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Interpreting scattering wave functions in the presence of energy-dependent interactions
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In scattering theory, the squared relative wave function |φ(q, r)|2 is often interpreted as a weight, due to final-
state interactions, describing the probability enhancement for emission with asymptotic relative momentum q.
An equivalence relation also links the integral of the squared wave function over all coordinate space to the density
of states. This relation, which plays an important role in understanding two-particle correlation phenomenology,
is altered for the case where the potential is energy dependent, as is assumed in various forms of reaction theory.
Here, the modification to the equivalence relation is derived, and it is shown that the squared wave function should
be augmented by a additional factor if it is to represent the emission enhancement for final-state interactions.
Examples with relativistic vector interactions, e.g., the Coulomb interaction, are presented.
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In many forms of reaction theory the square of the
outgoing wave function, |φ(q, r)|2, plays the role of a weight,
enhancing the probability for emission from coordinate r into
an asymptotic momentum state q. One such example is the
Koonin equation [1,2], used for two-particle correlations,

C(q) =
∫

d3rS(r)|φ(q, r)|2, (1)

where q is the relative momentum and S(r) is the normalized
probability for emitting two particles of the same momentum
so that in their center-of-mass frame they are separated by
r. Thus, the squared wave function describes the additional
probability for emitting particles due to their final-state
interactions. A second method for calculating the probability
enhancement is to consider the correction to the relative
density of states, which is related to the phase shifts by the
Beth-Uhlenbeck formula [3–5],

�
dn

dε
=

∑
�

(2� + 1)

π

dδ�

dε
, (2)

where �dn/dε is the change of the density of states induced by
the potential. The Beth-Uhlenbeck formula is only applicable
for volumes V that are much larger than the range of
the interaction or the inverse momentum 1/q. From this
perspective, final-state interactions provide an extra weight
for emission through the phase shift

C(q) = 1 +
∑

�[(2� + 1)/π ](dδ�/dq)

V q2/(2π2)
, (3)

where the denominator is the density of free states and q

is the relative momentum. Because the volume V is in the
denominator, this relation can be used to experimentally
infer the size of the system. For the case of pion-proton
correlations, a bump ensues in the correlation function for
values of q corresponding to the invariant mass of the �

resonance. In this neighborhood the � = 1, I = 3/2 phase
shift rises quickly from zero to π , and the height of the
bump provides a quantitative measure of the overall volume.
If the scattering particles have intrinsic spin, the denominator
in Eq. (3) picks up a factor (2S1 + 1)(2S2 + 1), and the sum

over angular momenta in the numerator would be expanded,∑
� → ∑

�,S(2S + 1), where S is the total spin. The phase
shift would then depend on S in addition to its momentum
dependence. Because the inclusion of spin does not alter any
of the relations derived further below, aside from the addition
of spin factors, spin is suppressed throughout the remainder of
the article.

It is easy to derive the Beth-Uhlenbeck formula by
considering a scattering center inside a large sphere of
radius R. The partial wave of outgoing momentum q and
angular momentum � would satisfy the boundary condition
sin(qR + δ�) = 0, which gives the constraint qR + δ� = nπ .
Taking the derivative gives dn = dδ�/π , thus proving the
relation. The relation can be easily extended to inelastic
interactions by considering eigenphases [6]. Equation (2) is
extraordinarily useful as it also provides the second virial
coefficient. Furthermore, because 2dδ/dε is also the time delay
in the scattering of a wave packet, it relates the extra time spent
near a scattering center to the change of the density of states,
which can be shown to also satisfy the ergodic theorem [7],
which states that, in a thermalized system, a particle populates
the neighborhood of a scatterer proportional to the local density
of states. Equation (2) applies even for relativistic motion, or
for energy-dependent interactions.

The equivalence between Eqs. (1) and (3) in the large
volume limit can be explicitly demonstrated by considering
the large volume limit, where the source function in Eq. (1)
can be replaced with S(r) ≈ S(r = 0). In that case,

C(q) = 1 + S(r = 0)
∫

d3r(|φ(q, r)|2 − 1)

= 1 + S(r = 0)4π

∫
r2dr

∑
�

(2� + 1)
1

q2r2

× {|φ�(q, r)|2 − ∣∣φ(0)
� (q, r)

∣∣2}
, (4)

where in the partial wave expansion φ� are solutions to the one-
dimensional radial Schrödinger equation, with an asymptotic
form u�(r → ∞) = sin(qr + �π + δ�(q)). To finish demon-
strating the equivalence between the Koonin equation and
the Beth-Uhlenbeck formula we apply a relation linking the
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integral of the squared partial waves with the derivatives of the
phase shifts [8],∫

dr
{|φ�(q, r)|2 − ∣∣φ(0)

� (q, r)
∣∣2} = 1

2

dδ�

dq
, (5)

where φ
(0)
� is the partial wave in the absence of the potential.

Inserting Eq. (5) into Eq. (4) gives

C(q) = 1 + S(r = 0)
2π

q2

∑
�

(2� + 1)
dδ�

dq
, (6)

which is equivalent to Eq. (2) for the case that the source is
uniform over a large volume, i.e., S(r = 0) → 1/V .

The phase-shift-based expression of Eq. (6) is applicable
for a large volume, but for small volumes the Koonin
form, Eq. (1), is required. The equivalence between the two
equations in the large volume limit makes it clear that one
can identify the change of emission probability arising from
final-state interactions with either the change in the density
of normalized eigenstates, or the change of the amplitude for
emitting particles from a specific location into the final state.
This equivalence emphasizes the role thermalization plays in
justifying the Koonin formula, Eq. (1), and is also often used
to test numerical solutions of the scattered wave function. The
general assumption has been that any potential that reproduces
the phase shifts can be used in the Koonin formula, assuming
the range of the potential is much smaller than the size
of the source being explored. However, as is shown below,
this equivalence becomes invalid when the potential becomes
energy dependent.

The equivalence relation for partial waves, Eq. (5), can
be derived from the Schrödinger equation, assuming an
energy-independent potential and using an approach similar
to what is used to derive the basic relations of effective
range theory [9,10]. The goal of this brief article is to show
how the equivalence relation is modified for the case of
energy-dependent potentials. The modification will involve
augmenting the squared wave function by a simple multiplica-
tive factor that depends on the derivative of the potential with
respect to q. Relativistic motion of a particle interacting with a
vector potential, which has an effectively energy-dependent
interaction when mapped to the Schrödinger equation, is
considered in detail. After deriving the modification to
Eq. (5) below, the classical limit is considered, where it is
shown that the same correction factor arises from considering
the probabilistic enhancement classically, in the presence of
an energy-dependent potential.

The derivation begins by considering the following form
for the Schrödinger equation,{

−∂2
r + �(� + 1)

r2
+ U (q, r)

}
φ�(r) = q2φ�(r). (7)

Here, U (q, r) would equal 2µV (r) for the nonrelativistic
case with no energy-dependent interactions, and µ would
represent the reduced mass. We use the term energy-dependent
interaction to clarify that the q dependence in U (q, r) is a
function of the asymptotic kinetic energy and the position. The
phrase momentum-dependent interaction sometimes refers to
exactly such interactions. For instance, in Refs. [11] and [12]

the nuclear optical potential is expressed as a function of
the magnitude of the local momentum as calculated from
classical arguments, which means that effectively U (q, r)
can be considered energy dependent. If the potential were
expressed as a function of r and gradients, i.e., U (∇, r), it
would not satisfy our definition of being energy dependent.

Considering the solution to Eq. (7) for two neighboring
values of the asymptotic momentum q and q ′,∫ R

0
dr

[ − φ′(q ′, r)∂2
r φ(q, r) + ∂2

r φ′(q ′, r)φ(q, r)
]

+
∫ R

0
dr[U (q, r) − U (q ′, r)]φ′(q ′, r)φ(q, r)

= (q2 − q ′2)
∫ R

0
drφ′(q ′, r)φ(q, r), (8)

integration by parts combined with keeping only terms linear
in q − q ′ yields

[−φ′(q ′, r)∂rφ(q, r) + ∂rφ
′(q ′, r)φ(q, r)]r=R

= (q − q ′)
∫ R

0
drφ2(q, r)

(
2q − ∂

∂q
U (q, r)

)
. (9)

Assuming R is sufficiently large to justify use of the asymptotic
form of the wave function, φ�(q, r) ∼ sin(qr + �π + δ�(q)),
and after substituting φ(q, r) = φ(q ′, r) + (q − q ′)∂qφ(q, r),

1

2

(
R + dδ

dq

)
=

∫ R

0
drφ2(q, r)[1 − (1/2q)∂qU (q, r)].

(10)

After subtracting the same quantity with zero potential (and
thus zero phase shift), one finds the generalized form of
Eq. (5) relating dδ/dq and the wave function,∫ R

0
dr{|φ(q, r)|2[1 − (1/2q)∂qU (q, r)] − |φ(0)(q, r)|2}

= 1

2

dδ

dq
. (11)

The factor [1 − (1/2q)∂qU (q, r)] is the same as that found
in Ref. [13] when calculating the local density of states in a
Green’s function approach. The expression can be summed
over partial waves to find the analogous expression for
plane waves, where |φ(q, r)|2 will also be augmented by the
factor [1 − (1/2q)∂qU (q, r)]. However, the extension to the
outgoing plane wave case relies on the assumption that U (q, r)
is independent of �. This assumption is often violated in
scattering phenomenology for nuclear physics, where different
forms of the scattering potential are applied for different �.

One example where a q dependence for U arises naturally
is the Klein-Gordon equation for a vector potential V ,

[E − V (r)]2φ = (−∇2 + m2)φ. (12)

After setting q2 = E2 − m2, the Klein-Gordon equation can
be equated to the Schrödinger equation, Eq. (7), with the
potential U ,

U (q, r) = 2EV (r) − V 2(r), (13)
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which, because ∂qE = q/E, is momentum dependent so the
constraint of Eq. (11) becomes∫ R

0
dr

[|φ�(q, r)|2 (1 − V (r)/E) − ∣∣φ(0)
� (q, r)

∣∣2] = 1

2

dδ�

dq
.

(14)

Thus, if one uses |φ|2(1 − V/E), rather than |φ|2, to describe
the probability enhancement, it will be consistent with the
correction to the level density. This result should not be
surprising, because the density for a scalar field with a
gauge field, V = eA0, behaves as φ(i∂t − eA0)φ and for an
eigenstate becomes |φ|2(E − V ). This explicit appearance of
the vector potential into physical quantities related to the field
is characteristic of gauge invariance, which requires derivatives
to be modified, ∂µ → ∂µ + ieAµ.

The result is somewhat different when one considers the
relative motion of two particles of finite mass, m1 and m2.
Although the following expression neglects retardation effects,
the analogy of the Klein-Gordon equation for the relative wave
function can be written as

[E − V (r)]φ =
√( − ∇2 + m2

1

)
φ +

√( − ∇2 + m2
2

)
φ. (15)

Solving for ∇2φ allows one to write an energy-dependent
Schrödinger equation for φ,

−∇2φ = q2φ + U (q, r)φ,

U (q, r) = q2 − 1

4

{
(E − V (r))2 − 2

(
m2

1 + m2
2

)

+
(
m2

1 − m2
2

)2

(E − V )2

}
,

q2 = 1

4

{
E2 − 2

(
m2

1 + m2
2

) +
(
m2

1 − m2
2

)2

E2

}
. (16)

For the limit that V � E, one can keep only the first-order
terms in V , and U can be written as 2µe2/r, where the effective
mass µ is

µ = E

4
−

(
m2

1 − m2
2

)2

4E3
. (17)

In the nonrelativistic limit, E = m1 + m2, and one recovers
the usual expression for the effective mass, µ = m1m1/(m1 +
m2), which has no momentum dependence.

The effects of strong interactions can be described by phase
shifts even when Coulomb interactions are present, and as
can be seen below, an equivalence relation can be derived
linking the derivative of the phase shift to the integral of
|φ(q, r)|2 − |φ0(q, r)|2, where φ0 includes the Coulomb in-
teraction. Assuming the Coulomb interaction is small enough
to justify using the approximation UCoul = 2µ(q)e2/r , the
asymptotic wave function becomes

φ�(q, r) ∼ sin(qr + η ln(r) + δ�(q)), (18)

η = µe2/q.

One can repeat the steps used to derive Eq. (11), but keep in
mind that φ(0) was solved with the Coulomb interaction. This

results in the relation∫ R

0
dr

{|φ�(q, r)|2[1 − (1/2q)∂qUs(q, r) − (e2/qr)∂qµ]

− ∣∣φ(0)
� (q, r)

∣∣2
[1 − (e2/qr)∂qµ]

} = 1

2

dδ�

dq
. (19)

Thus, even if the short-range potential Us(q, r) has no
momentum dependence, the Coulomb interaction modifies the
equivalence relation by the incorporation of the simple factor
[1 − (e2/qr)∂qµ], which has a momentum dependence due
to the fact that µ depends on q once the motion becomes
relativistic, as shown in Eq. (17).

The modification factor [1 − (e2/qr)∂qµ] also appears
when one considers the classical analog of the wave function.
Classically, particles of outgoing momentum q are enhanced
by the factor describing the focusing of phase space [14,15].
In these previous studies the role of the squared wave function
was shown to be

|φ(q, r)|2 → d3q0

d3q
, (20)

where q0 is the momentum at the initial separation r.
The equivalence works whenever qr � 1. Nonrelativistically,
energy conservation implies

q2 = q2
0 + 2µ

e2

r
= q2

0 + U (q, r). (21)

If one ignores the q dependence of U, q0dq0 will equal qdq.
Indeed, this independence was assumed when solving for the
wave function at fixed q, so the classical-quantum equivalence
can be stated as

〈|φ(q, r)|2〉 → q0

q
=

√
1 − 2µe2

q2r
, (22)

where the 〈. . .〉 denotes an average over angles so that
d3q = 4πq2dq. This will be identical to the squared wave
function if one solves the Schrödinger equation for a fixed mass
µ(q) in the limit qr � 1. However, the factor q0dq0/qdq �= 1
if U depends on q. In that case differentiating the energy-
conservation relation gives

q0dq0

qdq
= 1 − (1/2q)∂qU (q, r), (23)

which is the identical factor used to modify the equivalence
relation in Eq. (11). This emphasizes the physical origin of the
modification factor. It also suggests that for most applications
involving the application of relative wave functions for rela-
tivistic q, one should incorporate the factor [1 − (1/2q)∂qU ]
into |φ|2 if it is to be interpreted as a probability enhancement.

The Coulomb modification factor above only comes into
play for relativistic motion where q is not much smaller than
the total energy. In the limit of large q, qr is also large and
one can justify the classical expression. Considering the equal
mass case of Eq. (17), where µ = E/4, the large-q limit of the
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phase space focusing factor becomes

d3q0

d3q
≈ 1 − µe2

q2r
− e2

µr
. (24)

The last term, which arises from the q dependence of µ, is
negligible for small q where the motion is nonrelativistic, but
is four times larger than the second term in the relativistic
limit. Also of note, both terms fall as 1/q asymptotically,
in contrast to the 1/q2 behavior of the nonrelativistic
expression.

For most applications, the energy dependence of the
effective mass can be ignored. This is certainly the case
for low-energy reactions. It is also the case for the vast
majority of applications involving two-particle correlations
for high-energy collisions, because most analyses focus on
correlations at small relative momentum. At large relative
momentum, corrections for the q dependence of the potential
become important, but that is also the region where interactions
matter less due to the large competing phase space associated
with free motion. For instance, these effects could be important
for modeling ππ interactions in the region of the ρ meson
[16,17], where the decaying pions are highly relativistic.
However, for sources much larger than one femtometer,
qr � 1, one can model observables using statistical arguments
based on derivatives of the phase shifts and avoid applying

|φ|2 weights. Another class of observables where these effects
might be important are analyses of charge balance functions
[18,19], which involve like-sign subtractions using many pairs,
especially in high-energy heavy ion collisions. In this case,
although the effect of Coulomb interactions at large q is small
on a pair-by-pair basis, Coulomb effects are magnified by the
large number of pairs in a high multiplicity event, so that the
more complicated structure of Eq. (24) is required. Energy-
dependent interactions are also applied to other forms of
reaction theory, e.g., the optical models of Refs. [11] and [12].
Because both the phase shifts and modified density are also of
interest in many of these applications, the modification factor
could also be relevant. In these cases the energy dependence is
not a relativistic effect, and the characteristic momentum scale
for the energy dependence is not the rest mass, but instead is
determined by some other phenomenological scales. Thus, the
importance of the modification factor must be assessed on a
case-by-case basis.
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