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Density functionals in the laboratory frame
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We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its
center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in
the laboratory frame. This result is useful for the practical definition of density functionals.
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Recently, Engel [1] pointed out that the usual form of
nuclear Hamiltonians,

H =
A∑

i=1

p2
i

2m
+

A∑
i>j=1

vij , (1)

forbids a proper definition of the nuclear density. Indeed, the
center of mass (CM) of the system delocalizes in a plane
wave; the nucleus is everywhere, and the density is flat. The
conclusion holds whether the two-body interaction v is local
or nonlocal and still holds if three-body forces are also present
in H , as long as any explicit density dependence is avoided;
Galilean invariance must be ensured.

An elementary modification of H ,

H = H + Aω2R2/2, R = A−1
∑

i

ri , (2)

traps the CM. The ground state ofH now factorizes as a product
of a Gaussian for this CM and an “internal” wave function of
the (A − 1) Jacobi coordinates,

�(r1, r2, . . . , rA) = �(R)ψint(ξ1, ξ2, . . . , ξA−1),

ξ1 = r2 − r1, ξ2 = r3 − r2 + r1

2
, . . . , (3)

ξA−1 = rA − rA−1 + rA−2 + · · · + r1

A − 1
.

Calculations in the {ri} representation are much more conve-
nient than those in the {R, ξj } one, for obvious symmetrization
reasons. The laboratory density,

ρ(r) = A

∫
dr1dr2 . . . drA−1 |�(r1, r2, . . . , rA−1, r)|2, (4)

is much easier to calculate than the “internal” density,

σ (ξ ) = A

∫
dξ1dξ2 . . . dξA−2 |ψint(ξ1, ξ2, . . . , ξA−2, ξ )|2.

(5)

Throughout this paper, we shall use the word “internal” instead
of “intrinsic” when we refer to properties independent of the
CM. This is because we retain the word “intrinsic” for those
states out of which rotation bands and/or parity vibrations are
modeled. Our understanding is that the adjectives “internal”
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and “intrinsic” belong to completely distinct concepts and
models.

Three remarks are in order at this stage:
(i) The density of interest for a density functional theory

(DFT) is ρ, not σ. Indeed the Hohenberg-Kohn theorem
derives from embedding the system in an external field,
namely replacing H by

K = H +
A∑

i=1

u(ri), (6)

then considering the density τ (r) of the ground state 	

of K,

τ (r) = A

∫
dr1dr2 . . . drA−1|	(r1, r2, . . . , rA−1, r)|2,

(7)

and finally proving that there is a one-to-one map
between u and τ. The ground-state energy ofK receives
the contribution

∫
dr u(r)τ (r), out of which u and τ

are recognized as conjugate Legendre coordinates and
hence the functional Legendre transform, which defines
the density functional. When u vanishes, ρ is that limit
of τ that minimizes the functional. It seems obviously
very difficult to set any similar chain of arguments in
the Jacobi representation.

(ii) Despite this priority of ρ for a DFT, the internal nature
of σ is compelling for a physical interpretation. It is
tempting to calculate σ in the {ri} representation. With
the Gaussian � square normalized to unity, one finds

A−1σ (ξ ) =
∫

dRdξ1dξ2 . . . dξA−2

× [�(R)]2|ψint(ξ1, ξ2, . . . , ξA−2, ξ )|2

=
∫

dRdξ1 . . . dξA−2dξA−1 δ(ξA−1 − ξ )

× [�(R)]2|ψint(ξ1, ξ2, . . . , ξA−2, ξA−1)|2

=
∫

dr1 . . . drA−1drA

× δ

(
rA − r1 + r2 + · · · + rA−1

A − 1
− ξ

)

× |�(r1, r2, . . . , rA)|2. (8)
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(iii) The last Jacobi coordinate also reads

ξA−1 = ArA − (r1 + r2 + · · · + rA−1 + rA)

A − 1

= A

A − 1
(rA − R). (9)

The density σ therefore also represents, except for
a trivial rescaling factor, the density referring to the
internal degree of freedom, rA − R.

Finally, according to Eqs. (4) and (9), the density ρ reads

A−1ρ(r) =
∫

dr1dr2 . . . drA−1drA δ(rA − r)

× |�(r1, r2, . . . , rA−1, rA)|2

=
∫

dRdξ1 . . . dξA−1 δ

(
R + A − 1

A
ξA−1 − r

)

× [�(R)]2|ψint(ξ1, . . . , ξA−2, ξA−1)|2

∝
∫

dRdξ1 . . . dξA−2[�(R)]2

×
∣∣∣∣ψint

[
ξ1, . . . , ξA−2,

A

A − 1
(r − R)

]∣∣∣∣
2

= A−1
∫

dR[�(R)]2σ

[
A

A − 1
(r − R)

]
. (10)

The convolution transforming σ into ρ is transparent, with
again an inessential rescaling factor A/(A − 1). The zero-point
motion of the CM blurs the internal density in a way that can
be easily inverted, via a deconvolution. The bottom line is that

ρ contains the same information as σ . It is thus possible, and
likely much easier, to design a DFT with laboratory densities τ .
At the end one recovers the internal σ by a deconvolution of ρ,
the solution being obtained by the minimization, with respect
to τ , of such a “laboratory Hohenberg-Kohn functional.”

It will be noticed that the presence in K of external
potentials u(ri) couples the CM degree of freedom R and the
internal ones ξj . There is, in general, no CM factorization for
eigenstates of K. The factorization occurs at the limit u = 0.

Then one must verify that the Fourier transform of ρ shows the
factorized, Gaussian decay at large momenta, implied by the
convolution, Eq. (10). Otherwise, deconvolution will fail. This
“deconvolution syndrome” is very well documented in the lit-
erature about generator coordinates. For the DFT, expansions
of the density in harmonic oscillator functions and related
polynomials, constrained [2] to satisfy matter conservation,
make a useful precaution to avoid the deconvolution syndrome.

For atoms and molecules, CM traps factorizing wave
packets � other than Gaussians might be convenient, but the
link between σ and ρ remains the same.

We conclude by claiming that a density functional theory for
self-bound systems is available with densities in the laboratory
system, without any loss of information about the internal,
physical density.
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