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Soft-to-hard mode transition in the dynamical dipole mode induced in dissipative
heavy-ion collisions
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The collective dipole dynamics evolving in intermediate dinuclear systems with exotic shape and charge
distributions formed in charge asymmetric fusion entrance channels are systematically studied by solving a
microscopic transport Boltzmann-Nordheim-Vlasov (BNV) equation and analyzing the obtained dipole signal.
The BNV analysis shows a typical transition in the dipole oscillation frequency related to a transition from
soft-to-hard mode in the dynamical dipole mode. The relative pre-equilibrium γ -ray emission probability is also
evaluated by using the classical bremsstrahlung approach. In particular, by using this approach an analytical
formula that gives the time-dependent γ rate during the equilibration of the collective mode versus the statistical
GDR is extrapolated. The results are in agreement with other models and the few existing experimental data.
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I. INTRODUCTION

The extra dipole radiation coming from fusion reactions
with charge asymmetry in the entrance channel has been
widely studied over the past several years both theoretically
[1–4] and experimentally [5–7]. As it is well known, the dipole
moment at the touching configuration point, which is a function
of the differences in N/Z of the two colliding nuclei, generates
a strong dipole amplitude responsible for the extra yield in the
observed γ -ray spectra with respect to the statistical case.

The importance of the study of this pre-equilibrium dipole
mode, the so-called dynamical dipole, is due to different
reasons. (i) The extremely short mean lifetime (h̄/�GDR

∼=
50 fm/c) of this collective mode makes it an ideal probe to
study nuclear systems under extreme conditions. In particular,
it permits the study of the structure of the intermediate system
and the collisional and mean-field dynamics that characterize
the compound nucleus formation time. (ii) The second reason
is the possibility of obtaining independent information on
the damping of the isovector collective mode in very excited
nuclear systems and on the symmetry term of the nuclear force.

Recent theoretical models [2,3] show that the dependence of
the extra dipole yield from the incident beam energy presents
a typical “rise and fall” behavior, whose nature, related to the
early stage dynamics of the reaction, was understood only from
a qualitative point of view.

Therefore this physics requires a complete understanding
of the early stage dynamics occurring in this kind of reactions.
In particular a key question is the determination of the
time corresponding to the start of the collective behavior
[in the sense of the standard giant dipole resonance (GDR)
mode].

To this end in the next section a fully microscopic analysis
will be presented by solving the Boltzmann-Nordheim-Vlasov
(BNV) equation for the system 16O + 98Mo at two different
energies. Then, by analyzing the obtained dipole signal the
detailed features of the dipole dynamics, from the early stage
up to the asymptotic behavior characterized by a full GDR
collectivity, will be clarified.

Starting from this analysis, in Sec. III, we present a model
that gives a quantitative prediction for the extra yield of
GDR photons. By using this model, based on the classical
bremsstrahlung approach, the above-mentioned “rise and fall”
behavior for the extra yield versus the incident beam energy
is nicely reproduced. Moreover, the obtained results are in
perfect agreement with those obtained by Baran et al. [3].
Within this model we try to extend to the pre-equilibrium
stage the standard statistical formula for the GDR γ ray
emitted by an equilibrate nucleus. In particular we attempt
to extract an analytical formula that gives the time-dependent
pre-equilibrium γ rate not only during the compound nucleus
stage (question partially solved by Chomaz et al. [1]) but also
during the thermal pre-equilibrium stage of the precompound
nucleus phase.

In this work we try to clarify each aspect of the dynamical
dipole mode induced in the dissipative heavy-ion collisions.
For this reason this work can be considered not only in
agreement with but also complementary to that by Baran
et al. [3].

II. BNV ANALYSIS

For a better understanding of the dynamics occurring in
dissipative collisions initiated in charge asymmetric entrance
channels, we performed a fully microscopic analysis for the
system 16O + 98Mo at 4A MeV and 8A MeV of incident beam
energy. In both calculations the impact parameter b was put
equal to zero. We stress that in this work all calculations are
relative to central collisions (b = 0).

The calculations are obtained by solving the BNV transport
equation with the help of the Twingo code [8]. This approach
incorporates in a self-consistent way mean-field and two-
body collisions dynamics [9,10]. We remind that quantum
and thermal fluctuations are not explicitly included in our
approach. Some fluctuations are due to the finite number of
the test particles used in the simulations. To reduce these
fluctuations the results presented here are obtained from an
average over several events. For the mean field we have used
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a Skyrme-like parametrization (see Refs. [8,11]), which well
reproduces nuclear matter saturation properties.

At each time step we have extracted and analyzed from the
BNV calculation the dipole moment in �r space. The analyzed
time range extends from the “strong absorption configuration”1

to about 100 fm/c after the compound nucleus formation time
(tCN

∼= 120 fm/c at Einc = 4A MeV, tCN
∼= 80 fm/c at Einc =

8A MeV [2]).
We observe that at the strong absorption configuration time

(t = 0 in our time scale) a standard GDR distribution, in which
protons and neutrons of the whole system are separated, cannot
be present, but we have a molecular dipole distribution at this
instant. It is then useful to decompose the total dipole Dtot

r (t) as
a sum of molecular dipole Dmol

r (t) [12] and the correspondent
residual dipole Dres

r (t)2

Dtot
r (t) = Dmol

r (t) + Dres
r (t). (1)

We remember that we are dealing with the components
along the beam axis of the considered dipole moments.
Moreover, taking into account the above considerations and
the meaning of strong absorption configuration we can write

Dtot
r (0) ∼= Dmol

r (0). (2)

The three dipole moments just defined are plotted in Fig.1.
As we clearly see in both cases (4A and 8A MeV beam
energy) the first instants of the fusion path are dominated
by the molecular dipole moment, which is characterized by
a much lower frequency than the one of the residual dipole
[Dres

r (t)]. Moreover, although the molecular dipole decreases,
the residual one grows. The total dipole has the characteristic
behavior just observed in other works [2].

We now try to visualize the amplitude of the two dipole
components [Dmol

r (t),Dres
r (t)] versus the time for a depeer

understanding of their evolution. To this aim we operate some
fits of the two dipoles extracted from the BNV calculations.
We used the following functions:

Dmol
r (t) = A0 cos[tω(t) + φ]e−γ t/2 at 4A MeV

(3)
ω(t) = ω1 + ω2(1 − e−γωt )

Dmol
r (t) = A0 cos(ωt + φ)e−γ t/2 at 8A MeV (4)

for the molecular dipole, whereas we use

Dres
r (t) = A0 sin[tω(t)](e−λ1t − e−λ2t )

(5)
ω(t) = ω1 + ω2

e
t0−t

d0 + 1
.

for the residual dipole at both beam energies.

1When the dinuclear system passes the strong absorption config-
uration the decision for fusion is taken. For light incident nuclei
the strong absorption configuration is placed in the time scale just
after the touching point configuration. In the following, i.e., in the
calculation of the dipole amplitude at t = 0, we consider the two
points as equivalent.

2The residual dipole is the sum of the dipole moments of the two
reaction partners.

(a)

(b)

FIG. 1. BNV calculation of the three dipole moments discussed
in the text for the system 16O + 98Mo at the two beam energies: total
(full line), molecular (long-dashed line), and residual (dashed line).

The choice of function (4) for Dmol
r (t) is quite natural if we

observe Fig. 1(b). In this function the constant φ is introduced
to take into account the initial dipole velocity. At 4A MeV
it was necessary to introduce a time-dependent frequency3

[ω = ω(t) in Eq. (3)].
The residual dipole amplitude is modulated by the factor

(e−λ1t − e−λ2t ). We justify the introduction of this factor by
analogy with the decay law. As it is well known in the decay
phenomena this factor describes the evolution of the population
of a daughter substance due to the decay of its parent. However,
in our case, by analogy with the decay phenomena, we observe
a trasformation of a molecular (mother) dipole Dmol

r (t) into the
residual (daughter) one Dres

r (t).
The result of the fits are presented in Figs. 2(a) and

2(b). In these figures we have plotted the amplitude of
the molecular dipole (Amol

0 e−γ t/2) and of the residual one
[Ares

0 (e−λ1t − e−λ2t )] at the two incident beam energies. From
these plots we can confirm that the early stages (t = 0 −
∼60 fm/c) are dominated by the molecular dipole that rapidly
decreases and turns into a full GDR that we have called residual

3We note that because we have only a very small variation of the
frequency ω in Dmol

r (t) [or in Dres
r (t)] the result of the fit is independent

by the choice of the function ω = ω(t), provided that we use a simple
monotone function like ω = ω(t) in Eq. (3) or Eq. (5).
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(a)

(b)

FIG. 2. Amplitude of the molecular dipole (dashed line) and of
the residual one (full line) for the system 16O + 98Mo at the two beam
energies (see text).

dipole. The point at which the two curves cross defines the start
of the GDR behavior. This is about t ∼= 60 fm/c in both cases.

From the results presented up to now (Figs. 1 and 2) we
can extract some interesting information about the features of
the dynamical dipole. In fact we conclude that the collective
response effectively begins at t = 0 (strong absorption config-
uration), but the collective dynamics of the very early instants
are very different from the standard GDR mode that in our
description is represented by Dres

r (t). In the very early instants
the collective dynamics is more similar to a soft-GDR where
a fluid of 16O oscillates against a fluid of 98Mo. Moreover, the
characteristic frequency is obviously less than the one related
to the normal GDR mode [see Figs. 1(a) and 1(b)]. Because
Dres

r (t) represents the proper GDR mode we can rewrite the
total dipole as

Dtot
r (t) = Dmol

r (t) + DGDR
r (t). (6)

In other words the collective dipolar evolution is a “mixing”
of two modes: the molecular (soft mode) and the GDR (hard
mode) one.

The given description can be regarded as a soft-to-hard
mode transition in the dynamical dipole mode. In this scheme

we can identify the time corresponding to the start of the GDR
behavior as a transition time (ttr). Taking into account the
values of the compound nucleus formation times at the two
studied energies we can write

ttr ∼= tCN

2
∼= 60 fm/c at 4A MeV (7)

ttr ∼= 3

4
tCN

∼= 60 fm/c at 8A MeV. (8)

The existence of a transition from a soft mode to a hard one,
which are characterized by different values of the frequency,
suggests that the frequency of the total dipole Dtot

r (t) should
show a strong variation, changing from the lower value of the
molecular configuration to the higher value characterizing the
GDR standard mode. To extrapolate the trend of the frequency
ω(t) of the total dipole, we have fitted this dipole by using:

Dtot
r (t) = A0 cos[tω(t)]e−γ t/2, (9)

where we have parameterized the function ω(t) with the
following different functions:

ωa(t) = ω1 + ω2(1 − e−γωt )

ωb(t) = Sabt

(10)

ωc(t) = ω1 + ω2

e
t0−t

d0 + 1
.

We observe that the behavior of the function ωb(t) is similar to a
Fermi function ωc(t). In particular S represents the asymptotic
value of the frequency (S = ω∞), whereas the product S × a

represents its initial value [Sa = ωb(0)].
We obtained good fits with all three functions. But the best

fits were obtained with the function ωb(t). The results of these
fits are:

A0 = −8.967 γ = 0.02292 S = 0.04844

a = 0.07794 b = 0.9722

at 4A MeV, whereas we have, respectively,

A0 = −8.539 γ = 0.03292 S = 0.05745

a = 0.3066 b = 0.9697

at 8A MeV of incident beam energy.
In Figs. 3(a) and 3(b) the extracted frequency ω(t) of

the total dipole is plotted. The results are relative to the
fits obtained with the function ωa(t)[Fig. 3(a)] and with the
function ωb(t) [Fig. 3(b)].

As it was supposed, the frequency rapidly grows from
a value of about 1–2.5 MeV up to the asymptotic value
(10–11 MeV) characterizing the full GDR behavior. We
can identify the lower value [ω(0) ∼= 1–2.5 MeV] with the
frequency of the molecular dipole. We observe that at 4A MeV
of incident energy a net transition in frequency is evident
[see dashed line in Fig. 3(b)]. In this case the relation (7)
(ttr ∼= tCN/2) is verified if we identify this time with the point
where the frequency is halfway between the initial and the
asymptotic value. We stress that the best fits are those presented
in Fig. 3(b); so we can assume that the function ωb(t) describes
the behavior of the frequency.

In the next section we try to extract from the results
presented in Fig. 3 an “effective frequency transition time”
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(a)

(b)

FIG. 3. Frequency of the total dipole as a function of the time
by using ωa and ωb (see text) for the system 16O + 98Mo at Einc =
4A MeV (dashed line) and Einc = 8A MeV (full line).

that will be the starting point of a model for a quantitative
prediction of the γ -ray extra yield.

III. PRE-EQUILIBRIUM γ -RAY EMISSION PROBABILITY

In this section we try to perform a model for a quantitative
estimation of the pre-equilibrium γ -ray extra yield and its
evolution with the incident beam energy.

We start adopting a sharp cut-off approximation for the total
dipole frequency behavior. In particular we will write

ω(t) =
{

0 for t < t̃tr,

ω∞ for t � t̃tr,
(11)

where ω∞ is the asymptotic value of the frequency. Moreover,
the time t̃tr is an effective frequency transition time that we will
try to extrapolate from the plots of Fig. 3. Such sharp cut-off
approximation is justified within the classical electrodynamics.
In fact the very low frequency characterizing the molecular
phase ensures the negligibility of γ emission during this phase.

The time t̃tr can be derived by using a different method
depending on the function ω(t)[ωa(t) or ωb(t)] plotted in
Fig. 3. In the case of the function ωb(t) = Sabt

this instant can
be identified with the point where the frequency is halfway

between the initial and the asymptotic value. In the case of the
function ωa(t) we choose the time t̃tr so that the jump between
the initial and the asymptotic frequency is reduced to 1/e of
its initial value [which is �ω(0) = ω2].

We find that at 4A MeV the two methods just described,
depending on the two cases [ωa(t) or ωb(t)], give with good
approximation the same value for the time t̃tr, that is

t̃tr ∼= 60 fm/c Einc = 4A MeV. (12)

Also at Einc = 8A MeV the two method are fully consistent.
We find in this case

t̃tr ∼= 40 fm/c Einc = 8A MeV. (13)

Remembering the compound nucleus formation time at the
two incident beam energies, we can summarize the two results
(12) and (13) in the single expression

t̃tr ∼= tCN

2
. (14)

In other words, in the analyzed energy range, the effective
frequency transition time corresponds approximatively to half
the compound nucleus formation time. Moreover, we observe
from Fig. 1 that the effective frequency transition time of
Eq. (14) approximatively coincides with the first zero of the
total dipole Dtot

r (t) in both cases of Fig. 1.
It should not come as a surprise that t̃tr coincides with ttr

only at the incident energy 4A MeV. In fact there is no reason
that the two times ttr and t̃tr are exactly coincident, especially
at 8A MeV, when the transition becomes less abrupt [see full
line in Fig. 3(b)]. In this case t̃tr is only an “effective” transition
time in the context of our calculation. For these reasons we
base our model on the simple relation (14) that we assume
valid also at higher energies.

To evaluate the pre-equilibrium γ -ray emission probability
we start from the bremsstrahulung formula [3,13] (Eγ = h̄ω)

dP

dEγ

= 2e2

3πh̄c3Eγ

(
NZ

A

)2

|ẍ(ω)|2, (15)

which gives the total emission probability. In this classical
approach ẍ(ω) is the Fourier trasform of the acceleration ẍ(t)
associated with the distance between the center of mass of
protons (Z) and neutrons (N ) of the whole system [x(t) =
Rz(t) − Rn(t)]

ẍ(ω) =
∫ ∞

0
ẍ(t)eiωtdt. (16)

If we assume, coherently with the cut-off approximation
[Eqs. (11) and (14)] for the frequency, a full GDR behavior for
t � tCN/2, we can identify in the range of time (tCN/2,∞) the
distance function x(t) as a solution of the following Langevin-
type of equation

ẍ(t) + γ ẋ(t) + ω2
0x(t) = Fr (t)

Mcoll
; t � tCN/2, (17)

where Mcoll = NZ
A

m is the reduced mass of the neutron-proton
relative motion, γ is the dissipation constant related to the
width (γ = �↓/h̄), and ω0 ≡ ω∞ is the asymptotic proper
frequency. Finally Fr (t) is a fictitious random force that
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simulates the interaction of our GDR oscillator with the CN
heat bath.

Actually in the interval tCN/2 � t < tCN the thermal equi-
librium is not yet reached, so during this interval the features
of the random force Fr (t) are in general different from those
relative to the equilibrium case. But, as discussed later, we can
assume the interval tCN/2 � t < tCN, from a thermal point of
view, as a quasiequilibrium phase. Consequently, during this
phase the features of the random force Fr (t) can be assumed to
be very close to those of the equilibrium case. Thus during the
considered range (tCN/2 � t < ∞) we can refer with a good
approximation to the CN heat bath to determine Fr (t).

The possibility to assume a quasiequilibrium situation dur-
ing the pre-CN phase (tCN/2 � t < tCN) can be evidenced by
solving a very simple Boltzmann kinetic equation ∂g( �p)/∂t =
I [g] for the impulse microscopic distribution function g( �p).
In fact with a simple linearization of the collision integral I [g]
we find that the distribution function g( �p) goes to equilibrium
following the exponential factor (1 − e−t/tCN ). This typical
behavior confirms the validity of the above approximations.

Assuming small values for the spreading width (γ → 0)
we can write the solution of Eq. (17) as

x(t) ∼= x1(t) + xr (t); t � tCN/2, (18)

where

x1(t) = xtp sin(ω0t − ω0tCN/2 + ψ)e−γ t/2. (19)

The first term x1(t) of Eq. (18) is the solution of the
associated homogeneous equation. The second term xr (t) is
the stationary solution of Eq. (17). In the first term the factor
xtp is the amplitude of the function x1(t) at the touching point.

The phase ψ [Eq. (19)] has been introduced to reproduce the
boundary condition at t = tCN/2. We remember that Eqs. (18)
and (19) describe the motion for t � tCN/2. By using this
solution we suppose a full stability at the transition time
(tCN/2). In other words we assume for the random-type
solution xr (t) a stationary behavior for t � tCN/2. In effect,
because the random force Fr (t) starts to act just at t = tCN/2,
the function xr (t) will take some time before reaching stability.
Postponing the analysis of this delay effect we shall assume,
for the moment, the ideal conditions just outlined to simplify
the mathematical description.

Finally, taking into account the cut-off approximation in
Eq. (11), we shall assume as the basic solution of our model
the following distance function

x(t) =
{
x1(t) + xr (t) for t � tCN/2,

0 for t < tCN/2.
(20)

The Fourier trasform of the acceleration [Eq. (16)] will then
be written as

ẍ(ω) =
∫ ∞

tCN/2
[ẍ1(t) + ẍr (t)]eiωtdt. (21)

By suitably regulating procedure one can show that

〈|ẍ(ω)|2〉 = |ẍ1(ω)|2 + lim
T0→∞

ω4T0|α(ω)|2(F 2
r

)
ω
, (22)

where the average 〈·〉 refers to the statistical ensemble.
Moreveor α(ω) = 1/Mcoll(ω2

0 − ω2 − iγ ω) and (F 2
r )ω is the

spectral density of the mean-square fluctuations of the random
force (see also Ref. [3]). Taking into account the above
considerations on the possibility to assume a quasiequilibrium
behavior during the interval (tCN/2, tCN), we can apply the
fluctuation-dissipation theorem [14]. So we have (Eγ = h̄ω)

(
F 2

r

)
ω

= Mcoll ω�↓ coth

(
h̄ω

2T

)

∼= Mcoll ω�↓(2e−Eγ /T ), (23)

where the approximation (second equation) was obtained
excluding the zero-point motion and expanding the hyperbolic
function for h̄ω > T .

By inserting Eq. (22) into Eq. (15) we obtain the total γ -ray
emission probability, which will consist of two terms

dP

dEγ

= dP (1)

dEγ

+ dP (r)

dEγ

, (24)

The first term is the extra dipole contribution. It is the “direct”
dipole contribution due to the presence of a charge asymmetry
in the entrance channel. The top index (1) indicates that the
total probability dP (1)/dEγ is evaluated by introducing the
first term of Eq. (22) into Eq. (15). We will evaluate this term
later. The second term [dP (r)/dEγ ] is the background thermal
contribution. By introducing the second term of Eq. (22) into
Eq. (15) and by using Eq. (23) we evaluate dP (r)/dEγ as

dP (r)

dEγ

= lim
T0→∞

T0
dR(r)

dEγ

∼= lim
T0→∞

T0
1

h̄

E2
γ

(πh̄c)2

σabs

3
e−Eγ /T , (25)

where, by using the fluctuation-dissipation theorem [Eq. (23)],
we have evidenced the background thermal rate dR(r)/dEγ .

As we can see this contribution coincides with the standard
statistical formula for the GDR γ ray emitted by an equilibrate
nucleus. We stress that this coincidence in the interval
(tCN/2, tCN) is not casual but, as discussed before, is related
to the possibility of assuming in this interval the features
of the random force Fr (t) close to the equilibrium case
and consequently to the possibility of using the fluctuation-
dissipation theorem [Eq. (23)]. By using this theorem we
assume, as a first approximation, that these features coincide
with the CN ones and are independent of the time. In particular
the temperature T that appears in Eq. (25) represents the CN
temperature.

Let us now evaluate the first term of Eq. (24). To this end we
start to calculate ẍ1(ω) = ∫ ∞

tCN/2
ẍ1(t)eiωtdt . For this calculation

we use Eqs. (20) and (19) for x1(t). In Eq. (19) we can set to
zero the phase ψ . In fact, as observed above in Figs. (1), at both
incident energies the instant t = tCN/2 coincides with good
approximation with the first zero of the total dipole Dtot

r (t)
[and then x1(t)]. With this condition we have x1(tCN/2) = 0.
Then, because we have assumed above in Eq. (20) x1(t) = 0
for t < tCN/2, we have, after a double integration by parts:

ẍ1(ω) = −ẋ1(tCN/2)eiωtCN/2 − ω2x1(ω), (26)

where x1(ω) = ∫ ∞
tCN/2

x1(t)eiωtdt . At this point, taking into
account that:
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(i) in the region of the resonance [which is described by the
second term of Eq. (26)] the first term of the Eq. (26) is
negligible with respect the second one and

(ii) from the demonstration of Eq. (26) it follows that the first
term of this equation is related to the discontinuity in ẋ1(t)
at t = tCN/2

and taking also into account that in reality no discontinuity is
present in ẋ1(t), it is reasonable to cut the first term in Eq. (26).
Finally we have

ẍ1(ω) = −ω2x1(ω). (27)

We stress that this procedure is not an approximate evaluation
of ẍ1(ω) [Eq. (26) is in fact an exact result] but rather a
simplification in the calculation of the integral that allows us
to free ẍ1(ω) from those nonrealistic contributions originating
from the sharp cut-off approximation assumed before.

Finally, the first term of Eq. (24) can be obtained by
introducing |x1(ω)|2 (multiplied for ω4) into Eq. (15). We have

dP (1)

dEγ

= x2
0

e2

6π (h̄c)3

(
NZ

A

)2 [
S2

1 + S2
2

]
E3

γ , (28)

where x0 = xtpe
−γ

2
tCN

2 and

S1 = �↓/2

(Eγ − E0)2 + (�↓/2)2
− �↓/2

(Eγ + E0)2 + (�↓/2)2

(29)

S2 = (Eγ + E0)

(Eγ + E0)2 + (�↓/2)2
− (Eγ − E0)

(Eγ − E0)2 + (�↓/2)2

with Eγ = h̄ω and E0 = h̄ω0. We remind that the Fourier
transform x1(ω) has been calculated by starting from Eqs. (19)
and (20), with ψ = 0. Equation (28) represents the extra dipole
contribution. We introduce later the dependence from the
entrance channel conditions by parameterizing x0, �

↓ = h̄γ ,
and E0.

We can try to introduce the time in Eq. (24). In this way we
obtain the total time-dependent γ rate dR/dEγ (t) as the sum
of the direct contribute γ rate dR(1)/dEγ (t) and the statistical
one dR(r)/dEγ .

dR

dEγ

(t) = dR(1)

dEγ

(t) + dR(r)

dEγ

. (30)

We have extrapolated the constant term dR(r)/dEγ in
Eq. (25), whereas we can introduce the time in the first term
of Eq. (24) starting from the following simple semiclassical
considerations.

As it is well known from classical electrodynamics, the
instantaneous emitted power is proportional to the square of
the acceleration {[ẍ1(t)]2 in our case}. Then, starting from
Eq. (19) and supposing a very small dissipation constant γ , it
is very easy to verify that

[ẍ1(t)]2 ∝ sin2[ω0(t − tCN/2)]e−γ t . (31)

If we average on time the first factor we obtain < [ẍ1(t)]2 >∝
e−γ t . We obtain for the direct contribution γ rate

dR(1)

dEγ

(t) = γ e−γ (t−tCN/2) dP (1)

dEγ

; t � tCN/2, (32)

where the constant γ eγ tCN/2 has been introduced so that∫ ∞
tCN/2

dR(1)

dEγ
(t)dt = dP (1)

dEγ
. The complete expression for the total

γ rate can be written by adding to Eq. (32) the thermal
pre-equilibrium contribution [see Eq. (25)]. We have

dR

dEγ

(t) = dR(1)

dEγ

(t) + [1 − e−γ (t−tCN/2)]
1

h̄

E2
γ

(πh̄c)2
σabse

−Eγ /T .

(33)

We note the presence of a corrective factor to the second
term (the statistical one). In particular we obtain this term
by multiplying dR(r)/dEγ in Eq. (25) by the factor 3[1 −
e−γ (t−tCN/2)]; where the factor 3 was inserted taking into
account that the statistical-type contribution acts along all
the three axes, whereas the direct contribution dR(1)/dEγ (t)
acts only along the beam axis. Moreover, the factor [1 −
e−γ (t−tCN/2)] takes into account the delay effect due to the start
time of the fictitious random force Fr (t) that, with a good
approximation, we have fixed at t = tCN/2. The introduction
of this delay factor will be clarified in the next section
where we will try to rewrite Eq. (33) following a full GDR
phonon picture. In particular, it will be shown that it is
possible to extend the phonon model [1] also at the pre-CN
phase (tCN/2 � t < tCN). Then, by comparing Eq. (33) with
the correspondent extended phonon-model equation, we will
justify the introduction of this factor.

We observe that formula (33) consists of only two terms
(the direct and the statistical term) and only in the latter the
temperature T is present. This structure reflects Eq. (22). In
fact from the deduction of this equation it follows that no
interference term is present. The two terms in Eq. (33) are due
to different physical mechanisms. Whereas the statistical term,
due to the fluctuating dipolar excitation, is a typical incoherent
contribution, the direct term is due to a coherent oscillation [4]
of dynamical nature that is independent by the temperature
T . For the same reasons the first term is characterized by a
resonant function (S2

1 + S2
2 ) that is quite different from the

standard Lorentzian shape of the second term.
The availability of a time-dependent formula [Eq. (33)]

represents an interesting opportunity for future developments,
mainly because of the possibility of inserting this formula
into a Monte Carlo cascade code to perform time-dependent
simulations [2,15,16]. In fact only through these techniques it
is possible to take into account in a correct and easy way many
effects that Eq. (28) does not include. Some of them are (i)
possible small variations of �↓ and E0 as a function of time,
(ii) the GDR escape width �↑, (iii) the temporal decrease of
the ratio NZ/A due to the strong preequilibrium emission for
high incident energy, and (iv) the γ -fission competition in the
case of heavy colliding nuclei.

To obtain the extra yield contribution probability as a
function of the incident beam energy, the formula (32) has
been numerically integrated over Eγ and analytically over
the time, so the extra yield contribution can be divided
into two parts [the pre-CN contribution (tCN/2 � t < tCN)
and the CN one (t � tCN)], which are characterized by a
different parametrization as shown in the following. The
calculations were performed for the systems 16O + 98Mo and
40Ca + 100Mo. Note that these systems were experimentally
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(a)

(b)

FIG. 4. Extra photon multiplicity as a function of the incident
beam energy for the two studied systems (see text): total extra photon
multiplicity (full line), and CN extra photon multiplicity (dashed
line).

studied in Refs. [5,6]. The results of our calculations are plotted
in Figs. 4(a) and 4(b).

In Fig. 4(a) the extra yield contribution (full line) versus the
incident beam energy is plotted for the system 16O + 98Mo.
The dashed line shows the contribution relative to the instants
following the compound nucleus formation time (t � tCN/2).
In Fig. 4(b) the same probabilities are evaluated for the system
40Ca + 100Mo.

We note a general agreement of our total extra yield
contribution (full lines) with the same quantity evaluated in
Ref. [3]. In particular we have a very nice agreement in
the 16O + 98Mo case. Moreover, the typical “rise and fall”
behavior, which was observed in Ref. [3], is well reproduced
in both cases. These comparisons confirm the accurancy of
our model [Eqs. (28) and (33)], taking into account that our
formula [Eq. (28)] is based on the same “bremsstrahlung”
approach used in Ref. [3].

In Fig. 5 we show the ratio between total pre-equilibrium
and total statistical γ multiplicity as a function of the incident
beam energy for the two studied systems. We evaluate the total
statistical GDR contribution by using a very simple cascade
model that takes into account only γ and neutron channels. We
observe as in this case the “rise and fall” behavior is hidden by

FIG. 5. Ratio of total pre-eqilibrium to total statistical GDR γ -ray
emission for the two studied systems (see text): 16O + 98Mo (full line);
40Ca + 100Mo (dashed line). The full circle, relative to the reaction
40Ca + 100Mo, represents the experimental data.

the statistical contribution of the daughter nuclei. In the case
of Ca + Mo reaction at 4A MeV we can compare our results
with the experimental data [5]. The agreement is quite good.

Let us now discuss the parametrization used for x0, �
↓ =

h̄γ and the centroid E0 energy in Eqs. (28) and (33).
The spreading width �↓ has been parametrized by using

�
↓
E∗ = 4.8 + 0.0026∗(E∗)1.6 (empirical formula [17] used for

the systems close to the Sn∗). In particular for t � tCN we
calculate �

↓
E∗ with the compound nucleus excitation energy

E∗ = Ecm + Q, whereas for tCN/2 � t < tCN we use 〈E∗〉 =∫ tCN

tCN/2 E∗(t)dt ∼= 0.6E∗4. In this way we roughly take into
account the influence of the quasiequilibrium configuration
on the �↓ during the pre-CN phase.

The amplitude x0 = xtpe
−γ

2
tCN

2 has been computed by using
γ = �

↓
〈E∗〉/h̄; and the touching point distance

xtp = ZpZt

NZ
|Np

Zp

− Nt

Zt

|(Rp + Rt );

(34)
Rp,t = r0A

1/3
p,t ; r0 = 1.2 fm.

Moreover, the compound nucleus formation time (tCN) is
parametrized as a function of the incident beam energy per
nucleon by using

tCN = 581.6

Einc/Ap

. (35)

This expression was obtained by fitting the compound nucleus
formation time values extrapolated in Ref. [2] for the system
16O + 98Mo with the functional behavior tCN ∝ 1

Ecm/Ap
(see

4We use E∗(t) = E∗(1 − e−2t/tCN ). This kind of behavior can be
justified by solving a Boltzmann kinetic equation for the impulse
distribution function gp,t ( �p) of the projectile (target) nucleons, after
a simple linearization on the collision integral.
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FIG. 6. Total extra photon multiplicity as a function of the
incident beam energy for the system 16O + 98Mo; by assuming that
the transition time occures at different values.

Ref. [18]). Finally, for the centroid energy E0 we use
the standard well-known expression E0 = 31.2 × A−1/3 +
20.6 × A−1/6 MeV.

Let us focus now our attention on the origin of the “rise
and fall” behavior. For this reason in Fig. 6 we have plotted
the total extra yield probability for the system 16O + 98Mo by
supposing that the transition time t̃tr occurs at the following
different values t̃tr = tCN/n; n = 2, 3, . . . 8, . . . ∞. As you can
see the typical “rise and fall” behavior disappear when n →
∞. In other words, if we suppose that the collective response
(in the sense of proper GDR mode) occurs instantaneously,
just after the strong absorption configuration (that is, when
t̃tr → 0), the total extra yield radiation probability moves away
from its natural “rise and fall” trend, acquiring very large
values. This shows that the typical behavior in question is
strictly connected to the transition in frequency that is due
to the soft-to-hard mode transition discussed in the previous
section.

In particular we can say that this behavior is due to the
interplay of three effects:

(i) Following classical electrodynamics the very low fre-
quency of the soft dipole ensures the negligibility of γ

emission during the first tCN/2 fm/c.
(ii) The compound nucleus formation time strongly de-

creases when the beam incident energy grows.
(iii) The fast increase of the spreading width �↓ = h̄γ with

the beam incident energy.

IV. THE EXTENDED PHONON MODEL

The starting point of the model presented in the previous
section consists in the sharp cut-off approximation [Eqs. (11)
and (14)]. In particular, we assume a full GDR behavior for
t � tCN/2, neglecting in this range of time the effects of the
molecular component. This approximation is based on the soft-
to-hard mode transition studied in Sec. I. In fact, the transition

generates a strong attenuation of the molecular component for
t � t̃tr = tCN/2. These considerations suggest the possibility of
extending the GDR phonon model [1] to include the pre-CN
phase (tCN/2, tCN).

As is well known, the original GDR phonon model,
developed by Chomaz et al. [1], predicts the extra yield γ

rays due to the CN phase (t � tCN). It consists in a simple
model of a GDR phonon gas interacting with the CN. In this
approach the time-dependent γ rate during the CN phase is
given by

dR

dEγ

(t) = nCNe−γ (t−tCN)γγ + [1 − e−γ (t−tCN)]
λ

γ
γγ , (36)

where nCN is the mean number of excited GDR phonons at the
time when the CN is formed, γ = �↓/h̄ and λ = �feed/h̄ is the
unit time probability to have some feeding from the CN heat
bath. Finally, γγ is the partial width for photon emission [1].
We note that Eq. (36) works in the range of time between the
CN formation time [t = tCN in Eq. (36)] up to the decay of the
CN itself.

As just discussed, the possibility to preserve the standard
GDR scheme during the pre-CN phase permits us to extend
the quantum picture also during this phase, obviously by
introducing some approximations. We note that also in terms
of the Brink-Axel hypothesis [19] this extension is acceptable.

Within the interval (tCN/2, tCN/2 + τev) we can directly
write for the extended phonon model

dR

dEγ

(t) = n0e
−γ (t−tCN/2)γγ + [1 − e−γ (t−tCN/2)]

λ

γ
γγ , (37)

where now n0 is the mean number of GDR phonons at tCN/2.
We observe that the ratio λ

γ
in Eq. (37) should be in effect

time dependent during the pre-CN phase (tCN/2, tCN), but in
this equation this ratio coincides with its equilibrium value:
λ/γ ∼= 3ρ(E∗ − EGDR)/ρ(E∗) ≈ 3exp(−EGDR/T ). This is
the main approximation introduced in the extension of the
phonon model. We stress that this approximation has the same
meaning of the approximation done in the pre-equilibrium
model of Sec. III about the features of the random force Fr (t).

In Eqs. (36) and (37) the partial width γγ is given by (see
also Ref. [2])

γγ = 1

h̄

ρ(E∗ − Eγ )

ρ(E∗ − EGDR)

E2
γ

(πh̄c)2

σabs

3

∼= 1

h̄
e

EGDR−Eγ

T

E2
γ

(πh̄c)2

σabs

3
(38)

As discussed in Sec. III the coincidence of the second term of
Eq. (37) with the second term of Eq. (33) justifies the validity
of the introduction of the delay factor [1 − e−γ (t−tCN/2)] in
Eq. (33).

By comparing the model of Sec. III [Eq. (33)] with the
extended phonon model [Eq. (37)] we note that in the last
one, unlike that in our pre-equilibrium model (Sec. III), the
temperature T and the Lorentzian function are present in both
terms of the Eq. (37). This is due to the fact that the phonon
model (and its extended version) neglects the coherent effects
and the dynamical nature of the pre-equilibrium contribution
(see Sec. III). Therefore, for a correct use of the phonon model
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it is necessary to suppress the factor exp[(EGDR − Eγ )/T ] in
the evaluation of the partial decay width γγ [Eq. (38)] relative
to the first term. One can infer this conclusion by comparing the
two models. In fact, starting from our pre-equilibrium model
it is possible to recover the extended phonon model with the
help of some approximations. In conclusion the comparison
of the two models gives hints on the operative use of the
phonon model, clarifying how the partial decay width should
be calculated in this model.

V. SUMMARY AND CONCLUSIONS

This work focuses on the role played by the dynamic
features of the dipole mode on the γ -emitting properties of
a compound nuclear system produced in a charge asymmetric
fusion entrance channel.

By using the microscopic transport BNV approach we have
analyzed the dipole evolution in the reaction 16O + 98Mo,
which presents a charge asymmetry in the entrance channel.
The BNV analysis shows how in effect the dynamical
dipole mode is a mixing of two modes: the molecular (soft
mode) and the GDR (hard mode). Moreover, we observe a
typical transition between the two modes that explains the
main properties of the dynamical dipole. The correspondent
transition time occurs at about half of the compound nucleus
formation time (t ≈ tCN/2).

Roughly speaking this instant divides the time scale in two
stages. The very early stage (t < tCN/2) is dominated by the
molecular mode, which is more similar to a soft GDR where
a fluid of 16O oscillates against a fluid of 98Mo. So t = tCN/2

can be approximatively considered coincident with the instant
correspondent to the start of the well-known GDR mode.

The molecular mode is characterized by a frequency lower
than the GDR mode one. Consequently, a transition trend is
also observed in the oscillation frequency of the total dipole,
characterized by the same transition time (t ∼= tCN/2).

The observed soft-to-hard mode transition permits us to
clarify the γ -emitting properties characterizing this kind of
reaction. In particular, as widely discussed at the end of
Sec. III, the transition clarifies the origin of the rise and fall
behavior of the extra γ yield versus the incident beam energy.

In this work we have developed a new model based on the
classic bremsstrahlung approach to compute the total γ -ray
emission probability. The model nicely reproduces the rise
and fall behavior.

The formalism obtained within our model could be very
useful for future calculations related to the dynamical dipole
mode. In particular, by inserting the obtained time-dependent
formula [Eqs. (28)–(33)] into Monte Carlo statistical code
[2,15,16] we will have a better comparison with experimental
data because of the possibility of taking into account the
competition of the γ emission with different pre-equilibrium
effects. By using these Monte Carlo procedures our model
could be very useful in the study of cooling effects due to the
strong pre-equilibrium γ emission in the reactions leading to
superheavy elements.
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