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Separation of two partially coherent beams from their interference pattern
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Two inequalities are derived which set upper and lower bounds on the intensity of two partially coherent
interfering beams. These bounds are obtained from the observed interference pattern. Further, one establishes the
connection between these inequalities and the “duality relation” obtained in the context of which-way information
in two-path interferometry experiments.

DOI: 10.1103/PhysRevC.77.014602 PACS number(s): 25.70.−z, 03.65.Ta, 25.60.Bx, 42.25.Hz

For a better understanding of the aim of this paper, let us
consider an experimental device where an incident beam is
split into two beams of intensities σ1 and σ2, respectively,
which then interfere upon recombining and are counted by a
detector. The latter records an interference pattern given by

σ = σ1 + σ2 + 2α(σ1σ2)
1
2 cos φ, (1)

where φ is the phase difference between the two beams and α is
a parameter which accounts for the possible loss of coherence
in one or the other of them (or in both):

(i) fully coherent beams: α = 1,
(ii) partially coherent beams: 0 < α < 1,

(iii) fully incoherent beams: α = 0.

Total or partial coherence occurs in a large variety of
experiments [1] such as for instance, neutron and atom
interferometry or atomic and nuclear collisions. In the case of
fully coherent beams, a simple approximate method allowing
to separate the interfering components σ1 and σ2 from the
experimental interference pattern has already been developed
[2].

The purpose of the present paper is to extend this method to
partially coherent beams. To achieve this we shall derive two
inequalities which set upper and lower bounds on the values
of the two interfering components σ1 and σ2. These bounds
can be obtained from the observed interference pattern by
using an approximate method [2]. Further we point out
the connection between these inequalities and the “duality
relation” [3,4], an inequality obtained in the context of which-
way information in two-path interferometry experiments. In
some sense, this inequality can be regarded as quantifying
the notion of wave-particle duality. This will be illustrated by
applying the “duality relation” to experimental data of elastic
scattering processes.

We first notice that the interference pattern σ in Eq. (1)
oscillates between two limiting curves or “envelopes” E±
defined by

E± = σ1 + σ2 ± 2α(σ1σ2)
1
2 (2)
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with 0 � α � 1. Assuming σ1 � σ2, one readily obtains

E
1
2+ � σ

1
2

1 + σ
1
2

2 , (3)

E
1
2− � σ

1
2

1 − σ
1
2

2 . (4)

This further leads, using the relation

E+ + E−
2

= σ1 + σ2,

to the inequalities

σ1 � σ̄1 =
(
E

1
2+ + E

1
2−
)2

4
, (5)

σ2 � σ̄2 =
(
E

1
2+ − E

1
2−
)2

4
, (6)

where the equal sign holds for fully coherent beams.
To derive the “duality relation” from Eqs. (5) and (6),

let us recall that which-way information from the observed
interference pattern in a two-path interferometer is simply
defined as the difference between the probabilities σ1

σ1+σ2
and

σ2
σ1+σ2

that a particle is in beam 1 or 2, respectively. The
magnitude of this difference

P = σ1 − σ2

σ1 + σ2
(7)

is the predictability of the way followed through the interfer-
ometer. Inserting Eqs. (5) and (6) into Eq. (7), on gets the
inequality

P �

[
1 −

(
E+ − E−
E+ + E−

)2
] 1

2

.

On the other side, the fringe visibility or contrast of the
interference pattern W is defined as

W = E+ − E−
E+ + E−

and one so obtains the “duality relation” [3,4]

P 2 + W 2 � 1. (8)
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Let us now consider the application of inequalities (5) and
(6) to the experimental data. An interesting case of two-path
interference pattern is provided by the angular distributions
in nucleus-nucleus collisions for which a large amount of
experimental data is available. Furthermore it happens that
it is precisely the domain best know by the authors. We shall
consider collisions involving two identical nuclei either in the
entrance or in the exit channel (or in both) for which the
angular dependence of the differential cross section is given
in Eq. (1). In this case σ1 and σ2 become respectively the
differential cross sections for particles scattered through the
angles θ and π − θ . The expression (1) then applies to various
collision processes [2]: i) elastic scattering of identical spinless
particles or of nonzero spin particles when spin dependent
forces can be neglected; ii) inelastic and transfer reactions
involving identical nuclei under particular conditions.

The upper part of Fig. 1 shows the angular distribution
obtained in the elastic scattering of 12C on 12C at Ec.m. =
5 MeV [5]. As the 12C nucleus has spin 0, the symmetrization
procedure gives α = 1 in Eq. (1) and therefore one expects
that the interference pattern results from full coherent beams.
In this case the equal sign holds in Eqs. (5) and (6) and the σ1,2

are simply given by σ1,2 = σ̄1,2.
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0 30 60 90 120 150
θc.m.(deg)

d
σ/

d
Ω

 (
m

b
/s

r)

104

103

104

103

102

E+

E-

σR(θ)

σR(π-θ)

FIG. 1. Upper part: experimental data (diamonds) of the dif-
ferential elastic scattering cross section of 12C on 12C for Ec.m. =
5 MeV (from [5]) The dotted curve through the data is to guide the
eye. The full curves E± are the “envelopes”of the oscillatory pattern.
Lower part: the squares and triangles are the values of σ̄1 and σ̄2,
respectively, obtained from the relations (5) and (6) on using the
“envelopes” E±(see main text). The curves are the Rutherford cross
sections [σR(θ )] and [σR(π − θ )] for particles scattered through the
angles θ and (π − θ ), respectively.

To obtain σ̄1,2, one should be able to draw the limiting
curves or envelopes E± from the experimental data. Obviously,
there is no unique and rigorous way to do so. We adopt as
a reasonable criterion for drawing such curves, to assume
that the envelope E+(E−) should be the “simplest” smooth
curve passing though the maxima (minima) of the oscillatory
angular distribution. This procedure has already proved ac-
curate in decomposing angular distributions into interfering
components [2]. The interpolated envelopes E± are shown
in the upper part of the figure. The resulting values for σ̄1,2

are shown in the lower part of the figure, by squares (σ̄1)
and triangles (σ̄2). This result can be compared with almost
exact theoretical predictions. In fact, since the collision occurs
under the Coulomb barrier (≈8.5 MeV) only the Coulomb field
makes non-negligible contributions to the elastic scattering [7].
In this case σ1,2 are given by the familiar Rutherford formula

σ1 = σR(θ ) =
(

η

2k

)2

sin4
(

θ
2

) , (9)

σ2 = σR(π − θ ), (10)

where η is the Sommerfeld parameter. The resulting expression
for σ is the well-known Mott differential cross section. The
calculated curves σR(θ ) and σR(π − θ ) are shown in the lower
part of the figure. As seen, these curves and the values obtained

14N + 14N        Ec.m. = 5.49 MeV
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FIG. 2. Upper part: same as for Fig. 1. for elastic scattering of
14N on 14N at Ec.m. = 5.49 MeV, from [6]. Lower part: same as for
Fig. 1. The broken lines are to guide the eye and have been
extrapolated to π

2 (see main text).
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from Eqs. (5) and (6) remain very close. We think that this
example also provides a test of the accuracy of the “envelope
method.”

Let us now consider, in Fig. 2, the angular distribution for
elastic scattering of 14N on 14N at Ec.m. = 5.49 MeV [6]. The
14N nucleus has spin 1 which implies α = 1

3 in Eq. (1). This is
an example where the interference pattern results from partial
coherency. To evaluate σ̄1,2 as given in Eqs. (5) and (6) we
proceed as for the preceding example by drawing the envelopes
E±. These are shown in the upper part of Fig. 2. The resulting
values for σ̄1,2 are shown on the lower part of the figure, by
squares (σ̄1) and triangles (σ̄2). The broken lines serve to guide
the eye. Extrapolating these lines, one observes that they do
not cross at θ = π

2 where the amplitudes of the two interfering
beams should coincide. This means that σ1 and σ2 should lie
inside the two border lines σ̄1,2 defined in Eqs. (5) and (6). This
can also be confirmed by an “exact” theoretical calculation. In
fact σ1,2 can again be identified with the Rutherford cross
section as the collision takes place under the Coulomb barrier
(≈11 MeV). The curves σR(θ ) and σR(π − θ ) are shown in
the lower part of Fig. 2. It is apparent that they satisfy the
inequalities (5) and (6).

Nucleus nucleus scattering is a good alternative to conven-
tional two-way interferometers for discussing and illustrating
the interplay between particle and wave information. For a
given W,P is limited by inequality (8). From the angular
distributions of Figs. 1 and 2, one easily observes the interplay
between P and W when the detector moves from θ = 0 to
θ = π

2 . In the near forward direction, where the Rutherford
cross section (9) grows as θ−4, the contrast becomes negligibly
small, W ≈ 0, and therefore one can say that almost all the
particles detected are those scattered through the angle θ .
When the latter increases from θ = 0 to θ = π

2 the fringe
visibility also increases until the two interfering amplitudes
become equal. Thus, at θ = π

2 , for both 12C and 14N scattering,
one has σ1 = σ2 and P = 0. For 12C, P = 0 implies W = 1,
but for 14N (partially coherent case) the fringe visibility W is
less than 1.
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