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A systematic study of the pairing correlations as a function of temperature and angular momentum was
performed in the sd-shell region using the spherical shell model approach. Pairing correlations were derived for
even-even, even-odd, and odd-odd systems near N = Z and also for the asymmetric case of N = Z + 4. The
results indicate that the pairing content and the behavior of pair correlations is similar in even-even and odd-mass
nuclei. For the odd-odd N = Z system, angular momentum I = 0 state is an isospin, t = 1 neutron-proton paired
configuration. Further, these t = 1 correlations are shown to be dramatically reduced for the asymmetric case of
N = Z + 4. The shell model results obtained are qualitatively explained within a simplified degenerate model.
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I. INTRODUCTION

It is well established that the pairing field is an important
component of the nuclear mean-field potential. The interplay
between the deformation driving forces and the pairing field
determines most of the properties of a nuclear system. The
relevance of the pairing field for the nuclear many-body system
was proposed in the pioneering work of Bohr, Mottelson, and
Pines in 1958 [1]. There are two issues related to the pairing
potential that still need to be elucidated. The first issue con-
cerns the detailed form of the pairing potential and the second
concerns the approximation employed for the solution of the
pairing force. Although, it is quite evident from the analysis
of the properties of nuclei, for instance, the suppression of
the moments of inertia of rotating nuclei and the observed
energy gaps, that the pairing field is essential for describing
atomic nuclei [2,3]. But most of the properties of nuclei are
rather insensitive to the detailed form of the potential in the
pairing or the particle-particle channel. In comparison, most of
the nuclear properties such as compressibility, surface energy,
effective masses, saturation, and other specific properties
critically depend on the exact form of the nuclear potential
in the Hartree Fock or particle-hole channel. In addition,
the potential in the particle-hole channel is constrained or
adjusted to the properties of the closed shell nuclei and the
pairing field is introduced in an ad hoc manner in most of the
density functional theories (DFT). In most of these approaches,
for instance, Skyrme and relativistic mean-field models, the
potential is chosen to be of zero range and therefore, in
principle, does not contain pairing correlations. In the finite
range Gogny density functional approach, the range of the
effective pairing force is adjusted to the properties of G matrix
calculated from the bare nucleon-nucleon interaction.

The second issue concerns the method employed to
solve the pairing interaction. The pairing field has been
primarily studied in the Bardeen-Cooper-Schrieffer (BCS)
or the Hartree-Fock-Bogoliubov (HFB) approximation. In
this approach, the pairing field depicts a sudden transitional
behavior as a function of rotational frequency and temperature
[4,5]. The pairing correlations are finite up to a certain
rotational frequency or temperature and then these correlations

suddenly vanish above this transitional point. The empirical
analysis of the experimental data, however, does not depict
this sudden phase transition and shows a smooth transition
from one phase to the other. The reason for this discrepancy
is known to arise from the neglect of the fluctuations in the
mean-field models [6–10].

It is known that the relative size of the fluctuations becomes
small for a system with a very large number of particles,
for example, a bulk superconductor, and sudden transitional
behavior is a hallmark of these macroscopic systems. However,
for systems with a finite number of particles, for instance,
atomic nuclei and metallic clusters, the fluctuations are impor-
tant and need to be incorporated for an accurate description
of these systems [11,12]. A powerful method to incorporate
the fluctuations is the projection theory. In particular, the
particle number projection methods are now readily available
to incorporate the fluctuations quite accurately. However,
these projection methods, before variation, are available only
at zero temperature [9,13–16] in the complete HFB framework.
It needs to be added that the particle number projection
analysis has been performed at finite temperature with BCS
ansatz [17,18].

The projection at finite temperature is more important as it
is known that the mean-field or BCS wave function for an even
or odd particle system has admixtures from both even and odd
neighboring particle numbers [12,19]. At zero temperature,
an even (odd) system has admixtures from only even (odd)
particle numbers. It has been also demonstrated recently,
in an exactly solvable model, that the pairing correlations
reappear at finite temperature after they are quenched at
zero temperature and high rotational frequency [8,20]. This
surprising result, which completely contradicts the mean-field
predictions, needs to be studied in more realistic models.

The spherical shell model (SSM) is another tool to study
pairing correlations. The advantage of the SSM approach is
that, first of all, most of the interactions employed in SSM
are adjusted to open shell nuclei and, therefore, contain a
proper pairing force. Second, the exact diagonalization of the
Hamiltonian matrix is performed and results obtained contain
all the possible correlations including the pairing. There are
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many puzzling questions regarding the pairing correlations that
can be addressed within the framework of SSM, for instance,
the difference between the pairing correlations in odd- and
even-mass nuclei, the importance of the neutron-proton pairing
correlations near N = Z, and the phase transition mentioned
above. These issues originate when comparing the mean-field
results with the experimental data or exact solutions of toy
models. It needs to be mentioned that in the SSM approach
only the low-lying part of the excitation spectrum is fitted and,
therefore, the results obtained using SSM are inaccurate for
high-excitation energy or temperature.

The purpose of the present work is to study the pairing
correlations in a realistic space using the spherical shell
model approach. It must be emphasized here that a new shell
model program has been developed by two of the present
authors [21]. This new program completely works in the j

representation [22] and is quite similar in structure to that
of the NATHAN code developed by the Madrid-Strasbourg
group [23]. The shell model approach provides the most
accurate description of nuclear properties and incorporates
all the possible correlations. However, the SSM analysis is
restricted to lighter nuclei and its application to heavier nuclei
appears impossible in the near future. The most recent progress
in the SSM approach is the study of the fp-shell nuclei [23].

In the present work, the shell model analysis was performed
in the sd-shell region. The reason for choosing the sd shell
is that, first of all, the interaction is well established and it
is known that “USD” interaction [24] provides an accurate
description of most of the sd-shell nuclei. Second, it is required,
in the present analysis, to calculate a few thousand states for
each angular momentum to evaluate the statistical partition
function. These calculations would become impossible in the
fp-shell region. The calculations were performed in the middle
of the sd shell so that a large number of eigen-solutions would
be available for the statistical analysis. The nuclei for which
the shell model calculations were performed are 28Si, 27Si, and
26Al. These three neighboring nuclei were investigated so that
a comparison could be made among even-even, even-odd, and
odd-odd systems. The pairing correlations were also deduced
for the asymmetric system 24Ne to study the dependence of
the neutron-proton pairing on the particle number.

It is pertinent to mention here that, while the present work
was in progress, a similar study of pairing correlations in the sd
shell was published [25]. Although the model and the region
of study in the present work is same as that of Ref. [25],
the issues discussed are different and as a matter of fact the
present work complements the work of Ref. [25]. In the course
of the discussion, we shall comment on the results of Ref. [25]
wherever necessary. The present manuscript is organized as
follows: In the next section, the shell model based expressions
are presented for the evaluation of the pairing correlations.
The results of the calculations are presented and analyzed in
Sec. III and finally the summary and conclusions are included
in Sec. IV.

II. SHELL MODEL FORMULATION

The spherical shell model Hamiltonian, generally, contains
single-particle and two-body parts and in the second quantized

notation is written as

Ĥ = ĥsp + V̂2, (1)

where

ĥsp =
∑
rs

εrs c†r cs, (2)

and

V̂2 = 1

4

∑
rstu

〈rs|va|tu〉c†r c†s cuct

=
∑
rstu�

√
(2� + 1)√

(1 + δrs)(1 + δtu)
〈rs|va|tu〉�

× (A†
�(rs) × Ã�(tu))0, (3)

where εrs are the single-particle energies of the spherical shell
model states, which are diagonal except in the radial quantum
numbers, and 〈rs|va|tu〉� are the two-body interaction matrix
elements and in the present work are chosen to be those of
USD. The two-particle coupled operator in Eq. (3) is given by
A

†
�(rs) = (c†r c

†
s )� and Ã�M�

= (−1)�−M�A�−M�
. The labels

r, s, ... in the above equations denote the quantum numbers of
spin and isospin. “�” quantum number labels both angular
momentum and isospin of the coupled state. The above
notation is same as that used in Ref. [22].

In the present work, the pairing correlations were calculated
using the canonical ensemble approach because the exact
solutions have a well-defined particle number. The average
value of a physical quantity “F” in a canonical ensemble is
given by [8,11]

〈〈F 〉〉 =
∑

i

Fie
−Ei/kT

/
Z, (4)

where

Z =
∑

i

e−Ei/kT , (5)

Ĥ |i〉 = Ei |i〉,
(6)

Fi = 〈i|F̂ |i〉.
In the partition function, Eq. (5), k is the Boltzman constant
and T is the temperature. In the rest of the manuscript, we shall
use “Temp” rather than kT , which has dimensions of energy
(MeV), and the symbol T shall be used for the isospin of the
coupled two-particle state.

In the present work, we study the isovector monopole pair
correlations for the “�0 = {I = 0, T = 1, |Tz| = 0, 1}”. The
canonical average for this is calculated as

E�0 (pair) =
∑
rstu

√
(2� + 1)√

(1 + δrs)(1 + δtu)
〈rs|va|tu〉�0

〈〈(
A

†
�0

× Ã�0

)
0

〉〉
, (7)

from the energies and eigen-states obtained by diagonalization,
which shall be referred to as the “correlated” pairing energy
Epair(corr). We have also calculated the “uncorrelated” pairing
energy by removing the monopole field �0 in the interaction
and then redoing the shell model diagonalization [8]. Using
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the resulting energies and wave functions, Eq. (7) is evaluated
to give the “uncorrelated” pairing energy. It is noted that the
definition of present pairing energy is slightly different from
that used in Refs. [25] and [26]. In these studies, it is calculated
without the matrix elements and the constant factors in front
of the expectation values in Eq. (7).

III. RESULTS AND DISCUSSIONS

The shell model calculations were performed in the
middle of the sd shell for 28Si (with six valence protons and
six valence neutrons), 27Si (with six valence protons and five
valence neutrons), and 26Al (with five valence protons and
five valence neutrons). The calculations were also performed
for 24Ne (with two protons and six neutrons) to investigate
the behavior of the pairing correlations with asymmetry in
proton and neutron particle numbers. The temperature and
the angular momentum dependence of the pair correlations
were studied in detail for these systems and are discussed
in subsections B and C. In subsection D, the temperature
dependence of the average isospin is discussed. Before
presenting these results, in subsection A a simple model for
analyzing the essential results obtained with the full shell
model calculations is briefly described.

A. Isospin geometry and a simple model

Before starting the discussion, we first briefly recall some
consequences of isospin being a good quantum number.
Writing explicitly the isospin and omitting the other quantum
numbers, i.e., � = T , Tz, the pair energy is measured by

A
†
1,M × Ã1,−M =

∑
t=0,1,2

〈1M1 − M|t0〉Bt0, (8)

where the proton-neutron pairing corresponds to M = 0 and
the neutron-neutron pairing to M = 1. Because A

†
1,M and

Ã1,−M are tensor operators in isospace their product can be
rewritten as a sum of tensor operators Bt0 and

〈T Tz|A†
1,M × Ã1,−M |T Tz〉

=
∑

t=0,1,2

〈1M1 − M|t0〉〈T Tz10|T TZ〉〈T ||Bt ||T 〉. (9)

Only the t = 0 term contributes in T = 0 states, which means
that 〈T = 0|A†

1,M × Ã1,−M |T = 0〉 does not depend on M;
i.e., Epair is the same for all three types of pairing. For T > 0
states, the terms t = 1, 2 contribute as well, which means Epair

may be different for each pairing channel.
For a quantitative statement, one needs to know the reduced

matrix elements 〈T ||Bt ||T 〉, which depend on the detailed
structure of the shell model states. For the lowest states, pairing
correlations are strong. In such a case one expects that the
model of isovector monopole pairing in a degenerate shell
should allow us some rough estimate of the relative pairing
strengths. The model is discussed in Refs. [27] and [28], where
the original work is cited and explicit expressions are given in
terms of number of nucleon pairs N in the shell, the isospin
T , TZ , and the number of pairs �(= 12) that the shell can
accommodate, where the unit is the coupling constant G. It was

found there that the model accounts well for relative strengths
of the pair energies but cannot reproduce the scale of the shell
model calculations, which was attributed to the splitting of
the levels due to the deformation and the spin-orbit coupling.
Following this observation, we scale the pair energies of the
degenerate model by a common factor.

B. Temperature dependence of the pair correlations

The results of the neutron-neutron and neutron-proton
monopole pair correlation energies for 28

14Si14 are shown as
a function of temperature (Temp) in Figs. 1 and 2 for even-
and odd-spin values. For the symmetric system and isospin
invariant two-body interaction, the proton-proton pairing
energy is identical to that of neutron-neutron. The reason is that
the canonical ensemble contains mainly isospin, T = 0 states,
which lie lower than the T > 0 states in the N = Z = even
nuclei [29].
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FIG. 1. (Color online) Temperature dependence of pair cor-
relations for 28Si. The results are shown for even-spin values
of I = 0, 2, 4, 6. For each spin state, there are two panels. The
upper panel depicts the pairing correlations calculated with the full
two-body interaction. The lower panel shows the pairing energy
without monopole matrix elements, referred to as the uncorrelated
contribution. For I = 0, the temperatures of 1, 2, 3, 4, and 5 MeV
correspond to excitation energies of 0.04, 0.90, 4.0, 9.57, and
15.38 MeV, respectively.
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FIG. 2. (Color online) Temperature dependence of pairing energy
for 28Si. Pair energy is shown for odd-spin values with I = 1, 3, 5,
and 7.

Even- and odd-spin values are plotted separately in two
figures because they have different intrinsic structures. In the
quasiparticle language, the low-lying even-spin members in an
even-even nucleus have zero-quasiparticle intrinsic structure
and the odd-spin members have two-quasiparticle structure.
Obviously, the fraction of T > 0 states is larger for odd spin.

To investigate, in detail, the variation of the pairing cor-
relations with spin (I ), the correlations are plotted separately
for each possible value of spin and are shown in two panels.
In the top panel the pairing correlations are calculated with
full two-body interaction [denoted by Epair(corr)]. The lower
panel depicts pairing correlations [denoted by Epair(uncorr)]
in which the monopole terms in the two-body interaction were
excluded.

For I = 0 in Fig. 1, the Epair(corr) are quite similar for
neutron-proton and identical particle channels and are also
quite large at low temperatures. For Temp =0, they are
4.6 MeV. The ground state in even-even systems is a paired
configuration with maximum correlations. The degenerate
model gives 3/2 for the correlation energy, which fixes the scale
factor to 3.06 MeV. In the following we shall use this factor
to scale other calculations in the framework of the degenerate
model.

The pair correlations are almost unchanged till Temp
�2 MeV and then are observed to be reduced with increasing
temperature. However, in comparison with the mean-field
models, which predict a sudden transition from the paired
to the unpaired state, the exact analysis depicts a smooth drop
in the pair correlations. The phase transition obtained at Temp
�2 MeV in Fig. 1 is higher as compared to the transition point
obtained in HFB and also in a shell model Monte-Carlo study,
which predicted at Temp �0.5 to 0.7 MeV [30]. It is to be noted
that in the present work, the pairing correlations were obtained
using Eq. (7) and, as already pointed out at the end of Sec. II,
this is slightly different from the expression used in the HFB
and the shell model Monte-Carlo studies. To confirm that the
reason for the discrepancy in the phase transition point is due to
the different pairing expressions used, we have performed shell
model calculations for a simpler case of 24Mg with the pairing
expression as used in HFB and Monte-Carlo studies and the
phase transition was found to be around 0.9 MeV. It is also
noted that the magnitude of the pairing energy obtained in the
present study is also quite large as compared to the HFB and the
shell model Monte-Carlo results. Further, it is seen in Fig. 1
that at large temperatures the neutron-proton pairing energy
deviates from proton and neutron pairing energies, which was
also observed in Ref. [26]. The difference between the proton-
neutron and neutron-neutron (= proton-proton) pair energies
indicates some admixture of T = 1 states to the ensemble.

For even-spin values of I = 2, 4, and 6, it is observed that
the pair correlations drop in a step-wise manner and the pairing
gaps for these spin values at Temp =0 are approximately 3.9,
3.2, and 2.6. The temperature dependence of the pair energies
for I = 2 and 4 show behavior similar to that of I = 0. For I =
6, the pair correlations are almost constant with temperature.
The shell model calculations for I = 8 and 10 (not shown in
the figure) depict a slight increase in the pair correlations at
low temperatures and for higher temperatures the correlations
drop as for the earlier cases.

The uncorrelated pairing energy are shown in the lower
panels of Fig. 1. As already mentioned, they were obtained by
a second shell model diagonalization on setting the monopole
matrix elements equal to zero. The problem in the shell
model study of the pair correlations is that the calculated
correlated pairing energy may contain the contributions from
other multipoles due to recoupling, which in the mean-field
language are referred to as the particle-hole contribution. In the
mean-field framework, particle-particle and the particle-hole
channels are completely decoupled and the pairing energy can
be directly evaluated from the pairing potential.

It is noticed from Fig. 1 that the uncorrelated pairing
energy is substantially smaller as compared to the correlated
one. However, it shows a similar transitional behavior with
temperature as the correlated pairing energy. To explore
the reason for this unexpected transitional behavior in the
uncorrelated energy, we also removed I = 1 and 2 apart from
I = 0 matrix elements in the shell model diagonalization
and the pairing energy was again calculated using Eq. (7).
The results indicate that the phase transition is now almost
washed out in the uncorrelated pairing energy. We are presently
performing a detailed investigation of this phenomenon and the
results of this study will be presented elsewhere.
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The neutron-proton uncorrelated pairing energy appears
to be lower than that of the corresponding neutron and
proton energies. This can be understood as follows. The
isovector monopole pair correlations shift the T = 0 states
to lower energy as compared to the T > 0 states. If these
correlations are switched off, then this preference is lifted. The
increased fraction of T > 0 states in the ensembles creates the
difference between the neutron-neutron and proton-neutron
pairing. However, using this simple perspective, it is not
possible to understand why the like-particle pairing is stronger.

The odd-spin values are depicted in Fig. 2. The pair energies
are smaller than the even-spin values at very low temperature.
This is easily understood by noting that the odd-spin band has
two-quasiparticle structure with reduced pairing. For I = 1,
the yrast state has T = 0. The pronounced increase of the
neutron-proton pair energy as compared to the like-particle
ones indicates that low-lying T > 0 states become a substantial
fraction of the ensemble.

For the larger angular momenta, I = 7, it is observed
that the pair correlations first increase with temperature. It
is well known that in mean-field theory, the pair correlations
are reduced with both increasing temperature and rotational
frequency. The mean-field analysis always depicts a phase
transition from the paired to the unpaired phase with increasing
temperature and rotational frequency. This is experimentally
observed in macroscopic superconductors, where the particle
number is quite large. However, for mesoscopic systems the
mean-field solution is inappropriate. The exact solutions of the
pairing problem do not have sharp phase transitions. Further,
they may have peculiarities, as e.g., recently demonstrated in a
simple few-level model that the pairing correlations reappear at
finite temperature after they are quenched at zero temperature
and high rotational frequency [8], where this peculiar effect
is explained. The shell model results for I = 9 and 11 (not
shown in the figure) also depict a minor increase. Therefore,
increase in the pairing correlations with increasing temperature
obtained in the earlier work is an artifact of the simple model
employed [8] as the present results in the sd shell do not depict
such a dramatic rise. However, it needs to be added that in the
sd shell, it is not possible to have a large angular momentum
where the reappearance of the pairing correlations is predicted
in the earlier simple model study.

The results of the pair energies for the odd-system 27
14Si13

are presented in Fig. 3. The results presented in this figure
also correspond to 27

13Al14 with proton and neutron curves in-
terchanged. At zero temperature the expected picture evolves.
The proton-proton energy of 4.4 MeV is similar to the value of
4.6 MeV in the even-even neighbor 28

14Si14, as both have same
proton number. The neutron-neutron pair energy of 3.0 MeV
is about 30% lower due to the blocking of one level in the
odd-neutron system. This is in accordance with the mean-field
predictions that the pair gaps in an odd-system are reduced by
about 15% in comparison to the neighboring even-even system,
which amounts to a reduction of about 30% in the correlation
energy. The np-pair energy of 3.7 MeV is less reduced than
the neutron-neutron one. This is understood, because the odd
neutron blocks the level only partially for proton-neutron pairs.
(If the odd neutron is in the state m > 0, a pair with the neutron
in m < 0 and the proton in m > 0 may by accommodated.)
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FIG. 3. (Color online) Temperature dependence of pairing energy
for 27Si. The results are shown for I = 1/2, 5/2, 9/2, and 13/2 in the
upper panels and for I = 3/2, 7/2, 11/2, and 15/2 in the bottom
panels.

The pair energies are different, which is expected for T � 1/2
states from Eq. (9). The degenerate model allows us to estimate
the consequences of blocking. For T = 1/2,N = 4, it gives
Epp(corr) = 3/2, Enp(corr) = 15/12, and Enn(corr) = 1. The
respective scaled values of 4.6, 3.8, and 3.1 MeV compare well
with the shell model values of 4.4, 3.7, and 3.0 MeV.

In the early nineties, it was demonstrated through a series of
systematic studies [31] of experimental data that the difference
between the moments of inertia of neighboring even-even and
odd-nuclei is merely �2%. This posed a serious challenge to
the traditional nuclear structure models based on mean-field
theory which give a difference of about 15%. It was shown later
using number projected mean-field models that this difference
in the moments of inertia could be reduced. The moment of
inertia depends on deformation and the pairing correlations
and, considering that 28Si and 27Si have similar deformation
values, it is expected that the moments of inertia of two nuclei
would be similar because the pair gaps of the two systems are
similar. The calculated moments of inertia for low-lying states
for 28Si and 27Si are 2.62205h̄2/(MeV) and 2.66220h̄2/(MeV),
respectively.

The results for the odd-odd 26
13Al13 system are presented

in Fig. 4. For low-spin, the pair energies are rather different
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FIG. 4. (Color online) Temperature dependence of pairing energy
for 26Al. The pair gaps are plotted for I = 0, 2, 4, and 6 in the upper
panels and for I = 1, 3, 5, and 7 in the lower panels.

from those of the even-even and odd-systems. For I = 0,
neutron-proton pairing energy is quite large as compared to
like-particle pairing energies. The ground states in odd-odd
self-conjugate nuclei show a preference for T = 1 [29] with a
T = 0 state close by. In our case the ground state has T = 1.
For T = 1, Tz = 0, the simple model of isovector pairing in a
degenerate shell gives a ratio Epn(corr) = 43/15, Enn(corr) =
Epp(corr) = 11/15. The respective scaled values of 7.8 and
2.2 MeV are to be compared with the shell model results of
7.9 and 2.7 MeV. The proton-neutron pair energy remains
larger than the neutron-neutron pair energy for finite tem-
peratures, which indicates that the isovector proton-neutron
pair correlations lower the T = 1, Tz = 0 states relative to
the T = 0, Tz = 0 states. The lowest I = 2 state has T = 0
and the same pairing energies for like and unlike particles.
For higher temperature, neutron-proton pairing is larger as
compared to identical particle pairing, which indicates a large
fraction of T = 1 states in the ensemble. With increasing spin
the results become similar to the even-even system, which can
be understood as a consequence of the quenching of the pair
correlations in both types of nuclei. This is corroborated by the
observation for the odd-A case that the different pair energies
become similar (though not equal) at large spin. For odd-spin
values, the pair energies are nearly equal for all spin values.
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FIG. 5. (Color online) Temperature dependence of pairing energy
for 24Ne. The pair gaps are plotted for I = 0, 2, 4, and 6 in the upper
panels and for I = 1, 3, 5, and 7 in the lower panels.

At higher temperatures only, there is a slight asymmetry.
This indicates that the odd-spin states have preferentially
T = 0.

The pair correlations for the asymmetric system 24
10Ne14 are

presented in Fig. 5. As expected, the neutron pair energy is
larger than the proton one, because there are more neutrons in
the open shell. The neutron-proton pair energy is quite small.
In contrast to the symmetric even-even system, where it is
as large as the like particle one. This is in accordance with
the HFB theory with neutron-proton pairing [32], which finds
quite strong neutron-proton pairing for the N = Z system, but
finds vanishing for the asymmetric case of N = Z + 4. The
present shell model substantiates these HFB results, although
the neutron-proton has not vanished in the shell model study
but has clearly become quite weak. The reason is that the extra
neutron pair blocks a level for the proton-neutron pairs to
scatter into. For zero temperature, the difference between the
symmetric and asymmetric systems is qualitatively reproduced
by the simple model of a degenerate shell. The ground state has
N = 4, T = 2, which gives Epp(corr) = 13/14, Enn(corr) =
27/14, and Enp(corr) = 13/42. The respective scaled values
are 2.8, 5.9, and 1.0 MeV to be compared with the shell model
results of 3.4, 5.5, and 1.2 MeV.
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The model of a degenerate shell obeys the dynamical
symmetry of the group SO(5) with the isospin subgroup SU(2).
As will be discussed in a forthcoming paper, the relative
strength of the three types of isovector pairing mainly reflects
the geometry of the isospin induced by SU(2), which remains
valid for the case of a nondegenerate shell. The full SO(5)
symmetry is exploited when the effects of blocking in states
with nonzero seniority are estimated as for the case of odd-A
in this article.

C. Angular momentum dependence of the pair correlations

The angular momentum dependence of the pair correlations
for the four systems studied are depicted in Fig. 6. The results
for 28Si indicate that for zero temperature, the pair correlations
drop monotonically with increasing angular momentum, ex-
cept for I = 1, which shows a larger drop. In the case of 27Si,
the pair correlations show a staggering effect, where the phase
of the staggering is the same for the three pairing modes.

For 26Al, neutron-proton correlations are maximal for I =
0. This is evident from Fig. 6 with a drop of about 5 MeV from
I = 0 to 1 in the correlated pairing energy. For the higher spin
values, it is noted that pair correlations drop very little. The
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FIG. 6. (Color online) Angular momentum dependence of the
pairing energy for 26Al, 28Si, 27Si, and 24Ne for two different values
of temperature.

results for 24Ne depict a larger staggering effect as compared to
28Si for identical particle pairing. The neutron-proton pairing
shows an irregular behavior with spin for this asymmetric
system. As expected, for a higher temperature of 3 MeV, the
pair correlations depict a smoother behavior with spin.

D. Isospin analysis

In most of the analysis presented in the above subsections,
the isospin content of the states played a crucial role in
understanding the behavior of the pairing energies. It is,
therefore, imperative to ascertain the temperature dependence
of the isospin. It needs to be mentioned that the new shell model
program developed [21] uses the neutron-proton product
basis and, therefore, isospin, although conserved, needs to
be evaluated for each eigen-state. The expectation value of
T̂ 2 was calculated using the shell model wave functions as
discussed in Ref. [33]. The average value of T 2 as a function
of temperature was obtained by using the canonical partition
function in the same manner in which the pairing correlations
were deduced.

The average value of T 2 is shown in Fig. 7 for the lowest
angular momentum ensemble. In the top panel of Fig. 7,
the average value of T 2 is plotted for 28Si and it is quite
evident from this figure that the isospin at low temperature
is T = 0 up to Temp =2 MeV. Above this temperature, the
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FIG. 7. (Color online) Dependence of average isospin on temper-
ature for the lowest angular momentum ensembles of 28Si,26Al,24Ne,
and 27Si.
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isospin increases steadily and correlates well with the drop
in the pair energies observed in Fig. 1. For the odd-odd 26Al
system, the isospin at low temperature is equal to one and
gives rise to the large difference in the pairing correlations
between neutron-proton and identical particle channels shown
in Fig. 4. However, with increasing temperature, it is noted
that the average isospin drops as T = 0 states enter into the
ensemble with the consequence that neutron-proton pairing
energy comes closer to the identical particle pairing at higher
temperatures shown in Fig. 4.

For the asymmetric case of 24Ne, the average isospin in
Fig. 7 is equal to two and appears to be almost constant
with increasing temperature. This constancy of the average
isospin gives rise to the constant behavior of the neutron-proton
pairing energy shown in Fig. 5. The temperature behavior of the
isospin for the odd-mass system 27Si is similar to the even-even
system 28Si and is the reason that the behavior of the pairing
correlations for the two systems are quite similar.

IV. SUMMARY AND CONCLUSIONS

In the present work, the shell model study of the pairing
correlations was undertaken. The calculations were performed
in the sd shell for 28Si, 27Si, 26Al, and 24Ne. For the case of
the even-even system 28Si, the pair energy of even-spin states
as a function of temperature depicts a smooth but pronounced
decrease around Temp =2 MeV, which can be interpreted
as the strongly washed out relic of the phase transition. In the
case of the odd-spin states up to I = 7, the pairing correlations
decrease only very slowly with increasing temperature, starting
from a reduced value, which is caused by the blocking of two
levels in the states carrying two-quasiparticle character.

It is also clearly evident from the present study that pairing
correlations are nonzero even at large temperatures and angular
momenta. This is in contradiction to the mean-field predictions
that pairing correlations die out at higher temperatures and
angular momenta. For the very small systems studied, most of
the pair correlations are generated by the fluctuations of the
pair field, which are more prominent than the mean field itself.

The proton-proton, neutron-neutron, and proton-neutron
isovector pair correlation energies are not scalar under ro-
tation in isospace, which means that they are only equal
in T = 0 states but generally different in T > 0 states. For
the ground states of even-A nuclei, the relative strengths
of the different pairing energies is qualitatively reproduced
by the simple model of a degenerate shell. The even-even
N = Z nucleus has a T = 0 ground state and thus equal
proton-proton, neutron-neutron, and proton-neutron strength.
The proton-neutron strength deviates from the identical ones
with increasing temperature because T > 0 states enter the
ensemble. The odd-odd N = Z nucleus 26

13Al13 has a T =
1, Tz = 0 ground state for which the proton-neutron strength
is about three times larger than the like particle strength.
With increasing temperature, T = 0 states enter the ensemble,
reducing the proton-neutron contribution. The asymmetric
nucleus 24

10Ne14 has a T = 2, Tz = 2 ground state with the
proton-neutron pairing dramatically reduced as compared to
the symmetric systems 28Si and 26Al. In the odd-neutron nu-
cleus 27

14Si13, the proton-proton strength is about the same as in
28
14Si14, the neutron-neutron strength is about 30% lower, and
the proton-neutron strength is in between, which reflects the
blocking of one level by the odd neutron.

Finally, we would like to mention that the results of the
present work are questionable at higher temperatures as the
configuration space of the sd shell employed in the present
work is suited only for low-excitation energies. For higher
temperatures, it is expected that the fp shell will be populated
and for accurate evaluation of pairing correlations it is essential
to include fp-shell configuration space in the shell model
analysis. However, it is impossible to perform shell model
calculations with a complete sdfp-configuration space. What
is feasible is to calculate the partition function of the fp shell
in a spherical degenerate limit and then calculate the total
partition function with the method illustrated in Ref. [34]. We
are presently working to evaluate the pairing correlations using
this approach and the results of this analysis will be presented
in the near future.
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