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Effects of anharmonic vibration on large-angle quasi-elastic scattering of 16O + 144Sm
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We study the effects of double octupole and quadrupole phonon excitations in the 144Sm nucleus on quasi-elastic
16O + 144Sm scattering at backward angles. To this end, we use the coupled-channels framework, taking into
account explicitly the anharmonicities of the vibrations. We use the same coupling scheme as that previously
employed to explain the experimental data of sub-barrier fusion cross sections for the same system. We show
that the experimental data for the quasi-elastic cross sections are well reproduced in this way, although the
quasi-elastic barrier distribution has a distinct high energy peak which is somewhat smeared in the experimental
barrier distribution. We also discuss the effects of proton transfer on the quasi-elastic barrier distribution. Our
study indicates that the fusion and quasi-elastic barrier distributions for this system cannot be accounted for
simultaneously with the standard coupled-channels approach.
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I. INTRODUCTION

The effect of channel coupling, that is, couplings of the
relative motion between the colliding nuclei to their intrinsic
motions as well as transfer reactions, have been well known in
heavy-ion collisions around the Coulomb barrier. In heavy-ion
fusion reactions at sub-barrier energies, the channel coupling
effects enhance considerably the fusion cross sections as
compared to the prediction of potential model calculation
[1–3]. It has been well established by now that the channel
coupling gives rise to a distribution of potential barriers [4–6].
Based on this idea, a method was proposed to extract barrier
distributions directly from experimental fusion excitation
functions by taking the second derivative of the product of
center mass energy, E, and the fusion cross section, σfus(E),
with respect to E [7]. Coupled-channels calculations as well
as high precision fusion data have shown that the fusion
barrier distributions, Dfus = d2[Eσfus(E)]/dE2, is sensitive
to the details of channel couplings, while the sensitivity
is much more difficult to see in the fusion cross sections
[3,8,9].

Similar information as the fusion cross section can also be
obtained from the quasi-elastic scattering (a sum of elastic,
inelastic, and transfer processes) at backward angles [10].
Timmers et al. measured the quasi-elastic scattering cross
section for several systems [11], for which the fusion barrier
distribution had already been extracted [9]. They proposed
that the corresponding barrier distribution can be extracted by
taking the first derivative of the ratio of the quasi-elastic to
the Rutherford cross sections, dσqel/dσR , with respect to the
energy, E, i.e., Dqel = −d(dσqel/dσR)/dE. The properties of
the quasi-elastic barrier distributions have been studied in more
details in Ref. [12]. These studies show that the quasi-elastic
barrier distribution is similar to the fusion barrier distribution,
although the former is somewhat smeared and less sensitive to
the nuclear structure effects.
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One of the systems which Timmers et al. measured is
16O + 144Sm [11]. Figure 1 shows the comparison of the
experimental barrier distribution extracted from fusion (the
filled circles) and quasi-elastic (the open squares) processes.
In order to compare the two barrier distributions, we scale
them so that the energy integral between Ec.m. = 56 and
70 MeV is unity. For energies below 62 MeV, the two
barrier distributions resemble each other. However, at higher
energies, they behave rather differently, although the overall
width of the distributions is similar to each other. That is,
the quasi-elastic barrier distribution decreases monotonically
as a function of energy while the fusion barrier distribution
exhibits a distinct peak at energy around Ec.m. = 65 MeV. So
far, no theoretical calculations have succeeded in explaining
this difference. The coupled-channels calculations of Timmers
et al. [11] with the computer code ECIS [13], which took into
account the one quadrupole, 2+, and the one octupole, 3−,
phonon excitations of 144Sm, were unable to reproduce both
the experimental data of the quasi-elastic cross sections and the
quasi-elastic barrier distribution. The ECIS results for the ratio
of quasi-elastic scattering to the Rutherford cross sections fall
off more steeply than the experimental data, while the obtained
barrier distribution has a secondary peak similar to the fusion
barrier distribution. They argued that this failure is largely due
to the residual excitations not included in the ECIS calculations,
which they postulated to be transfer channels. Esbensen and
Buck have also performed the coupled-channels calculations
for this system taking into account the second order couplings
[14]. However, they did not analyze the quasi-elastic barrier
distribution.

These previous coupled-channels calculations took into
account only the single phonon excitations in 144Sm. On the
other hand, Hagino et al. [15] have shown that the double
anharmonic quadrupole and octupole phonon excitations play
an important role in reproducing the experimental fusion
barrier distribution for this system. However, its effect on
the quasi-elastic scattering has not yet been clarified so far.
The aim of this paper is then to study weather the double
anharmonic vibrational excitations of the 144Sm nucleus can
explain the difference in the shape of barrier distribution
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FIG. 1. Comparison between the experimental fusion (the filled
circles) and quasi-elastic (the open squares) barrier distributions for
the 16O + 144Sm reaction. They are normalized to unit area in the
energy interval between Ec.m. = 56 and 70 MeV. The experimental
data are taken from Refs. [9] and [11].

between fusion and quasi-elastic. The role of proton transfer
reactions in this system is also discussed.

The paper is organized as follows. In the next section, we
briefly explain the coupled-channels formalism which takes
into account the anharmonicities of the vibrational excitations.
We present the results of our calculations in Sec. III. We then
summarize the paper in Sec. IV.

II. COUPLED-CHANNELS FORMALISM FOR
ANHARMONIC VIBRATION

In this section, we briefly describe the coupled-channels
formalism which includes the effects of anharmonic

excitations of the vibrational states. We follow the procedure
of Refs. [15,16], which was successfully applied to describe
the experimental fusion cross sections as well as the fusion
barrier distributions of 16O + 144,148Sm systems. The total
Hamiltonian of the system is assumed to be

H = − h̄2

2µ
∇2 + Hvib + Vcoup(r, ξ ), (1)

where r is the coordinate of the relative motion between the
target and the projectile nuclei, µ is the reduced mass and ξ

represents the internal vibrational degrees of freedom of the
target nucleus. Hvib describes the vibrational spectra in the
target nucleus.

The coupling between the relative motion and the intrinsic
motion of the target nucleus is described by the coupling
potential Vcoup in Eq. (1), which consists of the Coulomb
and nuclear parts. Using the no-Coriolis (isocentrifugal)
approximation [2,17], they are given as

Vcoup(r, ξ ) = VC(r, ξ ) + VN (r, ξ ), (2)

VC(r, ξ ) = ZP ZT e2

r

(
1 + 3R2

T

5r2

Ô20√
4π

+ 3R3
T

7r3

Ô30√
4π

)
, (3)

VN (r, ξ ) = −V0[
1 + exp

(
[r−R0−RT (Ô20+Ô30)/

√
4π]

a

)] . (4)

Here Ô20 and Ô30 are the excitation operators for the
quadrupole and octupole vibrations, respectively, and RT is the
target radius. The effect of anharmonicities for the quadrupole
and octupole vibrations are taken into account based
on the U(5) limit of the interacting boson model (IBM). The
matrix elements of the operator Ô = Ô20 + Ô30 in Eqs. (3)
and (4) then read [15,16,18]

Oij =




0 β2 β3 0 0 0
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(5)

for six low-lying states (i, j = 1–6), where |1〉 = |0+〉, |2〉 =
|2+〉, |3〉 = |3−〉, |4〉 = |2+ ⊗ 2+〉, |5〉 = |2+ ⊗ 3−〉, and |6〉 =
|3− ⊗ 3−〉. In Eq. (5), β2 and β3 are the quadrupole and the
octupole deformation parameters, respectively, which can be
estimated from the electric transition probabilities. The scaling
of coupling strength with

√
N,N being the number of boson

in the system, is introduced to ensure the equivalence between
the IBM and the geometric model in the large N limit [18].
When all the χ parameters in Eq. (5) are set to be zero then the
quadrupole moment of all the states vanishes, and one obtains
the harmonics limit in the large N limit. Nonzero values of
χ generate the quadrupole moments, and, together with finite

boson number, they are responsible for the anharmonicities in
the vibrational excitations.

III. 16O + 144SM REACTION: COMPARISON WITH
EXPERIMENTAL DATA

We now apply the formalism to analyze the quasi-elastic
scattering data of 16O + 144Sm [11]. The calculations are
performed with a version [19] of the coupled-channels code
CCFULL [17] once the coupling matrix elements are determined
from Eq. (5). Notice that the isocentrifugal approximation
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employed in this code works well for quasi-elastic scattering
at backward angles [12]. In the code, the regular boundary
condition is imposed at the origin instead of the incoming
wave boundary condition.

A. Effect of anharmonicities of nuclear vibrations

In the calculations presented below, we include only the
excitations in the 144Sm nucleus whilst the excitations of the
16O is not explicitly included. For sub-barrier fusion reactions,
the latter has been shown to lead only to a shift of the fusion
barrier distribution in energy without significantly altering its
shape [20], and hence can be incorporated in the choice of the
bare potential. This is a general feature for reactions with the
16O as a projectile. We have confirmed that it is the case also for
the quasi-elastic barrier distribution. That is, although the 16O
excitations contribute to the absolute value of quasi-elastic
cross sections themselves, the shape of quasi-elastic barrier
distribution is not altered much. Since we are interested mainly
in the difference of the shape between the fusion and the quasi-
elastic barrier distributions, we simply do not include the 16O
excitations and instead adjust the internuclear potential.

For simplicity, we take the eigenvalues of the Hvib in
Eq. (1) to be ε = n2ε2 + n3ε3, where n2 and n3 are the
number of quadrupole and octupole phonons, respectively.
ε2 and ε3 are the excitation energies of the quadrupole and
the octupole phonon states of the target nucleus, i.e., ε2 =
1.61 MeV and ε3 = 1.81 MeV, respectively. Notice that we
assume the harmonic spectra for the phonon excitations. It has
been shown in Refs. [15,16] that the effect of anharmonicity
with respect to the excitation energy on the barrier distribution
is insignificant once the energy of the single phonon states is
fixed. The radius and diffuseness parameters of the real part
of the nuclear potential are taken to be the same as those in
Ref. [15], i.e., r0 = 1.1 fm and a = 0.75 fm, respectively,
while the depth parameter is slightly adjusted in order to
reproduce the experimental quasi-elastic cross sections. The
optimum value is obtained as V0 = 112 MeV. As usually done,
we use a short-range imaginary potential with W0 = 30 MeV,
rw = 1.0 fm, and aw = 0.3 fm to simulate the compound
nucleus formation. Finally, the target radius is taken to be
RT = 1.06A

1/3
T . We use the same values for the parameters

β2, β3, N, χ2, χ2f , and χ3 as in Ref. [15]. All the calculations
presented below are performed at θc.m. = 170◦.

The results of the coupled-channels calculations are com-
pared with the experimental data in Fig. 2. Figures 2(a) and
2(b) show the ratio of the quasi-elastic to the Rutherford cross
sections, dσqel/dσR , and the quasi-elastic barrier distributions,
Dqel, respectively. The dotted line denotes the result in the
harmonic limit, where coupling to the quadrupole and octupole
vibrations in 144Sm are truncated at the single phonon level,
i.e., only the 2+ and 3− states are taken into account and all
the χ parameters in Eq. (5) are set to be zero. As we see
this calculation fails to reproduce the experimental data. The
obtained quasi-elastic cross sections, dσqel/dσR , drop much
faster than the experimental data at high energies. Also the
quasi-elastic barrier distribution, Dqel, exhibits a distinct peak
at energy around Ec.m. = 65 MeV. These results are similar
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FIG. 2. Comparison of the experimental data with the coupled-
channels calculations for 16O + 144Sm reaction for (a) the ratio of
quasi-elastic to the Rutherford cross sections and for (b) quasi-elastic
barrier distribution. The dotted and dashed lines are obtained by
including up to the single and the double phonon excitations in
the harmonic limit, respectively. The solid line is the result of the
coupled-channels calculations with the double anharmonic phonon
excitations. The experimental data are taken from Ref. [11].

to the one achieved in Ref. [11]. The dashed line represents
the result when the coupling to the quadrupole and octupole
vibrations of 144Sm is truncated at the double phonon states
in the harmonic limit. In this case, we take into account
the couplings to the 2+, 3−, 2+ ⊗ 2+, 2+ ⊗ 3− and 3− ⊗ 3−
states. It is obvious that the results are inconsistent with the
experimental data. To see the effect of anharmonicities of
the vibrations, we then perform the same calculations using
the coupling matrix elements given in Eq. (5). The resultant
quasi-elastic excitation function and the quasi-elastic barrier
distribution are shown by the solid line. The calculated ratio
of quasi-elastic to Rutherford cross sections quite well agree
with the experimental data. This suggests that the inclusion of
anharmonic effects in the vibrational motions is important for
the description of the quasi-elastic excitation functions for the
16O + 144Sm reaction. On the other hand, the result for Dqel is
still similar to the barrier distribution obtained by assuming the
harmonic limit truncated at the one phonon level (the dotted
line), although the former has a more smooth peak.

Figure 3 shows the decomposition of the quasi-elastic cross
sections to each channel for the calculation with the coupling to
the double anharmonic vibrations (the solid line in Fig. 2). The
fraction of cross section for each channel i in the quasi-elastic
cross section, dσi/dσqel = dσi/[

∑
j dσj ], is also shown in

Fig. 4. The open squares are the experimental elastic cross
section while the open circles are the measured excitation
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FIG. 3. (a) Comparison of the measured pure elastic (the open
squares), the Z = 8 (− el) (the open circles) and the residual (the
filled circles) components of dσqel/dσR with the coupled-channels
calculations for 16O + 144Sm reaction. The Z = 8 (− el) component
is defined as the Z = 8 yields subtracted the elastic component, while
the residual component the sum of Z = 6 and 7 yields. The dashed
line is the result of elastic scattering, while the dotted line shows the
inelastic cross sections for the single 2+ and 3− phonon states.
The solid line is the result of the sum of inelastic cross sections
for the double phonon states in 144Sm. (b) The same as (a) but for the
pure elastic and the total inelastic cross sections. The experimental
data are taken from Ref. [11].

function for Z = 8 subtracted the contribution from the elastic
channel. The latter contains not only the neutron transfer
components but also the contributions of inelastic cross
sections. The filled circles are the experimental residual (a sum
of Z = 7 and Z = 6 yields) components of the dσqel/dσR . The
dashed line shows results of the coupled-channels calculations
for the elastic channel. It reproduces reasonably well the
experimental data for elastic scattering. The Z = 8 component
of quasi-elastic cross sections is almost exhausted by the single
phonon excitations, that is, the combined 2+ and 3− channels,
as shown by the dotted-line in Figs. 3(a) and 4(a). The cross
sections for the double phonon channels are given by the solid
line in Figs. 3(a) and 4(a). These are important at energies
higher than around 66 MeV. If the components of all the
inelastic channels included in the calculation are summed up,
we obtain the dot-dashed line in Figs. 3(b) and 4(b).

B. Effects of proton transfer reactions

In the previous subsection we have shown that the ex-
perimental quasi-elastic cross sections can be well explained
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FIG. 4. Same as Fig. 3, but for the fraction of cross section for
each channel in the quasi-elastic cross sections.

within the present coupled-channels calculations, which takes
into account only the inelastic excitations in 144Sm. However,
the shape of quasi-elastic barrier distribution is still somewhat
inconsistent with the experimental data. As one sees in
Figs. 3(a) and 4(a), the experimental data indicate that the
charged particle transfer reactions may also play some role
(see the filled circles in the figures). In this subsection, we
therefore investigate the effects of proton transfer reactions, in
addition to the anharmonic double phonon excitations. Notice
that the effect of the neutron transfer channels is expected to
be small, since the Q-values are large and negative for all the
channels, e.g., Q = −6.37 MeV for the one-neutron pickup
channel.

To investigate the effects of the proton transfer, we use the
macroscopic form factor for the transfer coupling [21],

Ftrans(r) = Ftr
dV (r)

dr
, (6)

where Ftr is the coupling strength and V (r) is the real part
of the nuclear potential. In this paper, we consider a single
proton transfer as well as the direct proton pair transfer
reactions, although the experimental Z = 6 component may
also include the α-particle transfer channel. The corresponding
optimum Q-values for the transfer between the ground
states are Qopt(1p) = −1.53 MeV and Qopt(2p) = 1.18 MeV,
respectively. The coupling strength Ftr in Eq. (6) is determined
so that the experimental transfer cross sections for each Z = 6
and Z = 7 components [22] are reproduced. The optimum
values for Ftr are found to be 0.12 and 0.16 fm for the one and
the two proton transfer channels, respectively.
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FIG. 5. Effect of proton transfers on the quasi-elastic scattering
cross sections (the upper panel) and on the quasi-elastic barrier
distribution (the lower panel) for 16O + 144Sm reaction. The solid line
is the result of the coupled-channels calculations including the effect
of double anharmonic vibrations only. The dashed line is obtained by
including, in addition, the couplings to the proton transfer channels.
The experimental data are taken from Ref. [11].

The effects of proton transfer reactions on the quasi-elastic
scattering is illustrated in Fig. 5. The solid line represents the
results of the calculations including only the coupling to the
double anharmonic vibrations. The dashed line is obtained
by taking the coupling to the proton transfer channels into
account, in addition to the anharmonic vibration channels. The
upper panel shows the quasi-elastic cross sections, while the
lower panel the quasi-elastic barrier distribution. We observe
from Fig. 5(a) that the inclusion of proton transfer reactions
overestimates the experimental dσqel/dσR at energies between
62 and 68 MeV. Also the higher peak in the quasi-elastic
barrier distribution becomes more distinct and thus worsens as
compared to the calculation without the transfer channels.

For the 1p transfer channel, the diffuseness parameter a in
Eq. (6) does not have to be identical to that in the bare potential,
V (r), since the former is related to the single particle energy
of the transferred proton. However, we have found that our
conclusion concerning the effect of the proton transfers on the
quasi-elastic barrier distribution remains the same even if we
vary the value of the diffuseness parameter within the range of
0.5 � a � 1.0 fm.

Figure 6 shows the contribution of each channel to the quasi-
elastic cross sections. The fraction of each contribution is also
shown in Fig. 7. The open squares are the experimental elastic
cross sections, while the filled circles and the open triangles
are the experimental proton transfer cross sections and the sum
of total inelastic and transfer cross sections, respectively. The
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FIG. 6. Contribution of quasi-elastic cross sections from several
channels. The solid and dashed line are the results of the coupled-
channels calculations for the proton transfer and the elastic cross
sections, respectively. The dotted line denotes the sum of total
inelastic and proton transfer cross sections. The corresponding
experimental data are shown by the filled circles, the open squares,
and the open triangles, respectively, which are taken from Ref. [11].

coupled-channels calculations for the elastic cross sections
are shown by the dashed line. Although it reproduces the
experimental data below around 62 MeV, it overestimates the
data at higher energies. The sum of the contributions from
the total inelastic and the proton transfer channels is denoted
by the dotted line, which reproduces the experimental data
reasonably well, although the proton transfer cross sections
themselves are underestimated at energies larger than 60 MeV
(the solid line). The overestimation of the quasi-elastic cross
section indicated in Fig. 5(a) is therefore largely due to the
contribution of elastic channel.

The coupling strengths for the anharmonic double phonon
excitations have been determined by fitting to the sub-barrier
fusion data with the coupled-channels approach by taking
into account only the inelastic excitations, leaving out the
transfer channels. Therefore, the coupling strengths for the
inelastic channels thus obtained may mock up the transfer
effects, and the overestimation of the cross sections shown in
Fig. 5(a) may suggest that it is the case. Nevertheless, from
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FIG. 7. Same as Fig. 6, but for the fraction in the quasi-elastic
cross sections.
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FIG. 8. Comparison of the theoretical fusion barrier distribution
(dashed line) with the quasi-elastic barrier distribution (solid line)
obtained with different coupling schemes for 16O + 144Sm system.
Both functions are normalized to unit area in energy interval between
54 and 70 MeV. (a) The results of the coupling to one phonon state
of quadrupole and octupole excitations of 144Sm in the harmonic
oscillator limit. (b) The same as (a) but for the coupling up to
double phonon states. (c) The result when the coupling to anharmonic
vibration of double quadrupole and octupole excitations in 144Sm is
taken into account.

this study, we can conclude that the inclusion of the proton
transfer reactions in the coupled-channels calculations does
not explain the difference in the shape between the fusion and
quasi-elastic barrier distributions for the 16O + 144Sm system.

C. Discussions

We have argued that the presence of high energy shoulder,
instead of high energy peak, in the quasi-elastic barrier
distribution for the scattering between 16O and 144Sm nuclei
cannot be accounted for within the present coupled-channels
calculations, which take into account the anharmonic double
phonon excitations in 144Sm as well as the proton transfer

channels. Figure 8 compares the calculated fusion barrier
distribution Dfus and the corresponding quasi-elastic barrier
distribution Dqel for several coupling schemes as shown in
Fig. 2 in the coupled-channels calculations. The solid line
shows the quasi-elastic barrier distribution while the dashed
line is for the fusion barrier distribution. They are normalized
so that the energy integral between 54 and 70 MeV is unity.
Figures 8(a) and 8(b) are obtained by including the one phonon
and the two phonon excitations in 144Sm in the harmonic limit,
respectively. Figure 8(c) is the result of the double anharmonic
vibration coupling. From these figures, it is evident that
the theoretical fusion and quasi-elastic barrier distributions
are always similar to each other within the same coupling
scheme, although the latter is slightly more smeared due to
the low-energy tail [12]. This would be the case even with the
excitations in 16O as well as neutron transfer channels, which
are not included in the present coupled-channels calculations.
Therefore, it seems unlikely that the experimental fusion and
quasi-elastic barrier distributions can be explained simultane-
ously within the standard coupled-channels approach.

IV. CONCLUSION

We have studied the effects of double anharmonic vibrations
of the 144Sm nucleus on the large angle quasi-elastic scattering
for 16O + 144Sm system. We have shown that the experimental
data for the quasi-elastic scattering cross sections for this
reaction can be reasonably well explained. However, we found
that the obtained quasi-elastic barrier distribution still shows
the clear doubled-peaked structure, that is not seen in the
experimental data. This was not resolved even if we took the
proton transfer channels into account. Our coupled-channels
calculations indicate that, within the same coupling scheme,
the quasi-elastic and fusion barrier distributions are always
similar to each other. Although detailed analyses including
neutron transfer channels in a consistent manner are still
necessary, it is thus unlikely that the fusion and quasi-elastic
barrier distributions can be explained simultaneously with
the standard coupled-channels framework. This fact might be
related to the large diffuseness problem in sub-barrier fusion,
in which dynamical effects such as couplings to deep-inelastic
scattering are one of the promising origins [23–25]. It is still
an open problem to perform the coupled-channels calculations
with such dynamical effects and explain the difference of
the shape between the fusion and the quasi-elastic barrier
distributions for the 16O + 144Sm reaction.
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