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Structure properties of 226Th and 256,258,260Fm fission fragments:
Mean-field analysis with the Gogny force
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The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate
potential energy surfaces of fissioning nuclei 226Th and 256,258,260Fm up to very large deformations. The
constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates,
many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations.
Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies,
energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization, and total
fragment kinetic energies.
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I. INTRODUCTION

Our knowledge of the fission process has made huge
progress in recent years with the measurement of mass and
charge distributions of fission fragments for 70 fissioning
systems [1], performed at the secondary beam facility at
Gesellschaft für Schwerionenforschung GmbH (GSI). The
measured fragment yield distributions have revealed new kinds
of systematics on shell structure in nuclear fission, such as
transitions from single- and double-humped mass distributions
to a triple-humped structure in the vicinity of 227Th. From a
theoretical point of view, microscopic self-consistent methods
appear to be well suited to study structure effects in fissioning
systems, where the sole input is the nucleon-nucleon force.
Many studies based on mean-field approaches using Gogny
or Skyrme forces have recently been devoted to the different
fission modes, as, for example, in 256−258Fm isotopes [2–7],
where bimodal fission has been experimentally identified
[8–17] and analyzed [18,19]. Furthermore, two-dimensional
time-dependent calculations have also been performed for
the 238U isotope in the elongation-asymmetry plane, where
it appears that fragment mass and total kinetic energy distribu-
tions are well reproduced. These calculations have employed
the time-dependent generator coordinate method treated at
the Gaussian overlap approximation and used Hartree-Fock-
Bogoliubov states [20].

The present work, based on the constrained Hartree-Fock-
Bogoliubov (HFB) method and the D1S force, focuses on the
calculation of structure properties of nascent fission fragments
of light and heavy actinides, namely 226Th and 256,258,260Fm.
Fragment deformations, deformation energies, energy par-
titioning, neutron binding energies, neutron multiplicities,
charge polarization, and total fragment kinetic energies are
calculated for a wide range of fragmentations. This large-scale
study has been made possible thanks to the new generation
of fast computers made available to our laboratory. In the
meantime, it is hoped that the calculated structure information
here collected for a wide variety of fission fragments will serve
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as guideline for updating inputs (excitation energy, energy
partitioning, neutron binding energy, etc.) to phenomenolog-
ical evaporation models aimed at calculating prompt neutron
emission from and γ -ray decay of fission fragments [21–23].

The article is organized as follows. In Sec. II is outlined
the constrained HFB method in which, like in Ref. [20],
quadrupole and octupole mass operators are adopted for
external fields. This section also presents the mean-field
methods used to describe (i) the scission mechanism as well
as (ii) nascent fission fragments in low energy fission. In
Sec. III results are discussed, among which potential energy
landscapes, scission configurations, and fission fragment
properties. Fission fragment yields are not considered in this
work as they require a dynamical treatment [20]. Comparisons
are made between present predictions and experimental data
for total fragment kinetic energy (226Th, 256Fm) and prompt
neutron multiplicity (256Fm) of fission fragments.

II. SELF-CONSISTENT APPROACH TO SCISSION

A. Constrained Hartree-Fock-Bogoliubov method

The deformed states of the nuclei under study have been
determined using the constrained HFB [24] theory based on
the minimization principle of the energy functional, namely

δ〈�({ql0})|Ĥ − λNN̂ − λZẐ −
∑

l

λlQ̂l0|�({ql0})〉 = 0,

(1)

where Ĥ is the nuclear microscopic Hamiltonian; Q̂l0 a
multipole operator; and λN, λZ , and λl the Lagrange parame-
ters associated to constraints on nucleon numbers N,Z, and
average deformations ql0, respectively,

〈�({ql0})|N̂ |�({ql0})〉 = N,

〈�({ql0})|Ẑ|�({ql0})〉 = Z, (2)

〈�({ql0})|Q̂l0|�({ql0})〉 = ql0,
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and where Q̂l0 is defined as

Q̂l0 = (1 + δl,2)

√
4π

2l + 1

A∑
i=1

rl
i Yl0(θi, φi). (3)

In the present study, the Hamiltonian Ĥ is built using the
finite range and density-dependent nucleon-nucleon D1S force
[25,26]. One-body and two-body corrections for center of mass
motion are taken into account in Ĥ . Many calculations have
shown that the energy functional derived from this Hamil-
tonian provides a very satisfactory reproduction of nuclear
properties over the whole mass table [27] and especially in
the actinide region [28]. In Eq. (2) the set of constraints {Q̂l0}
includes the isoscalar axial dipole, quadrupole, and octupole
mass moments Q̂10, Q̂20, and Q̂30, respectively. The dipole
moment has been constrained to zero so that the mean position
of the nucleus center of mass is located at the origin of the
coordinate system. The HFB energy of the deformed system
is defined as

EHFB(q20, q30) = 〈�(q20, q30)|Ĥ |�(q20, q30)〉. (4)

In the present study, the Bogoliubov space has been restricted
by enforcing axial symmetry along the z axis and the
self-consistent T̂ �̂2 symmetry, where T̂ is the time-reversal
operator and �̂2 the reflection with respect to the xOz
plane. The system of Eqs. (1) and (2) has been solved
numerically by iterations for each set of deformations by
expanding the single-particle states onto axially symmet-
ric harmonic oscillator (HO) bases. For small elongations
(q20 < 200 b) a one-center HO basis with N = 14 major
shells has been used, whereas for large elongations (q20 �
200 b) a two-center HO basis with twice N = 11 major
shells has been preferred [29]. The parameters of the one-
and two-center HO bases have been optimized for each set
of deformations, and we have checked that the basis sizes are
large enough. The potential energies discussed below are the
HFB energies defined in Eq. (4).

B. Scission mechanism in the (q20, q30) plane

At large quadrupole moment, it becomes energetically
more favorable for a fissioning system to split into two
separated fragments rather than to take on a very elongated
shape with a neck. In deformation space, this transition
corresponds to an evolution from the so-called fission valley
to the so-called fusion valley [30]. If a point A in the fission
valley leads to a point B in the fusion valley through a small
increment in either one of the deformation parameters, then
point A is here defined as a scission point and point B as a
postscission point. Unfortunately, there is no universal way to
distinguish a point in the fission valley from a point in the
fusion valley, and several criteria have been used in previous
studies to achieve this classification. For instance, Bonneau
et al. [31,32] consider that scission occurs when the nuclear
interaction between fragments is less than 1% of the Coulomb
repulsion energy, whereas in Refs. [20,30] it was noted that
the scission mecanism in 238U and 240Pu is associated to the
following three properties: (i) the neck between the fragments
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FIG. 1. Comparison between symmetric fission of the 226Th
and 256Fm nuclei through total energy, hexadecapole moment, and
minimal density along z axis in the neck ρN. q
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each fissioning system, respectively.

suddenly vanishes, (ii) the hexadecapole moment of the system
decreases, and (iii) there is a drop in the potential energy of
the fissioning system. Whereas these three criteria appear to
be equivalent in the U-Pu region, this is no longer the case
for some of the nuclides studied here. As an example, in
Fig. 1 we show the evolution of HFB energy, mass hexade-
capole moment, and minimal density in the neck as functions of
the quadrupole moment for the symmetric fission of 226Th and
256Fm. In the top panel, the evolution of the HFB energy shows
that scission can correspond to either a sudden loss (226Th
curve) or to a smooth decrease (256Fm curve) of the binding
energy. The same difference in behaviors can be observed for
the evolution of the mean values of the hexadecapole moment
〈Q̂40〉. These examples clearly illustrate that scission points
can be determined neither by an energy- nor a hexadecapole
moment-based criterion for the scissioning system in 256Fm.
The lower panel of Fig. 1 shows that in the symmetric fission
of both 226Th and 256Fm, the density in the neck displays
two different values before and after scission, with an abrupt
drop at scission. In this situation, we define a postscission
configuration as one for which in the matter density along
the symmetry axis there is a local minimum that is lower than
ρ = 0.06 fm−3. Using this criterion, we define for each nucleus
a set of scission points in the (q20, q30) plane, that is called the
scission line.

Depending on the nucleus and fragmentation, the scission
transition is either smooth (e.g., symmetric fragmentation
of Fermium isotopes) or abrupt, in the present subspace of
collective coordinates. In the first case, the energy of the
fissioning nucleus evolves smoothly without discontinuity
from outer saddle to scission, becoming the Coulomb repulsion
between nascent fragments at large elongation. In the second
case, there is an abrupt decrease of energy and hexadecapole
moment at scission.

Figures 2 and 3 show the evolution of the nuclear density at
large elongation for the symmetric fragmentation of 226Th and
256Fm, respectively. Although 226Th displays a very elongated
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FIG. 2. Symmetric scission configurations of 226Th in the (z, r)
space coordinates before and after scission (upper and lower panels,
respectively). The isolines are separated by 0.01 fm−3. The dashed
isoline corresponds to ρ = 0.16 fm−3.

shape at the scission point (upper panel) and two prolate frag-
ments at the postscission point (lower panel), 256Fm symmetric
fission leads to two nearly spherical fragments separating
smoothly. In the literature, these quite different ways of
fissioning are called elongated fission (EF) and compact fission
(CF), respectively [33,34]. In the 256Fm symmetric fission case,
CF is currently explained by the proximity of double-magicity
of the fragments (Z = 50, N = 82) [35,36].

C. From scission to fragments

The main purpose of identifying the scission configurations
of the nuclear shape using the method described in the pre-
ceding section is to obtain information on fragment properties
and distributions. The underlying assumption is that, once a
scission configuration is reached, splitting of the nucleus will
occur irremediably, yielding two separated fragments moving
away from each other under the action of their mutual Coulomb
repulsion. Observable fragment properties such as kinetic
energy or excitation energy can then be inferred from the
characteristics of the nascent fragments—as distance between
centers of mass, deformations, and so on—at scission. It is
important to stress that the fragment properties derived in
such an analysis will not necessarily all correspond to those
observed in experiments, because some of the configurations
found at scission may not occur with significant probability in
the fission process.

For each scission point, a sharp cut is made at the neck
position zN on the z axis, which serves to define the light
(L) and heavy (H) fragments. Some fragment properties,
namely quadrupole and octupole deformations, masses and
charges, distances between centers of charge and mass, are

FIG. 3. Same as described in the caption to Fig. 2 for the
symmetric scission of 256Fm.

next calculated as mean values

〈Ô〉L ≡ 2π

∫ zN

−∞
dz

∫ ∞

0
r.drÔρ(z, r), (5)

〈Ô〉H ≡ 2π

∫ ∞

zN

dz

∫ ∞

0
r.drÔρ(z, r), (6)

where ρ is the nuclear density and Ô a one-body operator.
We have checked that all first multipole moments from Q20

to Q60 of the fissioning system are continuous along scission
lines, which ensures that the scission configurations analyzed
form a continuous set from which fragment properties can be
consistently derived. At this stage a few remarks are in order,
namely (i) the adopted sharp cut assumption inevitably leads to
noninteger values for calculated fragment charges and masses
and (ii) as our model is restricted to two collective coordinates,
only one scission configuration is predicted for any fixed
(q2s , q3s) value. As a consequence, the set of fragment pairs
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here deduced is only a fraction of all possible pairs that would
be formed if the constrained HFB calculations were extended
to include other collective coordinates. Nascent fragments
associated with different scission configurations may be found
having nearly the same proton and neutron numbers. As charge
and mass fission fragment yields are outside the scope of
the present static model, such fragmentations are considered
having the same weight in figures shown below where they
will display multiple values, for example, when plotted as a
function of fragment mass.

III. RESULTS

A. Potential energy landscapes

The potential energies have been calculated on a (q20, q30)
mesh from (q20 = 0, q30 = 0) to (q20 = q2s , q30 = q3s), where
(q2s , q3s) belong to the scission lines. With the chosen mesh
dimensions 
q20 = 10 b and 
q30 = 4 b3/2, each of the
potential energy landscapes shown in Fig. 4 are generated

with approximately 600 calculated values. For convenience,
the range of potential energies shown is limited to 20 MeV for
226Th [see Fig. 4(a)] and to 50 MeV for the three Fm isotopes
[Figs. 4(b)–4(d)]. Isolines are separated by 1 MeV.

The topological properties displayed by the four landscapes
are quite contrasted. We first notice that the lowest potential
minima of 226Th and 256−260Fm are all soft against quadrupole
and octupole deformations, which should favor coupled
quadrupole and octupole vibrations at low excitation energies.
These are the common features expected for these nuclides at
normal deformations. As axial deformation increases beyond
the inner barrier, a well-defined superdeformed (SD) potential
minimum is taking place only for 226Th. The SD potential
minimum is vanishing for 256−260Fm as discussed previously
for actinides with neutron number N > 156 [28].

Beyond the SD potential minimum, a valley a few MeV
deep is showing up in 226Th for asymmetric deformation all
the way to a scission point with large left/right asymmetric
fragmentation. An isomeric minimum appears for q20 = 140 b,
q30 = 20 b3/2. At elongation q20 > 150 b, a symmetric valley is

FIG. 4. (Color online) Potential energies (MeV) as functions of the q20 (b) and q30 (b3/2) mass moments for 226Th (a), 256Fm (b), 258Fm (c),
and 260Fm (d). Postscission points are not plotted.
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also observed until the scission point q2s = 500 b is reached.
As scission energies are similar in both valleys, symmetric
and asymmetric fission modes are expected to compete in
this nucleus. For 256−260Fm, the potential landscapes display
similar and smooth patterns beyond the first axial barrier. In
contrast to 226Th, we observe that (i) a shallow asymmetric
valley is identified for q30 > 30 b3/2, (ii) the falloff of the
potential landscapes versus elongation for the latter nuclides
is smooth for asymmetries q30 > 50 b3/2, (iii) the scission
lines display approximately smooth and linear trajectories over
the (q20, q30) plane, and (iv) a symmetric valley is gradually
developing beyond q20 = 100 b as N grows from 156 to 160.
This last feature is not inconsistent with the observation of
a transition from asymmetric to symmetric mass division in
fission, in going from 256Fm to 258Fm [11,33,37,38]. Whether
this transition can be further analyzed with the present static
mean-field approach will be discussed below.

B. Scission lines over the (q20, q30) plane

The mesh sizes 
q20 and 
q30 so far adopted are well
suited for performing a survey of potential energy landscape
properties. In the vicinity of scission points the step sizes have
been dramatically reduced to 
q20 = 2 b and 
q30 = 1 b3/2,
to define scission points with high precision. For each nucleus,
approximately 200 to 300 scission points are used to define a
scission line. This is illustrated for 226Th in the upper panel of
Fig. 5, where each point in the (q20, q30) plane corresponds to
a single HFB calculation. Only configurations before scission
are shown. The curve in red color is the scission line, which
is made of all exit points (q2s , q3s). To ease forthcoming
discussions, a few scission points have been labeled with letters
a, b, c, . . . , j.

Most of the constrained HFB calculations at given (q20, q30)
values are performed using as a starting point the generalized
density matrix R [39] obtained at (q20 − 
q20, q30). However,
in a few cases, it has been necessary to start from the
density matrix calculated at either (q20, q30 − 
q30) or (q20 +

q20, q30) to reach all possible fragmentations. For example,
the segments defined between the labels b and c and between
the labels d and e were determined increasing asymmetry and
decreasing elongation, respectively.

The scission lines determined for 226Th and for 256Fm,
258Fm, and 260Fm are shown in the upper and bottom panels
of Fig. 5, respectively. The lines for the Fm isotopes display
similar features. The symmetric scission configurations are
found at q2s = 270 b. Beyond this point, q2s and q3s increase
gradually until q2s reaches a maximum for q2s � 500 b, where
asymmetry takes on values in the range q3s = 80–100 b3/2.
For higher asymmetries, the scission lines display wiggling
patterns and are quite similar. The trajectory followed by the
226Th scission line over the (q20, q30) plane is quite different.
First, the nucleus stretches and gets an elongation nearly
twice as large as the one for Fm nuclides before symmetric
scission takes place. Next, elongation decreases as asymmetry
increases until q2s reaches a minimum for q2s = 250 b (label
e in Fig. 5). Except for the point on the scission trajectory
marked with the label f, q2s and q3s increase smoothly until the
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FIG. 5. (Color online) (Upper panel) The scission line for 226Th is
shown over the (q20, q30) plane as a continuous curve in red color along
which are marked symbols a, b, c, . . . , j. The black dots, representing
single HFB calculations, are shown to illustrate the densifying of the
mesh used close to the scission line. (Lower panel) Scission lines for
256−260Fm.

point labeled i is reached. Beyond this point located at (q2s =
444 b, q3s = 142 b3/2), both q2s and q3s decrease until the
scission point labeled j is reached. Although the scission
line is defined beyond the point labeled j, this segment
lies in a (q20, q30) region where potential energy is sharply
raising. Therefore, the corresponding scission configurations
will not be reached in low-energy fission and they will not be
considered in the rest of this work. For the same reason, the
Fm scission points beyond (q2s = 410 b, q3s = 111 b3/2) will
also be discarded.

C. Energy along scission line

The potential energies EHFB along scission lines are shown
for 226Th and 256−260Fm as functions of the fragment mass
Afrag in Figs. 6 and 7, respectively. These energies take on
identical values on both sides of the symmetric fragmentation
where Afrag = A/2. On these figures, each solid dot is for a
single HFB calculation.

In 226Th one principal and two secondary minima are
observed that are likely to represent the most probable
fragmentations in low-energy fission. Hence, both symmetric
(Afrag � 113) and two asymmetric modes (Afrag � 132 and
Afrag � 145) are expected for this nucleus. Fragment charges
in the symmetric mode (Zfrag � 45) and the two asymmetric
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FIG. 6. 226Th. Potential energy along the scission line as a
function of fragment mass. The symbols a, b, c, . . . , j have the same
meaning as in Fig. 5. See text for more details.

modes (Zfrag � 52 and Zfrag � 57) appear in good agreement
with those found in the triple-humped mass/charge distribution
measured a few years ago and analyzed in terms of the
superlong (Zfrag = 45), standard I (Zfrag = 54), and standard
II (Zfrag = 56) fission channels [40].

Figures 5 and 6 show that there is a correlation between
the structures in the potential energy along the scission line
and the behavior of the scission line in the (q20, q30) plane.
To better visualize this correspondence, the potential energy
of characteristic scission configurations labeled as a, b, c, . . .,
in Fig. 5 is displayed in Fig. 6. One observes that as Afrag

increases, (i) the scission line shifts from symmetric to
asymmetric mass division following an irregular trajectory
over the (q20, q30) plane and (ii) to each labeled scission
configuration is associated a break in the EHFB energy values.
It thus seems that the competition between symmetric and
asymmetric fission of 226Th is tied with the static structure
properties of the fissioning system along the scission line. The
asymmetric scission configurations calculated for Afrag � 132
and Afrag � 145 coincide with the points marked with the
symbols f and i, respectively, in Fig. 5.
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FIG. 7. (Color online) Same as described in the caption to Fig. 6
for 256−260Fm.

The absolute minima in EHFB for 256−260Fm along the
scission line take place for asymmetric fragmentation with
Afrag � 145, property that correlates rather well with the
location of a peak in the fragment mass distributions identified
for Afrag � 142 in the 256Fm mass-yield measurements [11].
Symmetric fission is not energetically favored as EHFB displays
a maximum for Afrag = A/2, in contrast to the above results
for 226Th. However, we observe that the difference in energy
between the maximum and minimum values taken by EHFB for
Afrag = A/2 and Afrag � 145 decreases from 22 to 16 MeV as
the mass of Fm isotopes increases from A = 156 to A = 160.
Although this feature would favor a transition from asymmetric
to symmetric fission, making a more definite conclusion on
this transition requires a full dynamical calculation in which
both potential energy and tensor of inertia from ground-state
deformation to scission configurations play a role.

D. Fragment deformations

The axial mass quadrupole moment of the nascent fission
fragments along scission lines is plotted on Fig. 8 for the four
studied fissioning systems. The most striking feature is that
the fragment deformations do not significantly depend on the
fissioning system. The four curves are almost superimposed
and have the expected sawtooth structure: minima are found for
A � 86 and A � 130 and maxima for A � 112 and A � 170.
Indeed, on the one hand, strong spherical shell effects for N =
80 and Z = 50 stabilize spherical fragments of Tin isotopes
at scission. In the case of 226Th a minimum with 〈Q̂20〉 � 5 b
is also observed, corresponding to Krypton isotopes with A �
86. This effect is driven by the neutron magic number N = 50.
On the other hand, well-deformed ruthenium isotopes (Z =
44 and N � 68) are here predicted with 〈Q̂20〉 � 22 b. This
deformation corresponds to a shallow secondary minimum
of the potential energy curve of the ruthenium isotopes as a
function of quadrupole deformation, as illustrated in Fig. 9
for 112Ru. Very heavy fragments around A � 170 are also
predicted to be well deformed. This shell effect is associated to
the deformed magic numbers Z = 58 and N = 92 at 〈Q̂20〉 �
15 b. The potential energy curve for 150

58Ce is also plotted in
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FIG. 8. (Color online) Axial mass quadrupole moments 〈Q̂20〉 of
the nascent fission fragments for 226Th and 256−260Fm.
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FIG. 9. 112Ru and 150Ce potential energy curves from constrained
HFB calculations restricted to axially symmetric and left-right-
symmetric shapes as a function of axial quadrupole deformation [41].
The potential energy of 150Ce has been arbitrarily increased by
295 MeV to ease comparison between curves.

Fig. 9 as a function of the axial quadrupole moment, and it
appears that 〈Q̂20〉 � 15 b corresponds to the ground-state
deformation.

Axial mass octupole moments of fission fragments are
plotted in Fig. 10 as functions of the fragment mass. The
octupole moments display almost the same behavior versus
Afrag as the one for the quadrupole moments: minima are
observed for A � 86 and A � 130 and maxima for A � 112
and A � 170.

E. Fragment deformation energy

Energy partitioning in fission is a key input of models
aiming at describing sequential neutron and γ -ray emission
from fission fragments [21–23]. In the present study, the
assumption will be made that the excitation energy stored
into fission fragment arises only from their quadrupole and
octupole deformations at the moment of scission. With this
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FIG. 10. (Color online) Axial mass octupole moments 〈Q̂30〉 of
nascent fission fragments for 226Th and 256−260Fm.

assumption possible intrinsic or thermal excitations prior to
scission are neglected. The estimates given below must there-
fore be considered as a lower bound of fragment excitation
energies.

The fragment deformation energy is defined as [42]

Edef = Eff − Egs, (7)

where Eff is the energy of the nascent fragment and Egs

the one of the fragment ground state. In this work, Egs has
been deduced for all fragments from usual HFB calculations,
whereas Eff is the HFB energy predicted in a constrained HFB
calculation where the axial quadrupole and octupole moments
are those obtained at scission configurations (see Figs. 8
and 10). Let us mention that in these two sets of calculations,
the neutron and proton numbers of each fragment have been
taken to be integer values closest to the N and Z mean values
calculated for the nascent fragments. Such an approximation
leads to an uncertainty in HFB energies that amounts to be less
than 1 MeV.

The FF deformation energies (Edef) derived in this way for
the four nuclei studied here are shown as functions of Afrag and
Zfrag in Figs. 11(a) and 11(b), respectively. Strong variations
are observed, with maxima reaching Edef ∼ 15 − 20 MeV near
Afrag ∼ 120 and minima close to zero near Afrag ∼ 145 and
Afrag ∼ 130. This latter minimum corresponds to symmetric
division in Fm nuclides. Its origin is, of course, the occurrence
of strong shell effects in nuclei close to 132Sn.

When plotted as function of Zfrag, regions with Edef ∼ 0
correspond to Zfrag ∼ 50 and Zfrag ∼ 56, that is, to 128−130Sn
and 144Ba, respectively. Furthermore, the maximum identified
previously in the Edef values at Afrag ∼ 120 gets split over two
Zfrag components, namely Zfrag ∼ 48 and Zfrag ∼ 52, that is,
for near symmetric and highly asymmetric charge divisions in
the Fm and Th nuclides, respectively.

Finally, Fig. 11(c) displays the difference (EL − EH) be-
tween the deformation energies of light and heavy fragments.
This difference takes on values ranging from 23 to −15 MeV.
Extrema are located at far-asymmetric mass divisions. More
than 70% of the light fragments display EL > EH values.

F. Prompt fission neutrons

In the present section, we aim at calculating the multiplicity
νfrag of prompt neutrons emitted by each fission fragment. For
this purpose, we assume that the deformation energy of any
fragment is converted into internal excitation energy through
collective vibrations and that the fragment will de-excite only
through prompt neutron emission. As an estimate, the neutron
emission multiplicity of one fragment is taken as [43,44]

νfrag = Edef

〈Ek〉 + B∗
n

, (8)

where B∗
n is the one-neutron binding energy in nascent

fragment and 〈Ek〉 the mean energy of the emitted neutron.
The latter is assumed to be 2 MeV in 226Th [45] and 1.5 MeV
in 256−260Fm [46].
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FIG. 11. (Color online) Nascent fragment deformation energies
for 226Th and 256−260Fm as functions of (a) fragment mass and
(b) fragment charge. The differences between light (L) and heavy
(H) fragment energies as functions of light fragment mass are shown
in (c).

1. One-neutron binding energy

In the present work the one-neutron FF binding energy B∗
n

is taken equal to the neutron chemical potential obtained in
the HFB calculations performed on the scission line. The B∗

n
values are plotted in Fig. 12 as a function of fragment mass.
It is seen that they globally decrease from approximately 7
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FIG. 12. (Color online) One-neutron binding energies of nascent
fission fragments as functions of fragment mass for 226Th and
256−260Fm.

to 3–4 MeV with increasing mass. The lowest B∗
n values are

obtained for A � 136 (Z � 50, N � 86).
The difference between the calculated one-neutron binding

energies of the fragment at scission B∗
n and ground-state Bn is

plotted in Fig. 13. We find that this difference can be as large as
2 MeV in absolute value. Such differences are a consequence
of the evolution of single-particle neutron gaps as a function
of deformation.

2. Neutron multiplicity

The multiplicities calculated from Eq. (8) are shown in
Figs. 14 to 16 as functions of fragment mass for the four studied
nuclei. On Figs. 14 and 16, a solid line has been added to guide
the eye. Typical sawtooth structures are observed, displaying
maxima and minima. These structures appear correlated with
the quadrupole deformation of fragments at scission.

In the case of 226Th fission, the neutron multiplicity curve
displays pronounced structures separated by five mass units
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FIG. 13. (Color online) Differences between one-neutron binding
energies of fragments as calculated for scission configurations and
for ground states, plotted as functions of fragment mass.
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FIG. 14. (Color online) 226Th. Calculated neutron multiplicity as
a function of fragment mass. The solid line is to guide the eye.

from Afrag = 110 to Afrag = 150, that are linked to (i) fragment
deformations (Figs. 8 and 10), (ii) the deformability of the
fragments (the softness of potential energies with respect to
axial quadrupole and octupole deformations), and (iii) the one-
neutron binding energy (see Fig. 12).

For Fm isotopes, the curves look more regular and show
that neutron emission is almost vanishing around Afrag = 130
and is maximum around Afrag = 120. In Fig. 15, comparison
is made with the experimental data for spontaneous fission
of 256Fm [47]. The agreement between theoretical values
and measurements is rather satisfactory, as the global data
pattern is well reproduced. However, calculations appear to
underestimate the number of emitted neutrons in the Afrag =
90–130 region and a second minimum is found around Afrag =
144. As a consequence, the calculated number of emitted
neutrons is 30% smaller than experimental data.

These discrepancies probably come from our model as-
sumptions. Part of the overall underestimation of the number
of emitted neutrons is presumably due to the fact that the
deformation energy has been calculated with constraints
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FIG. 15. 256Fm. Neutron multiplicity versus fragment mass.
Comparison between predictions (solid symbols) and data [47]
(empty symbols).
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FIG. 16. (Color online) Neutron multiplicities for 258Fm (upper
panel) and 260Fm (lower panel). Lines are to guide the eye.

placed only on axial quadrupole and octupole deformations
of fragments. More realistic calculations should include the
effect of higher-order multipole fragment deformations such
as q40 and q60. As for the second minimum at Afrag ∼ 144,
we think it may originate from the method adopted to define
the two fragments, especially for cases where many particles
are present in the neck. Handling the neck rupture in a
more realistic manner and including higher-order multipole
deformations in the calculation of deformation energies would
change our predictions. However, we have doubt that these
considerations alone would be pertinent enough for bringing
in significant improvements. These discussion will be further
extended below.

G. Deviation from the unchanged charge distribution

Introduced in 1962 by Wahl, the fragment unchanged
charge distribution ZUCD (i.e., charge polarization) is the
charge number of a fragment with a given mass Afrag, if its Z/A

ratio were the same as the one of the fissioning nucleus [48]:

ZUCD ≡ ZfsAfrag

Afs
. (9)

The deviation 
Zfrag = Zfrag − ZUCD of the charge of the
fragment Zfrag from the unchanged charge distribution ZUCD is
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FIG. 17. Nascent fission fragment proton pairing energy (upper
panel) and deviation from unchanged charge distribution (bottom
panel) as functions of fragment charge for 226Th.

plotted in Figs. 17 and 18 as a function of the fragment charge
for 226Th and 258Fm. Values of 
Zfrag for 256Fm and 260Fm
are very close to the ones of 258Fm. We first observe that

Zfrag is globally positive for light fragments and negative
for heavy ones. This feature stems from the fact that heavy
systems may sustain stronger neutron excess than light ones, as
observed and discussed for several fissioning systems [49,50].
The patterns displayed by 
Zfrag as functions of Zfrag are quite
contrasted. Although both sets of 
Zfrag values show sharp
structures as Zfrag increases, 
Zfrag globally decreases in 226Th
from 
Zfrag � 1 to 
Zfrag � −1. In contrast, in 258Fm the

Zfrag values reach a plateau with |
Zfrag| � 0.5 for Zfrag >

57 and Zfrag < 43. In an attempt to understand the origins
of these sharp structures and different global trends, we have
sought for possible correlations with other structure properties,
namely proton separation energies of (i) fissioning nuclei along
scission lines and (ii) each nascent fragment. No clear-cut
correlation is found. However, the structures observed in the

Zfrag values for both nuclides seem to coincide with the
variations of the fragment pairing energies Epair(p), as can be
seen when comparing the plots in the upper and bottom panels
in Figs. 17 and 18.
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FIG. 18. Same as described in the caption to Fig. 17 for 258Fm.
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FIG. 19. Distances between nascent fragment centers of charge
calculated as functions of fragment mass for 226Th and 256−260Fm.

H. Total kinetic energy

1. Distance between fragments

The total kinetic energy (TKE) of a given fragmentation
can be estimated from the formula

ETKE = e2ZHZL

dch
, (10)

where e is the electron charge, ZH (ZL) the charge of the heavy
(light) fragment, and dch the distance between fragment centers
of charge at scission. The distance dch deduced from our
calculations is plotted as a function of fragment mass for 226Th,
256Fm, 258Fm, and 260Fm in Fig. 19. For all considered nuclei,
the distance between fragment centers of charge at scission
falls in the range dch = 14–20 fm. The distance dcm between
centers of mass has also been calculated. The difference δd

between dcm and dch appear rather small: δd � 0.08 fm in
226Th and δd � 0.05 fm in 256−260Fm.

2. Total kinetic energy for 226Th

The TKE values of 226Th fission fragments are plotted as
functions of fragment mass in Fig. 20. The dots represent
the result of Eq. (10), whereas the solid line follows the
experimental data of Ref. [40,51] obtained in electromagnetic-
induced fission measurements. One notices that theoretical
results present many more structures than do experimental
data. This difference may be explained from the fact that
the experimental measurements correspond to an excitation
energy of the fissioning nucleus of the order of 11 MeV,
whereas formula (10) is valid only for low-energy fission.
As is well known, an increase in the fission energy smooths
out kinetic energy distribution. In particular the kinetic energy
in the symmetric mass region increases [52], which explains
why experimental TKE display only a very shallow minimum
for Afrag = A/2.

The experimental TKE values display maxima for Afrag �
132 (Zfrag � 54) and Afrag � 94 (Zfrag � 36), whose positions
coincide with those found in our calculations. The sharp
structures in the theoretical TKE stem from the compactness
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FIG. 20. 226Th. TKE values of nascent fission fragments as a
function of fragment mass. Comparison between predictions (solid
dots) and data [40,51].

of scission configurations marked with the symbols d, e, and
f in Fig. 5. They do not show up in the experimental TKE
values, as details of the energy landscape along the scission line
are presumably washed out by the dynamics of the Coulomb
induced fission process [53]. Nonetheless, theoretical results
are in qualitative agreement with experimental data, with
deviations never exceeding 15%, and the calculated mean TKE
value (TKE)th ∼ 169 MeV is found close to the experimental
mean value (TKE)exp = 167.7 ± 3.4 MeV [1].

3. Total kinetic energy for 256−260Fm.

The TKE values of 256−260Fm fission fragments are plotted
in Fig. 21 as functions of fragment mass. The TKE curves
look rather similar in all three isotopes. They display a sharp
peak reaching TKE � 250 MeV for symmetric fission. These
features are characteristic of compact scission, where the
fissioning system gives rise to nearly spherical fragments
separated by a small distance. Furthermore, we also observe
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FIG. 21. (Color online) 256−260Fm. TKE values of nascent fission
fragments as functions of fragment mass.
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FIG. 22. 256Fm. TKE values of fission fragments as functions of
fragment mass. Results of theoretical calculations (dots) are displayed
with pre-neutron-emission data (contour diagram). The solid line
represents the experimental average TKE [54].

that the full width 
TKE at half maximum narrows from

TKE = 20 u to 
TKE = 14 u in going from 256Fm to 260Fm.

Theoretical TKE in 256Fm (black points) are compared
with experimental ones [54] in Fig. 22. Calculated results
are found in very good agreement with the average TKE
data for asymmetric fission (Afrag = 138–150). However, they
overestimate the experimental values for Afrag < 138 by up
to 16%. This latter feature may indicate that the calculated
distance between fragment charges dch is too small for scission
configurations close to symmetry. This remark is consistent
with the fact that for the same fragmentations, νfrag values
calculated from deformation energies is underestimated (see
Fig. 15). These under- and overestimations are interpreted as
due to our study, restricted to the (q20, q30) deformations,
which favors compact scission. Accessing elongated fission
configurations for nearly symmetric fragmentations of 256Fm
implies that at least three collective coordinates must be
considered in constrained HFB calculations.

IV. CONCLUSION

In this work, large-scale HFB calculations using the Gogny
D1S force were performed to investigate structure properties
of 226Th and 256−260Fm at scission and the characteristics of
fission fragments along scission lines. Scission configurations
are first analyzed assuming that axial quadrupole and octupole
collective coordinates play a major role in fission. We
have found from our constrained HFB calculations that the
scission mechanism depends on which heavy nuclide and
fragmentation are considered. This mechanism may display
either a smooth or an abrupt character in the (q20, q30) plane.
The former property means that the potential energy of the
fissioning system changes smoothly over deformation from
outer saddle to scission and beyond where Coulomb repulsion
takes place between fission fragments. This scission property
is found for the Fm symmetric fragmentations. For asymmetric
fragmentations in all nuclei of present interest, there is a sudden
drop in potential energies whenever scission takes place. To
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accommodate these contrasted properties, postscission points
are defined for matter densities present in the neck that are
weaker than ρ = 0.06 fm−3. With this criterion, scission lines
are calculated and the fragmentations determined assuming
sharp cuts across the necks.

Properties of fission fragments and correlations with prop-
erties of fissioning systems along scission lines have been
discussed. These comprise potential and deformation energies,
quadrupole and octupole deformations, total kinetic energies,
prompt neutron emissions, deviation from unchanged charge
distribution, and energy partitioning. All these properties
reflect either shell and/or pairing contents of potential energies
of both fission fragments and fissioning nuclei, in particular
for multipole deformations, neutron multiplicities, and total
kinetic energies. Predictions are found in reasonably good
agreement with experimental data for total kinetic energy
(226Th, 256Fm) and prompt neutron multiplicity (256Fm) of
fission fragments.

The present microscopic analysis shows that the structure
of the two-dimensional (q20, q30) potential energy surface in
226Th is similar to those previously calculated in U and Pu.

The different behavior with respect to scission found in Fm
isotopes and the fact that symmetric elongated configurations
do not appear in our description may indicate that a collective
space with more that two dimensions is needed to describe
scission configurations and fragment properties in these nuclei.
Preliminary investigations show that other heavy actinides
probably also require an enlargement of the dimension of
the collective space used. In view of the encouraging results
obtained so far, in particular in light actinides, it seems
worth attempting to extend the present static calculation to
three dimensions or even more. Of course, a description
of fission observables such as fragment mass and kinetic
energy distributions will also require an extension of the
two-dimensional dynamical model employed in uranium [20]
to higher dimensions.
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