hydrodynamics. A toy equation
of state that we shall use is

p(T ) = c2
s ε(T ), (B1)

i.e., the speed of sound is independent of the temperature. The
only value of c2

s that is strictly temperature independent is
c2
s = 1/3. This is the appropriate value to use when the bulk

viscosity has been neglected, because both are consequences
of conformal symmetry. Because we use temperature inde-
pendent c2

s in this article, we use the above value whenever
numerical work is performed.

A. The equation for energy

The equation for energy in Ref. [14] is

Dε = −(ε + p)∇µuµ + 1
2πµν〈∇µuν〉. (B2)

014902-18



ASPECTS OF CAUSAL VISCOUS HYDRODYNAMICS PHYSICAL REVIEW C 77, 014902 (2008)

The identity in Eq. (A3), used along with Eq. (A8) gives

πµν〈∇µuν〉 = 2πV 	. (B3)

Then, using the relation in Eq. (A5), and the equation of state,
one can write

Dε = −[(
1 + c2

s

)
ε − πV

]
	. (B4)

B. The momentum-balance equation

The general form of the momentum-balance equation given
in Ref. [14] is

(ε + p)Duµ = ∇µp − �µ
σ ∇ρπ

σρ + πµσDuσ . (B5)

Note that each term is orthogonal to u. Using the definition of
v and the decomposition of the shear tensor in Eq. (A2), we
find that

πµσDuσ = Sπµσ vσ = SπV vµ. (B6)

Using the derivatives of the basis tensors in Eqs. (A11) and
(A14), we can write

�µ
σ ∇ρπ

σρ = �µ
σ �λ

ρ(dλπV )
[
V σρ − 1

2�σρ
]

− 3
2πV vµ[dλv

λ − S]. (B7)

The last term drops out because dλv
λ = S. Putting all this

together, we can reduce the tensor equation to

S(ε + p)vµ = ∇µp − (dλπV )
[
V λµ − 1

2�λµ
] + SπV vµ.

(B8)

Contracting with any spacelike tensor apart from v would yield
only terms in the directional derivative along that vector. But
for longitudinal flow each such derivative is separately zero.
Thus, the only nontrivial equation is obtained by contracting
the above equation with v. This gives the entropy equation for
longitudinal flow,

S(ε + p − πV ) + D̃(p − πV ) = 0. (B9)

C. The equation for the shear tensor

In Ref. [14] the equation for the shear tensor is given as

τπ�µ
α�ν

βDπαβ + πµν = ηV 〈∇µuν〉 − 2τππα(µων)
α , (B10)

where τπ is a relaxation time, ηV is the coefficient of
shear viscosity, ∇µ = �µνdν , and ωαβ is the vorticity tensor.
Because the vorticity vanishes for longitudinal flow, we drop
the last term.

Using Eq. (A8) the term in the viscous coefficient becomes

ηV 〈∇µuν〉 = 4
3ηV 	

[
V µν − 1

2�µν
]
. (B11)

For the first term, one can write

�µ
α�ν

βDπαβ = (DπV )
[
V µν − 1

2�µν
]
, (B12)

Because the projectors are orthogonal to the derivatives of the
basis tensors in Eqs. (A10) and (A13). The equation for shear
then reduces to the scalar equation

τπ (DπV ) + πV = 4
3ηV 	. (B13)

APPENDIX C: EVOLUTION OF THE POWER SPECTRUM

For the equations of sound we assume that a Fourier
transformation decouples the individual Fourier modes. For
each mode, the ODEs to be solved can be written in the form

dx
dθ

= Mx, (C1)

where x is a vector and M a matrix. For ideal fluids,
Eqs. (15) can be written as a system of two coupled
autonomous equations so M is a 2 × 2 matrix. In the other
cases [Eqs. (30) and (45) and its reduction in the ELNS
limit] the equations are not autonomous, i.e., the time variable
appears explicitly in M . However, the solution of Eq. (C1)
is straightforward and involves a matrix exponential. The
asymptotic behavior of the solution is controlled by the
eigenvalue with the largest real part. We will assume that all
the eigenvalues of M have negative real part (at all times, in
the nonautonomous case) so at long times the solution decays.
We are interested in whether transients grow.

Consider the real positive quantity P (θ ) = x†Ax, where A

is a fixed matrix independent of θ . Let M = M†A + AM .
Then

dP

dθ
= x†Mx =

∑
i

|xi |2λi where x =
∑

i

xivi , (C2)

in terms of the normalized eigenvectors, vi , and eigenvalues,
λi , of M. Because P is real, A is Hermitean. As a result, M is
also Hermitean, and its eigenvalues are real. Transient growth
in P can take place for some initial conditions if and only if M
has at least one positive eigenvalue. The largest growth in P

occurs when x is parallel to the eigenvector of M with largest
(positive) eigenvalue.

When A is chosen to be a multiple of the identity, then
the eigenvalues of M are multiples of the real parts of the
eigenvalues of M . Then, because the multiplying constant is
positive, and we have assumed that the eigenvalues of M have
negative real parts, there can be no growth in P . In all other
cases, transient growth of P is possible.

In our application, we choose A to be a projection operator
on the first component of x. As a result, AM is just the top
row of M with other rows set to zero, and M is obtained by
Hermitizing this. Now the eigenvalues of M have no simple
relation with those of M . One can show that in general the
rank of M is 2, i.e., there are two nonvanishing eigenvalues.
Unless all the off-diagonal terms in M are zero, one of the
generically nonvanishing eigenvalues is positive and the other
is negative. As a result, there is always transient growth in P .
This is the reason for the peaks in Figs. 5, 6, and 11.
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FIG. 16. (Color online) The power spectrum of fluctuations in energy density for the ideal fluid as a function of k and θ , for β = 0 and
α = 0, π/4, π/2, and 3π/4 (from left to right). Note the lack of transient growth for k = 0.

We complete the analysis of transient growth of P for the
ideal fluid [see Eqs. (15)]. In this case we have

M =
(

0 −ikB

ikB 0

)
, with eigenvalues

(C3)
λ = ±kB.

Transient growth can take place. We can parametrize all initial
conditions by an angle α and a phase β, by choosing x =
(sin α exp[iβ], cos α). The evolution of the power spectrum

of the energy obtained with specific initial conditions from
numerical solutions of Eqs. (15) are shown in Fig. 16.

For the evolution of the power spectrum of χ1 in a simple
fluid, one has

M =
( − 8

3 −4ik 1
4ik 0 0
1 0 0

)
, with eigenvalues

(C4)

λ = 0,
1

3

[ − 4 ±
√

25 + 144k2
]
,
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FIG. 17. (Color online) The power spectrum of fluctuations in energy density for the simple fluid in ELNS hydrodynamics as a function of
k and θ , for β = 0 and α = 0, π/4, π/2, and 3π/4 (from left to right). Note the lack of transient growth for k = 0.
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where we have taken c2
s = 1/3. Because one of the eigenvalues

is positive, transient growth occurs. Note that the mode k = 0
can also display transient growth. This analysis can be adapted
to that for the Boltzmann fluid by replacing the constants in
M by appropriate functions of θ . However, the conclusions
regarding transient growth carry over to that case.

For the power spectrum of χ1 in the ELNS approximation
to the simple fluid, one finds that

M = −
(

2B 4
3 ik

1−c2
s

c2
s

− 4
3 ik

1−c2
s

c2
s

0

)
, with eigenvalues

(C5)

λ = B ± 1

3c2
s

√
9c2

s B
2 + 16k2(1 − c2

s )2.

Interestingly, the diffusive term, c2
s k

2, drops out of the transient
analysis for the energy density (it does appears in the transient
analysis for y). For k = 0 transients do not grow. This seems
to be the main distinction between transient growth of energy
density in ELNS and IS dynamics.

The numerical results in Fig. 17 seem similar to the ideal
fluid case at first sight. However, the diffusive character of
the underlying equations is manifested in two ways. First,
at fixed k, if one observes the time evolution, then one
sees only a single instance of transient growth, unlike the
quasiperiodic behavior of Pε in the ideal fluid. Second, at
sufficiently large k there is no transient growth, unlike the ideal
fluid.

In the late time limit for a Boltzmann or conformal fluid
one has, from Eq. (47),

M =
 2p − ikBu0

4 epθ u0
4 epθ

ikBu0
4 epθ 0 0
u0
4 epθ 0 0

 , with eigenvalues

(C6)

λ = 0, p ± 1

4

√
16p2 + (1 + B2k2)u2

0 e2pθ .

Because one of the eigenvalues is positive, transient growth
can take place.
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