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The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to energy
diffusion of intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear
many-body system, a set of coupled dynamical equations for the collective classical variable and the quantum
mechanical occupancies of the intrinsic nuclear states is derived in the limit of weak coupling of the collective
and intrinsic subsystems. Different dynamical regimes of the intrinsic nuclear motion and its consequences on
time properties of collective dissipation are discussed.
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I. INTRODUCTION

The appearance of dissipation for large-amplitude collec-
tive motion in nuclei is still an unsolved problem. The transport
models of the nuclear collective motion like the linear response
theory [1] or the wall-formula approach [2] assume a priori
that the collective dynamics is adiabatically slow, such that
the fast intrinsic nucleonic subsystem has always sufficient
time to adjust to the large changes of collective deformation
parameters. In that case, one can say that statistical equilibrium
for the fast intrinsic subsystem is established instantaneously,
providing the essentially Markovian equations of motion for
the collective variables.

In the general case the adiabaticity of the collective motion
must not be implied a priori, and one should consider self-
consistently dynamics of the collective and intrinsic nucleonic
degrees of freedom. This is quite important when we are
dealing with nuclear fission at high excitation energies or the
initial stage of heavy ion collisions, i.e., when the typical times
for the macroscopic collective and intrinsic nucleonic motions
are of the comparable size. Here, one would rather expect a
non-Markovian collective dynamics caused by the complex
energy flow between the macroscopic collective and intrinsic
nucleonic modes.

Memory (non-Markovian) effects in a time evolution
of the collective parameters have been studied within the
linear response theory [3], the time-dependent shell-model
theory [4] and in the Fermi-liquid model [5,6]. While in
all these approaches the main focus is on non-Markovian
collective motion, we shall concentrate on the self-consistent
description of the dynamics of the collective and nucleonic
degrees of freedom. We start the discussion from general
non-Markovian dynamics for occupancies of intrinsic quantum
states, and then study how the different dynamical regimes of
the intrinsic nucleonic excitations define dissipative properties
of the macroscopic collective motion.

The plan of the paper is as follows. In Sec. II we start from
the cranking approach to the nuclear many-body problem.
Section III is devoted to the quantum-mechanical description
of the intrinsic nuclear excitations. The different regimes of the
intrinsic quantum dynamics are discussed in Sec. IV. In Sec. V,
we derive a system of coupled equations for the slow collective

and fast intrinsic modes of the nuclear many-body motion, and
measure how the energy diffusion of the quantum-mechanical
occupancies of the nuclear states defines the time properties of
the collective friction. We apply our model to the description
of nuclear fission dynamics on the part of descent from fission
barrier to scission point in Sec. VI. Finally, conclusions and
discussion of the main results of the paper are given in the
Summary.

II. NUCLEAR MACROSCOPIC MOTION

The total energy of the nucleus under collective excitation
�tot may be written as

�tot = Epot(q) + 1

2
B(q)q̇2 + E∗(t), (1)

where q(t) is a single classical collective variable (a “nuclear
deformation”), Epot is the collective potential energy, B is the
collective mass coefficient, and E∗ is the excitation energy
of the intrinsic nucleonic degrees of freedom. Writing the
energy of the nucleus in the form of Eq. (1), we pick out
explicitly the contribution from the virtual transition between
the nuclear states, which gives rise to a collective kinetic energy
term (1/2)Bq̇2, and the contribution from the real nuclear
transitions leading to the intrinsic excitation energy E∗.

Since the total energy of the nucleus is conserved, we
can derive an equation of motion for the classical collective
variable q by differentiating with respect to time the both sides
of Eq. (1),

B(q)q̈ = −1

2

∂B(q)

∂q
q̇2 − ∂Epot(q)

∂q
− 1

q̇

dE∗(t)

dt
. (2)

To study how dissipation in the collective motion may arise, in
next section we derive an expression for the intrinsic excitation
energy E∗.

III. INTRINSIC QUANTUM DIFFUSIVE DYNAMICS

We treat intrinsic nucleonic motion of the nucleus quantum-
mechanically and start from the Liouville equation for the
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V. M. KOLOMIETZ, S. ÅBERG, AND S. V. RADIONOV PHYSICAL REVIEW C 77, 014305 (2008)

density matrix operator ρ̂,

∂ρ̂(t)

∂t
+ iL̂(t)ρ̂(t) = 0, (3)

where L̂ is the Liouville operator defined in terms of the
commutator

L̂ρ̂ = 1

h̄
[Ĥ , ρ̂] (4)

of the intrinsic nucleonic many-body Hamiltonian Ĥ (q[t]).
Then, using Zwanzig’s projection technique [7], we in-

troduce a projection operator P̂ and split the density matrix
operator into the diagonal and the nondiagonal parts,

ρ̂ = ρ̂d + ρ̂od , (5)

where the diagonal part is defined as

ρ̂d = P̂ ρ̂, (6)

and the nondiagonal part is given by

ρ̂od = (1 − P̂)ρ̂. (7)

It is assumed that the projection operator P̂ is linear and
time-independent. Acting on the Liouville equation (3) by the
operators P̂ and 1 − P̂ from the left, we obtain a system of
equations for ρ̂d and ρ̂od

∂ρ̂d

∂t
+ iP̂L̂(ρ̂d + ρ̂od ) = 0, (8)

∂ρ̂od

∂t
+ i(1 − P̂)L̂(ρ̂d + ρ̂od ) = 0, (9)

with the initial condition

ρ̂od (t = 0) = 0. (10)

Formally, a solution to Eq. (9) can be written as

ρ̂od (t) = −i

∫ t

0
exp

{
−i

∫ t−t ′

0
(1 − P̂)L̂(t ′′)dt ′′

}

× (1 − P̂)L̂(t ′)ρ̂d (t ′)dt ′. (11)

Substituting solution (11) into Eq. (8), we obtain a closed
equation for the diagonal part of the density matrix
operator ρ̂d

∂ρ̂d (t)

∂t
+ iP̂L̂(t)ρ̂d (t)

= −
∫ t

0
P̂L̂(t) exp

{
−i

∫ t−t ′

0
(1 − P̂ )L̂dt ′′

}

× (1 − P̂)L̂(t ′)ρ̂d (t ′)dt ′ (12)

which is the basic kinetic equation of Zwanzig’s approach
[7,8].

Let us write the basic kinetic equation (12) in matrix form.
With that, we use an adiabatic basis of the intrinsic many-body
Hamilton operator Ĥ (q),

Ĥ (q)�n(q) = En(q)�n(q). (13)

That is determined by a set of static many-body wave functions
�n and energies En found at each fixed value of the collective
variable q. Using the adiabatic basis (13), the time-dependence

of the matrix elements of the density matrix operator ρ̂ are
given by

ρnm(t) = exp

{
−i

∫ t

0
ωnm(t ′)dt ′

}
〈�n|ρ̂|�m〉, (14)

and the matrix elements of the Liouville operator L̂ (4) are
equal to

(L̂)nmn′m′ = exp

{
−i

∫ t

0
ωnn′ (t ′)dt ′

}
〈�n| ∂

∂t
|�n′ 〉δmm′

− exp

{
−i

∫ t

0
ωm′m(t ′)dt ′

}
〈�m′ | ∂

∂t
|�m〉δnn′ ,

(15)

where ωnm = (En − Em)/h̄.
The second term on the left-hand side of Eq. (12) with the

choice of the projection operator P̂ ,

(P̂)nmn′m′ = δnmδn′m′δnn′ , (16)

vanishes, since in this case

P̂L̂P̂ = 0. (17)

Therefore, from Eq. (12) we obtain

∂ρ̂d (t)

∂t
= −

∫ t

0
P̂L̂(t) exp

{
−i

∫ t−t ′

0
(1 − P̂ )L̂dt ′′

}

× (1 − P̂)L̂(t ′)ρ̂d (t ′)dt ′. (18)

Writing down the last equation in the matrix notations, we
obtain

∂ρnn(t)

∂t
=

∑
m�=n

∫ t

0
Hnnmm(t, s)[ρmm(s) − ρnn(s)]ds, (19)

where the integral kernel Hnnmm is equal to

Hnnmm(t, s) = −
(
P̂L̂(t) exp

{
−i

∫ t−s

0
(1 − P̂)L̂(t ′)dt ′

}

× (1 − P̂)L̂(s)

)
nnmm

, (20)

where it was used that∑
m

Hnnmm = 0. (21)

We will proceed by considering the integral kernel Hnnmm of
our basic kinetic equation (19) and first represent the matrix
elements of the Liouville operator (15) as

(L̂)nmn′m′ = q̇

En − En′
exp

{
−i

∫ t

0
ωnn′ (t ′)dt ′

}

×〈�n|∂Ĥ

∂q
|�n′ 〉δmm′ − q̇

Em′ − Em

exp

×
{
−i

∫ t

0
ωm′m(t ′)dt ′

}
〈�m′ |∂Ĥ

∂q
|�m〉δnn′ , (22)

see Eq. (13). Here, the matrix elements (∂Ĥ/∂q)nm mea-
sures the coupling between the quantum nucleonic and
the macroscopic collective subsystems. Assuming that the
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energy distances En − Em rapidly fluctuate with time, we can
approximately write for the integral kernel (20)

Hnnmm(t, s) ≈
∑
abcd

q̇(t)q̇(s)

(Ea − Eb)(q[t])(Ec − Ed )(q[t])

×
(

∂Ĥ

∂q

)
ab

(q[t])

(
∂Ĥ

∂q

)∗

cd

(q[s])

× exp(−iωab · t) exp(iωcd · s)Gabcd (t, s)

× (δbn − δan)(δdm − δcm), (23)

where star stands for the complex conjugation and

Gabcd (t, s) =
(

exp

{
−i(1 − P̂)

∫ t−s

0
L̂(t ′)dt ′

})
abcd

. (24)

Since the integral kernel (23) already contains factors of
second order in the intrinsic-collective coupling, the term
Gabcd determines nonperturbative response of the intrinsic
quantum subsystem (3) and (4).

At high excitation energies, the nuclear spectrum is very
complex and can be described by random matrix theory [9].
Thus, we average the right-hand side of Eq. (19) over suitably
chosen statistics of the randomly distributed coupling matrix
elements and the energy spacings. In the random matrix theory,
the ensemble averaging over the energy spacings and matrix
elements can be performed independently. First, we perform
the ensemble averaging over the matrix elements. They are
treated as complex random numbers with the real and the
imaginary parts which are independently Gaussian distributed,
and with (

∂Ĥ

∂q

)
nm

(q)

(
∂Ĥ

∂q

)∗

n′m′
(q ′)

= δnn′δmm′σ 2(En,Em)Y (q − q ′), (25)

where Y (q − q ′) is a correlation function, measuring how
strong the ensemble averaged matrix elements correlate at
different collective deformations q and q ′, and σ 2(En,Em)
is the energy distribution of the squared matrix elements. It is
rather clear that at high excitation energies the coupling matrix
elements between the complex many-body states should drop
out with increasing energy distance between them. In order to
characterize the energy distribution of the matrix elements,
we introduce the strength of the distribution σ 2

0 and its
width �. To clarify the physical meaning of the quantities
σ 2

0 and �, one may use the random matrix approach of
Ref. [10], where the nuclear many-body states are constructed
on unperturbed basis states which are linearly coupled to
the external time-dependent classical variable q(t), and the
complexity is achieved by adding the two-body interaction.
In this approach, σ 2

0 is the variance of the slopes, ∂En/∂q,
of the many-body energy levels. The strength of the two-
body interaction, introduced to model the effect of residual
interaction between nucleons, defines the spreading width �

of the squared of–diagonal matrix elements |(∂Ĥ/∂q)nm|2, for
example, via Fermi’s Golden Rule. Thus, we have

σ 2(En,Em) = σ 2
0√

	(En)	(Em)�
f (|En − Em|/�), (26)

where 	(E) is the average level-density at given excitation
energy and f is a shape of the energy distribution of the cou-
pling matrix elements with the natural boundary conditions,
f (0) ∼ 1 and f (∞) = 0.

In ensemble averaging the integral kernel (23), we assume
that(

∂Ĥ

∂q

)
ab

(
∂Ĥ

∂q

)∗

cd

Gabcd ≈
(

∂Ĥ

∂q

)
ab

(
∂Ĥ

∂q

)∗

ab

· Ḡabab,

(27)

leading us to [see Eqs. (19), (25), and (26)]

∂ρ̄(En, t)

∂t
= 2σ 2

0 q̇(t)√
	(En)�

∫ t

0
dsq̇(s)Y (q[t] − q[s])

×
∫ +∞

Eg.s.

dEm

√
	(Em)f (|En − Em|/�)Ḡnmnm

× (En,Em, t − s)
cos{[En − Em][t − s]/h̄}

(En − Em)2

× [ρ̄(Em, s) − ρ̄(En, s)], (28)

where Eg.s. is the nuclear ground-state energy and the summa-
tion over all descrete states m was replaced by the integration
over the corresponding continuous energy variable Em.

The energy spacings part of the ensemble averaging pro-
cedure is defined through the two-level correlation function,
R(	|En − Em|), that is the probability density to find the state
m with energy Em within the interval [Em,Em + dEm] at
the average distance |En − Em| from the given state n with
energy En. In the nuclear case, the many-body Hamiltonian Ĥ

obeys time-reversal symmetry implying the usage of Gaussian
orthogonal ensemble (GOE) to model the nuclear spectrum.
For a general mesoscopic system [11], Ĥ may not have a
time-reversal symmetry and one has to use Gaussian unitary
ensemble (GUE) of many-body levels. Correspondingly,

(i) For the GOE statistics [12]

RGOE(x) = 1 −
(

sin(πx)

πx

)2

+
(∫ 1

0
dy

sin(πxy)

y
− π

2

)

×
(

cos(πx)

πx
− sin(πx)

(πx)2

)
, (29)

(ii) while in the GUE case

RGUE(x) = 1 −
(

sin(πx)

πx

)2

, (30)

where x ≡ |En − Em|	(En). The behavior of the two-
level correlation function R(x) with the normalized
level spacing x for the different statistical ensembles
(29) and (30) is shown in Fig. 1. The main difference
between the GOE and GUE cases, seen in Fig. 1, is
the behavior of R(x) at small energy spacings x. For
the GOE statistics one has the linear repulsion between
levels, RGOE ∼ x, while the GUE statistics implies the
quadratic level repulsion, RGUE ∼ x2. On the other hand,
RGOE and RGUE are similar at moderate spacings x, when
the spectral correlations between levels consistently
disappear.
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FIG. 1. The two-level correlation function
R(x) vs the normalized level spacing x for the
different Gaussian ensembles of Eqs. (29) and
(30) of energy levels.

Introducing the new energy variables,

E ≡ En, e ≡ En − Em, (31)

we rewrite the dynamical equation (28) for the occupancies
of the intrinsic many-body states within the random matrix
approach as

∂ρ̄(E, t)

∂t
= 2σ 2

0 q̇[t]√
	(E)�

∫ t

0
dsq̇[s]Y (q[t] − q[s])

×
∫ +∞

−∞

√
	(E − e)R(	|e|)f (|e|/�)

× Ḡ(E, e, t − s)
cos(e[t − s]/h̄)

e2

× [ρ̄(E − e, s) − ρ̄(E, s)]. (32)

The integration limits over the energy spacing e were extended
to infinities since the time changes of the occupancy ρ̄(E, t) of
the given intrinsic state with the energy E are mainly due to the
direct interlevel transitions from the close-lying states located
at the distances |e| � E. The same assumptions enable us to
truncate expansion to e3-order terms,√

	(E − e)[ρ̄(E − e, s) − ρ̄(E, s)]

= −
√

	(E)
∂ρ̄(E, s)

∂E
e + 1

2
√

	(E)

d	(E)

dE

∂ρ̄(E, s)

∂E
e2

+
√

	(E)

2

∂2ρ̄(E, s)

∂E2
e2 + O(e3). (33)

Substituting the expansion (33) into Eq. (32), the odd-e terms
drop out and we obtain the diffusion-like equation of motion
for the occupancy ρ̄(E, t),

	(E)
∂ρ̄(E, t)

∂t
≈ σ 2

0 q̇(t)
∫ t

0
dsK(t, s)q̇(s)

× ∂

∂E

[
	(E)

∂ρ̄(E, s)

∂E

]
. (34)

In Eq. (34), the memory kernel, K(t, s), is defined as

K(t, s) = 1

�
Y (q[t] − q[s])

∫ +∞

∞
deḠ(q̇, e, t − s)f (|e|/�)

×R(|e|	(E)) cos(e[t − s]/h̄). (35)

To define the nonperturbative factor Ḡnmnm in Eq. (35), we
use an expansion of Eq. (24) in powers of (1 − P̂)L̂,

Gnmnm(t) =
(

1 + (−i)
∫ t

0
dt1(1 − P̂)L̂(t1) + (−i)2

×
∫ t

0
dt1(1 − P̂)L̂(t1)

×
∫ t1

0
dt2(1 − P̂)L̂(t2) + . . .

)
nmnm

. (36)

By applying the ensemble averaging procedure (25) to
Eq. (36), we see that Ḡnmnm contains only even powers of
the Liouville operator L̂ and such an expansion of Ḡnmnm in
terms of L̂ is determined by a perturbation parameter

α ∼
∣∣∣∣
(∫ t

0
dt1

∫ t1

0
dt2(1− P̂)L̂(t1)(1− P̂)L̂(t2)

)
nmnm

∣∣∣∣ . (37)

With the help of Eqs. (16), (22), and (25), one can show that

α =
∣∣∣∣
∫ t

0
dt1q̇(t1)

∫ t1

0
dt2q̇(t2)Y (q[t1] − q[t2])

×
{∑

c

σ 2(Ec,En)

(Ec − En)2
cos([Ec − En][t1 − t2]/h̄)

+
∑

d

σ 2(Ed,Em)

(Ed − Em)2
cos([Ed − Em][t1 − t2]/h̄)

− 2
σ 2(En,Em)

(En − Em)2
cos([En − Em][t1 − t2]/h̄)

}∣∣∣∣ . (38)

Attempting to estimate the maximal value of the perturbation
parameter (37), we assume at the moment equidistant spectrum
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of the nucleonic many-body states with the average level-
density 	. Thus, we obtain

α ∼ σ 2
0

	�
	2q̇2τ 2

coll, (39)

where τcoll is the typical time of the nuclear collective motion
(a duration of the physical process).

IV. DIFFERENT REGIMES OF THE INTRINSIC
QUANTUM DIFFUSIVE DYNAMICS

Three different timescales enter the intrinsic nucleonic
diffusive dynamics (34)–(35). The first timescale, τcor, is the
timescale characterizing the decay of time correlations of the
coupling matrix elements. It can simply be estimated from
perturbation theory as

τcor ∼ 1

(σ0/
√

	�)	q̇
. (40)

The second one is the characteristic timescale h̄/� caused
by the finite width � of the energy distribution (26) of the
ensemble averaged matrix elements (25). And the third one is
the typical time of the nuclear collective motion τcoll. In the
paper, we do not investigate the effect of the time correlations
of the coupling matrix elements by putting

Y (q − q ′) = 1. (41)

The assumption (41) may be justified either by neglect-
ing the time variations of the coupling matrix elements
((∂Ĥ/∂q)nm(q[t]) ≈ (∂Ĥ/∂q)nm(q[t = 0])), or by consider-
ing the correlation time τcor (40) of the matrix elements to be
the largest timescale in the system

τcor � τcoll

(
1

(σ0/
√

	�)	q̇
� τcoll

)
. (42)

Moreover, we treat the intrinsic diffusive dynamics in weak-
coupling limit implying that the perturbation parameter α (39)
is quite small. In that case, the nonperturbative factor Ḡnmnm

can be well approximated by one,

Ḡnmnm ≈ 1 for α ∼ σ 2
0

	�
	2q̇2τ 2

coll � 1. (43)

Such a weak-coupling limit of the nucleonic motion is fulfilled
if either the displacements 
q = q[t] − q[t = 0] ≈ q̇τcoll of
the collective deformation is small, or the coupling between the
quantum intrinsic and the macroscopic collective subsystems
is weak (σ 2

0 is small). Thus, we obtain for the memory
kernel (35)

K(t − s) = 1

�

∫ +∞

∞
de f (|e|/�)R(|e|	(E))

× cos(e[t − s]/h̄), (44)

which is the decaying function of |t − s| and whose time
spread is given by h̄/�.

Equations (34) and (44) describe the process of energy
diffusion within the space of highly excited many-body states.
The intrinsic energy diffusion has the retarded character, giving
rise both to the characteristic short-time oscillations of the

occupation probabilities ρ̄(E, t) and to its relaxation for long
times. The relative size of the memory effects in the intrinsic
diffusive motion is defined by the counterplay of the time-
spread h̄/� of the memory kernel (44) and the characteristic
time of the collective motion τcoll. It is important that we do
not assume a priori that the time h̄/� should be the smallest
timescale in the system, such that any peculiarities in the time
evolution of the occupation probabilities can be neglected and
we are dealing with ordinary (Markovian) master equation
for ρ̄(E, t) describing its relaxation to equilibrium for each
value of the collective deformation q[t]. In contrast to that, our
aim is to investigate the complex self-consistent dynamics of
the intrinsic nucleonic excitations and macroscopic collective
deformation as a function of the width � of the energy
distribution (26) of the squared coupling matrix elements
on the nuclear many-body dynamics (see Sec. V for that
discussion).

In our model, the intrinsic quantum subsystem (3)–(4) can
be excited due to the coupling between different complex
many-body states determined by the width �. The latter
may be interpreted such that each many-body state, in some
sense, has some finite width �, caused by its interaction
with the neighboring states, and which decays over time of
the order h̄/�, leading to the excitation of the nucleonic
subsystem. In this respect, � defines the time-irreversible
energy flow (dissipation) from the collective modes of the
nuclear many-body motion to the intrinsic nucleonic ones. By
varying �, one can distinguish different regimes of the intrinsic
energy diffusion (34):

(i) h̄/� � τcoll. In this case, K(t − s) is sharply peaked
around t = s, and one can integrate by parts the right-
hand side of Eq. (34) and keep only leading order term
in a small parameter h̄/�. Thus, we obtain a Markovian
limit of the intrinsic dynamics (34):

	(E)
∂ρ̄(E, t)

∂t
≈ h̄σ 2

0 f (0)

�
q̇2(t)

∂

∂E

×
[
	(E)

∂ρ̄(E, t)

∂E

]
. (45)

Here, the intrinsic energy diffusion is determined by the
diffusion coefficient DE = h̄σ 2

0 f (0)q̇2/� which grows
with the square of the collective velocity q̇ and drops
out with the increase of the width �. The latter feature
of the quantum mechanical energy diffusion can be
understood as follows. The width � of the energy
distribution of the squared matrix elements (26) defines
an effective number of states N ∼ �	(E) coupled by
the transition operator ∂Ĥ/∂q at the given excitation
E. The initially occupied many-body state with energy
E will spread out over neighboring states, resulting
in a gradual equilibration of the quantum mechanical
intrinsic subsystem. The larger �, the closer the intrinsic
subsystem to the equilibrium and therefore, the weaker
the energy diffusion.
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(ii) h̄/� � τcoll. Now, we can put approximately K(t −
s) ≈ K(0) for the memory kernel in Eq. (34) and obtain

	(E)
∂ρ̄(E, t)

∂t
≈ σ 2

0 K(0)q̇(t)
q(t)
∂

∂E

×
[
	(E)

∂ρ̄(E, t)

∂E

]
. (46)

Here, the diffusion coefficient DE = σ 2
0 K(0)q̇
q is

linearly proportional to the collective velocity q̇ and
does not depend on the width �.

(iii) h̄/� ∼ τcoll. In the intermediate case, the memory effects
in the intrinsic energy diffusion (34) will be of maximal
size.

We should underline the fact that the above considered
different dynamical regimes (45)–(46) of the intrinsic energy
diffusion were derived in the weak-coupling limit (43). Al-
though the width � enters the condition for the weak-coupling
limit, nevertheless we believe that Eq. (43) is still fulfilled even
at the Markovian regime (46) of the intrinsic energy diffusion,
i.e., when the width � is implied to be relatively small.

It is natural to address a question of the effect of level
statistics (29)–(30) on the intrinsic energy diffusion. We
believe that the energy diffusion will differ significantly for
the statistical ensembles of levels (29)–(30) only at quite small
values of the width �,� � 1/	, i.e., when the features of the
nuclear spectrum at small spacings between levels show up;
see Fig. 1. On the other hand, at quite large widths � � 1/	

the spectral statistics effect is of a minor role as far as the
statistical ensembles of levels (29)–(30) show the universal
behavior at large level spacings. The latter regime is realized
for the highly excited nuclei provided that the width � of the
energy distribution of the coupling matrix elements (26) may
lie in a quite wide energy window � ∼ (100–106) eV.

We may illustrate quantitatively our general discussion of
the intrinsic energy diffusion by calculating the memory ker-
nel (44) for a Lorentzian shape of the energy distribution (26)

of the coupling matrix elements,

f (|e|/�) = 1/π

(e/�)2 + 1
. (47)

To estimate the spectral statistics effect, we evaluated the
memory kernel K(t − s) at s = t for the different levels
ensembles (29)–(30). The corresponding results for K(0) as a
function of the reduced width �	(E) are shown in Fig. 2. As
was discussed above, the level statistics play a role only for
quite small parameters �	(E) and the effect from the spectral
statistics on the intrinsic energy diffusion (34) disappears at
large widths �	(E).

For �	 � 1, one can find analytically the memory ker-
nel (44)

K(t − s) = exp

(
−|t − s|

h̄/�

)
, (48)

leading to the following non-Markovian equation of motion
for the occupancy ρ̄(E, t) of the given nuclear state E:

	(E)
∂ρ̄(E, t)

∂t
= σ 2

0

�
q̇(t)

∫ t

0
exp

(
−|t − s|

h̄/�

)
q̇(s)

∂

∂E

×
[
	(E)

∂ρ̄(E, s)

∂E

]
ds. (49)

V. INTRINSIC DIFFUSION AND COLLECTIVE
DISSIPATION

Now we are able to obtain a dynamical equation for the
intrinsic excitation energy of the nucleus E∗(t),

E∗(t) =
∑

n

Enρ̄nn(t) =
∫ +∞

0
dE	(E)Eρ̄(E, t), (50)

which enters the equation of motion (2) for the classical
collective variable q(t). By using Eq. (34), one gets after partial
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GUE FIG. 2. Dependence of the non-
Markovianity of the intrinsic nucleonic
dynamics (34) on the reduced width �	(E) of
the Lorentzian energy distribution (47) of the
coupling matrix elements. The dependence is
shown for the different spectral statistics (29)
and (30).
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integration

dE∗

dt
= σ 2

0

�
q̇(t)

∫ t

0
exp

(
−|t − s|

h̄/�

)
q̇(s)

×
∫ +∞

0

d	(E)

dE
ρ̄(E, s)dEds. (51)

We stress immediately that the collective motion is un-
damped for the constant nuclear level-density, 	(E) = const.
In that case the intrinsic subsystem is not excited during the
collective motion, E∗(t) = E∗(t = 0) and therefore, due to
the energy conservation condition (1), the collective energy is
constant in time. This means that the growth of the average
nuclear level-density 	 with energy is the necessary condition
for the collective dissipation. In the sequel, we will use the
constant–temperature level-density,

	(E) = c · exp(E/T ), (52)

where T is the temperature of the nucleus, and which leads us
to non-Markovian collective dynamics,

B(q)q̈(t) = −1

2

∂B(q)

∂q
q̇2(t) − ∂Epot(q)

∂q

− σ 2
0

T

∫ t

0
exp

(
−|t − s|

h̄/�

)
q̇(s)ds. (53)

We see from Eq. (53) that the non-Markovian character of
the intrinsic nuclear dynamics (34) gives rise to the presence
of memory effects in the macroscopic collective motion.
Correspondingly, the Markovian limits of the intrinsic energy
diffusion (45) and (46) would correspond to the Markovian col-
lective motion. Indeed, for the quite broad energy distributions
of the squared coupling matrix elements (26), h̄/� � τcoll, we
obtain

B(q)q̈(t) = −1

2

∂B(q)

∂q
q̇2(t) − ∂Epot(q)

∂q
− h̄σ 2

0

�T
q̇(t). (54)

Here an ordinary friction force with the friction coefficient
h̄σ 2

0 /(�T ) appears as a result of the Markovian intrinsic energy
diffusion (45).

In the opposite case of the intrinsic dynamics (46), when the
energy distribution of the matrix elements is strongly peaked,
h̄/� � τcoll, we obtain a frictionless limit of the collective
motion,

B(q)q̈(t) = −1

2

∂B(q)

∂q
q̇2(t) − ∂Epot(q)

∂q

− σ 2
0

T
(q(t) − q0), (55)

when the retarded force in the right-hand side of Eq. (53) is
reduced to a pure conservative force σ 2(q − q0)/T .

VI. NUCLEAR FISSION CALCULATIONS

Even within a very simple one-dimension model for the col-
lective dynamics (53), we may calculate quantities which can
be estimated from experimental observables. Let us consider
a symmetric fission of the highly excited 236U. The classical
collective variable q(t) can be chosen as the elongation of
axial symmetric nuclear shape measured in units of the radius
R0 = r0A

1/3 of the nucleus. The collective potential energy
from saddle point to scission Epot(q), shown in Fig. 3, is
approximated by an inverted parabolic potential [13,14]

Epot(q) = 8 MeV − 1
2h̄ωf B(q0)(q − q0)2, (56)

where h̄ωf = 1.16 MeV, q0 is the initial (saddle-point)
deformation of the nucleus, q0 = q(t = 0) = 1.6, and B(q) is
the collective mass coefficient derived for the incompressible
and irrotational nuclear fluid,

B(q) = 1

5
AmR2

0

(
1 + 1

2q3

)
, (57)
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FIG. 3. Dependence of the collective poten-
tial energy Epot on the nuclear shape parameter q

during the descent from the top of fission barrier
q0 to the scission point qsc (58).

014305-7
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with the nucleonic mass m. The scission point qsc can be
obtained from the following condition [14]:

Epot(q0) − Epot(qsc) = 20 MeV. (58)

The initial collective kinetic energy is taking to be equal to
1 MeV.

Characterizing the intrinsic nuclear motion, we adopt the
initial temperature of the nucleus T = 2 MeV and estimate the
strength σ 2

0 of the EASME’s distribution within the Nilsson
model for single-particle nuclear states in an anisotropic
harmonic oscillator potential, see Ref. [15]:

σ 2
0 = 3m2ω3

0AR4
0

560πh̄
, (59)

with h̄ω0 = 41/A1/3 MeV.
Using Eq. (53), we calculated numerically from Eq. (53) the

time, tsc, of the nuclear descent from the top of fission barrier
q0 to the scission point qsc (58). The corresponding results
for the saddle-to-scission time tsc are plotted in Fig. 4 as a
function of the width � of the Lorentzian energy distribution
of the squared coupling matrix elements (26). As can be seen
from Fig. 4, the time for the nuclear descent tsc decreases with
the increase of the width � of the matrix elements’ energy
distribution. In order to explain such kind of behavior of tsc, we
represent the retarded force in the right-hand side of Eq. (53)
as a sum,

−σ 2
0

T

∫ t

0
exp

(
−|t − s|

h̄/�

)
q̇(s)ds

= −γ (t, h̄/�)q̇(t) − C̃(t, h̄/�)(q(t) − q0), (60)

where γ and C̃ are the time-dependent friction and stiffness
coefficients, respectively. The separation (60) of the retarded
force is general in the sense that it always contains the
time-irreversible (the friction part) and time-reversible (the
conservative part) contributions. In fact, the memory effects in
the collective dynamics (53) give rise to the friction, γ (t)q̇(t),
and lead to the renormalization of the stiffness of the nuclear

many-body system,

C = −B(q0)(h̄ωf )2 + C̃(t, h̄/�), (61)

see Eqs. (53) and (60). It is important that C̃ is always positive
resulting in the additional hinders of the nuclear descent from
the fission barrier, see Ref. [16]. The relative sizes of the
friction and the dynamic conservative forces in Eq. (60) are
defined by the time-spread of the exponential kernel, h̄/�. If
the dynamic stiffness C̃ is expected to increase monotonically
with h̄/�, the friction coefficient γ is a nonmonotonic function
of the memory time h̄/�. At the limit of relatively small
values of h̄/� (the large-widths limit which we consider here),
both the friction and the dynamic conservative contributions
drop out with the memory time explaining the decay of the
saddle-to-scission time tsc with the width � of the EASME’s
distribution.

By using our previous estimations of the saddle-to-scission
time done in Ref. [16] for the same one-parametric nuclear
shape parametrization (56)–(58), tsc ∼ (6–12) × 10−21s, we
can conclude from Fig. 4 that the width � of the Lorentzian
energy distribution of the coupling matrix elements lies in the
interval 10 MeV � � � 20 MeV.

We also calculated the dependence of collective kinetic
energy at the scission point Eps on the width �, see Fig. 5.
As far as the nuclear descent gets faster with the width of
the matrix elements’ energy distribution, the collective energy
of the nucleus at the scission point will increase with �.
The estimated interval for the width, 10 MeV � � � 20 MeV,
obtained from our saddle-to-scission calculations (see Fig. 4),
gives realistic values of the pre-scission kinetic energy
1 MeV � Eps � 3 MeV [16].

VII. SUMMARY

In attempt to describe self-consistently the nuclear many-
body dynamics undergoing along macroscopic collective
path and intrinsic excitations, we have applied the cranking
approach (1)–(2) to the nucleus. We have introduced a single
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FIG. 4. The saddle-to-scission time tsc of the
symmetric fission of the 236U, calculated from
Eq. (53), is shown as a function of the width �

of the Lorentzian energy distribution (47) of the
coupling matrix elements.
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FIG. 5. The collective kinetic energy at the
scission point Eps vs the width � of the
Lorentzian energy distribution (47) of the cou-
pling matrix elements.

time-dependent classical variable q(t) to characterize the slow
collective nuclear motion, while the fast intrinsic modes of
the motion have been treated quantum-mechanically within
the Liouville equation (3) for the nuclear density matrix.
Applying the Zwanzig’s projection method [7], the intrinsic
nucleonic dynamics has been reduced to the equation of
motion for the occupancies of the nucleonic many-body
states. The basic kinetic Eq. (32) has been treated within
the random matrix approach (25)–(28), where the intrinsic
dynamics is averaged over the randomly distributed coupling
matrix elements (∂Ĥ/∂q)nm of the nucleonic many-body
Hamiltonian Ĥ and energy-level spacings e ≡ En − Em. The
used distribution of the coupling matrix elements (25) takes
into account both the correlations of the matrix elements at
different collective deformations q[t] and its dependence on
the distance between complex many-body states. The time
correlations of (∂Ĥ/∂q)nm(q[t]) have been described by the
correlation time (40), that is the characteristic time interval
over which the coupling matrix elements correlate effectively.
The energy distribution of the ensemble averaged matrix
elements (26) has been characterized with the help of two
parameters, the strength of the distribution σ 2

0 and its width �.
Our further investigation of the intrinsic nucleonic dynam-

ics has been done in the limit of weak-coupling (43) of the
quantum intrinsic and classical collective subsystems. We have
derived the non-Markovian diffusion-like equation (34) of
motion for the time evolution of the occupancies of the highly
excited nucleonic many-body states. We have not considered
the effect of the time correlations of the coupling matrix
elements (25) on the intrinsic diffusion dynamics which is
justified in the weak-coupling limit [see Eq. (42)] or, simply
because of the neglecting of the time variations of the matrix
elements ((∂Ĥ/∂q)nm(q[t]) ≈ (∂Ĥ/∂q)nm(q[t = 0]). In that
case, memory effects in the intrinsic energy diffusion (34)
are caused by the finite width � of the energy distribution
of the coupling matrix elements (26) that may lead to the
macroscopic retardation of the intrinsic nucleonic dynamics.
The relative size of the memory effects is defined by the

relation between the characteristic time scale of the nucleonic
motion h̄/� and the typical time of the collective motion τcoll.
We have found that at fairly broad energy distributions of
the coupling matrix elements (26), i.e., when h̄/� � τcoll,
Markovian regime (45) of the intrinsic energy diffusion is ob-
served with the diffusion coefficient quadratically depending
on the collective velocity q̇ and inversely proportional to the
width �. In the opposite case of quite small widths �,h̄/� �
τcoll, we also found the normal (Markovian) regime of the
intrinsic energy diffusion but with the diffusion coefficient
linearly proportional to the collective velocity q̇ and not
depending on the width �.

We have investigated how the level spacing statistics can
influence the intrinsic energy diffusion (34). Only in the case of
quite small widths of the matrix elements’ energy distribution,
�	 � 1, the significant difference of the intrinsic dynamics
for the Gaussian orthogonal (GOE) (29) and Gaussian unitary
(GUE) (30) ensembles of levels is expected. Such a difference
would disappear as far as the product �	 becomes larger and
larger. We may explain that by the fact that the transitions
between the nuclear states may be sensitive to the level
statistics only when the coupling between states is of order
of the average level spacing, � ∼ 1/	, i.e., when the different
small-spacing behavior of the GOE and GUE statistics may
show up. At high nuclear excitations, we have believed that
the product �	 � 1 and therefore, one can neglect the role
of the spectral statistics on the intrinsic energy diffusion (34).
We have illustrated quantitatively this feature of the intrinsic
dynamics by applying the Lorentzian energy distribution (47)
of the coupling matrix elements, see Fig. 3.

Our next goal was to calculate the nuclear fission’s
characteristics within our approach. By using the constant-
temperature level-density (52), we have derived non-
Markovian equation of motion (53) for the classical collective
variable q(t), where the influence of the intrinsic quantum
motion on the collective dynamics is determined by the
retarded friction force. Then the non-Markovian collective
dynamics (53) has been applied to describe descent of the
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nucleus 236U from the top of fission barrier to the scission
point approximating the collective potential energy on this
path by the inverted parabolic potential (56) [13,14]. We have
calculated the time of the nuclear descent, tsc (Fig. 4), and the
collective kinetic energy at the scission point, Eps (Fig. 5),
as a function of the width � of the energy distribution of
the coupling matrix elements. We have found that the nuclear
descent is hindered with the decrease of � due to the ordinary
friction force contribution and the additional conservative
dynamic force caused by the presence of memory effects in
Eq. (53) [16]. The relative size of the memory effects decreases
with the width of the matrix elements’ energy distribution and,

at � → ∞, we have frictionless limit of the collective motion,
see Eq. (55). From the calculations of the saddle-to-scission
time and the pre-scission kinetic energy we have estimated
the value of the width �, 10 MeV � � � 20 MeV, which is
consistent with the previous estimations of the analogous
quantity done in Refs. [17,18].
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