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We study number of spin I states for bosons in this article. We extend Talmi’s recursion formulas for number
of states with given spin I to boson systems, and we prove empirical formulas for five bosons by using these
recursions. We obtain number of states with given spin I and F spin for three and four bosons by using sum
rules of six-j and nine-j symbols. We also present empirical formulas of states for d bosons with given spin I
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I. INTRODUCTION

Recently there have been many efforts to obtain simple
formulas of enumerating number of states with given spin. In
Ref. [1], Ginocchio and Haxton obtained a simple formula
of spin-zero states for four particles. In Ref. [2] Zamick
and Escuderos gave a much simpler proof for dimension of
spin-zero states of the j 4 configuration. In Ref. [3], two of
present authors, Zhao and Arima, obtained empirical formulas
for given spin I states with particle number n = 3 and 4
and some for n = 5. In Ref. [4], Talmi developed recursion
relations for n, n − 1, and n − 2 fermions and proved results
of Ref. [3] for three fermions. In Ref. [5], we found a
simple correspondence between number of given spin states
of fermions and that of bosons and proved results of Ref. [3]
for n = 4 by using reduction rule of d bosons. In Ref. [6],
Zamick and Escuderos derived an interesting relation between
dimension for isospin T = 0 and spin I states and that for
isospin T = 2 and spin I states. In Ref. [7], formulas of
dimension with given spin and isospin for three and four
nucleons are derived by using sum rules of six-j and nine-j
symbols of Refs. [8,9]. However, most studies concentrated on
fermions, it is therefore interesting to study boson systems as
well. The purpose of this article is to present formulas for spin-l
bosons that have not been extensively discussed in previous
studies.

This article is organized as follows. In Sec. II we extend
Talmi’s recursions to boson systems and apply it to prove
empirical results for n = 5 in Ref. [3]. In Sec. III we present
number of states with given spin I and isospin F for three and
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four bosons, by using sum rules of six-j and nine-j symbols
derived in Ref. [8]. In Sec. IV we study number of d states
with given spin and F spin, introduced by Arima in Ref. [10].
Although we do not know how to prove them, the significance
here is that d bosons are basic building blocks of the IBM, and
F spin is a very relevant and well-conserved quantum number
for medium and heavy nuclei. In Sec. V we summarize this
article. In Appendix we present number of spin I states for
d bosons with an odd number. Those with an even number
correspond to those of four fermions and bosons, and those of
d bosons with an odd number correspond to fictitious systems
(but mathematically useful), according to our earlier articles
[5,9].

II. NUMBER OF STATES FOR FIVE BOSONS

In this section, we use notations of Talmi’s article [4] for
bosons. We denote z-axis projection of total spin I of n spin-l
bosons by M = m1 + m2 + · · · + mn and the number of states
with given M in the ln configuration by N (M, l, n). The
number of states with given value of I in the ln configuration
will be denoted D(I, l, n).

Similar to Talmi’s procedure of Ref. [4], there are states
where m1 < l and mn � − l. For mn > −l, the number of
states with given M is N (M, l − 1, n), and for mn = −l,
one should consider mn−1 � − l. In the case of mn−1 >

−l, the number of states with given M projection equals
that of (n − 1) bosons with z-axis projection M + l, which
is N (M + l, l − 1, n − 1); and for mn−1 = −l, one again
considers mn−2 � − l. In the case of mn−2 > −l, the number
of ln states with projection M is given by N (M + 2l, l −
1, n − 2); for mn−2 = −l, one should continue to consider
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mn−3 � − l, · · ·. For m2 > −l, the number of states for two
bosons is N [M + (n − 2)l, l − 1, 2], and for m2 = −l this
number is N [M + (n − 1)l, l − 1, 1].

Then for m1 < l, the sum of number of states with z-axis
projection M for n spin-l bosons is given by

N (M, l − 1, n) + N (M + l, l − 1, n − 1)

+N (M + 2l, l − 1, n − 2) + · · ·
+N [M + (n − 2)l, l − 1, 2]

+N [M + (n − 1)l, l − 1, 1];

and for m1 = l, the sum of number of states with z-axis
projection M for n spin-l bosons is given by

N (M, l, n − 2) + N (M − l, l − 1, n − 1)

+N (M − 2l, l − 1, n − 2) + · · ·
+N [M − (n − 2)l, l − 1, 2]

+N [M − (n − 1)l, l − 1, 1].

The total number of states with given M of the ln

configuration is

N (M, l, n) = N (M, l − 1, n) + N (M + l, l − 1, n − 1)

+N (M + 2l, l − 1, n − 2) + · · ·
+N [M + (n − 2)l, l − 1, 2]

+N [M + (n − 1)l, l − 1, 1]

+N (M, l, n − 2) + N (M − l, l − 1, n − 1)

+N (M − 2l, l − 1, n − 2) + · · ·
+N [M − (n − 2)l, l − 1, 2]

+N [M − (n − 1)l, l − 1, 1]. (1)

If M � 0, one has

D(I, l, n) = N (M = I, l, n) − N (M = I + 1, l, n). (2)

If M < 0 and M + 1 � 0

D(I − 1, l, n) = N [M = −(I − 1), l, n]

−N (M = −I, l, n). (3)

One has following recursion relations for bosons. For
I � l − 1,

D(I, l, n) = D(I, l, n − 2) + D(I, l − 1, n)

+D(I + l, l − 1, n − 1)

+D(I + 2l, l − 1, n − 2) + · · ·
+D[I + (n − 2)l, l − 1, 2]

+D[I + (n − 1)l, l − 1, 1]

−D(l − 1 − I, l − 1, n − 1)

−D(2l − 1 − I, l − 1, n − 2) − · · ·
−D[(n − 2)l − 1 − I, l − 1, 2]

−D[(n − 1)l − 1 − I, l − 1, 1]. (4)

For I = 1 and n = 5, we obtain

D(1, l, 5) = D(1, l, 3) + D(1, l − 1, 5)

+D(l + 1, l − 1, 4) + D(2l + 1, l − 1, 3)

−D(l − 2, l − 1, 4) − D(2l − 2, l − 1, 3). (5)

In Ref. [3], an empirical formula for I = 1 and n = 5 was
given by D(1, l, 5) = (Q + 1)(Q + 1 + q), where{

Q = [
l
4

]
, q = (l mod 4 − 1)/2, if l mod 2 = 1,

Q = [
l−3

4

]
, q = [(l − 3) mod 4 − 1]/2, if l mod 2 = 0,

and [ ] means to take the largest integer not exceeding the value
inside.

Now we prove the formula of D(1, l, 5) by induction with
respect to l, namely we assume that it holds for spin l − 1
bosons and prove it holds also for spin l bosons (it was shown to
hold for lower spins up to l = 99 in Ref. [3]). For convenience,
we first take cases with even l = 6k (k is an odd number here;
cases with even k can be shown similarly). Cases of other
even l = 6k + 2 and 6k + 4 can be solved in the same way.
We also note without details that one can repeat this process
while proving the formula of D(1, l, 5) in Ref. [3] for odd l

and that the formula of I = 0 and n = 5 for spin-l bosons can
be proved via the same procedure.

Using Eq. (1) of Ref. [3], we obtain

D(1, 6k, 3) = 0,

D(12k + 1, 6k − 1, 3) = k, (6)

D(12k − 2, 6k − 1, 3) = k.

Using Eq. (5) of Ref. [3], we obtain

D(6k + 1, 6k − 1, 4) = 3k2 − k + 3

[
k

2

]2

+ 4

[
k

2

]
+ 1,

(7)

D(6k − 2, 6k − 1, 4) = 3k2 − k + 3

[
k

2

]2

+ 7

[
k

2

]
+ 3.

Here we used following identities: for odd k, [ 6k−1
3 ] = 2k −

1, [ k−1
2 ] = [ k

2 ], [ 6k+2
4 ] = 3[ k

2 ] + 2, (6k − 1) mod 3 = 2, and
(k − 1) mod 2 = 0. According to our assumption,

D(1, 6k − 1, 5) =
([

6k − 1

4

]
+ 1

)([
6k − 1

4

]
+ 1

+ [((6k − 1) mod 4 − 1)/2]

)

=
(

3

[
k

2

]
+ 2

)2

. (8)

Here we note that [ 6k−1
4 ] = 3[ k

2 ] + 1, (6k − 1) mod 4 = 1.
Substituting Eqs. (6)–(8) into Eq. (5), we obtain that

D(1, 6k, 5) =
(

3

[
k

2

]
+ 1

)(
3

[
k

2

]
+ 2

)
. (9)

For odd k, 3[ k
2 ] = [ 6k−3

4 ] = [ l−3
4 ], [(6k − 3) mod 4 − 1]/2 =

[(l − 3) mod 4 − 1]/2 = 1, we obtain

D(1, 6k, 5) =
([

l − 3

4

]
+ 1

)

×
([

l − 3

4

]
+ 1 + [(l − 3) mod 4 − 1]/2

)
.

(10)

This is indeed identical to D(1, l, 5) result of Ref. [3]. We shall
not go to cases with l = 6k + 2 (or l = 6k + 4) and k is odd
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or cases with l = 6k + 1 (or l = 6k + 3, l = 6k + 5) but point
out the procedure is exactly the same as above.

By using correspondence of dimension for bosons and
fermions given in Ref. [5] and Talmi’s recursion formulas
of dimension for fermions in a single-j shell, we can obtain
following recursion formula for bosons. Let l = j + n−1

2 , and
when I <= l + n−3

2 , one has

D(I, l, n) = D(I, l − 1, n)

+D

(
I + l + n − 1

2
, l − 1

2
, n − 1

)
+D(I, l, n − 2)

−D

(
l + n − 3

2
− I, l − 1

2
, n − 1

)
(11)

for bosons with spin l. Here D(I + l + n−1
2 , l − 1

2 , n − 1) and
D(l + n−3

2 − I, l − 1
2 , n − 1) are dimensions of bosons with a

half integer spin (fictitious bosons), which equal to dimensions
of d bosons with odd number of particles.

III. NUMBER OF STATES WITH GIVEN SPIN AND F SPIN
FOR BOSONS IN A SINGLE-l SHELL

F spin, similar to the isotopic spin in the nuclear shell
model, was introduced into the neutron-proton interacting
boson model in Ref. [10] to classify the symmetries of proton
and neutron boson configurations. Proton bosons and neutron
bosons can be considered as having an intrinsic quantity, called
F spin, with F = 1/2 and Fz = 1/2 (proton boson) or −1/2
(neutron boson). F spin was found to be an approximately
good quantum number in low-lying states. It is therefore
interesting to study number of states with given spin and F

spin for bosons.
In this section we apply the method of Ref. [7], in which

we obtained number of states with given spin and isospin for
nucleons in a single-j orbit to obtain number of states with
given spin and F spin for three and four spin-l bosons.

We first discuss the case of four spin-l bosons. Similarly to
Eq. (2) of Ref. [7], we obtain that the trace of HIF matrix is
given by summing

〈0|[A(JF2)A(KF ′
2)](IF )

MMF
[A(JF2)†A(KF ′

2)†](IF )
MMF

|0〉
= 1 + (−)I+F δJK

+ 4(2J + 1)(2K + 1)(2F2 + 1)(2F ′
2 + 1)

×



l l J

l l K

J K I







1/2 1/2 F2

1/2 1/2 F ′
2

F2 F ′
2 F


 (12)

over K,F2, and F ′
2. Here F2(F ′

2) and F are F spin for two and
four bosons, respectively. Similar to Eq. (3) of Ref. [7], one
sees∑

J

∑
α

〈j 4αIF |HJ |j 4αIF 〉

=
∑

JKF2F
′
2

〈0|[A(JF2)A(KF ′
2)](IF )

MMF
[A(JF2)†AKF ′

2†](IF )
MMF

|0〉

= 6D(I, l, 4, F ). (13)

D(I, l, n, F ) refer to number of states ln bosons with given
spin I and F spin.

The same as DIT with T = Tmax in Ref. [9], D(I, l, n, F )
with F = Fmax here must equals DI of Refs. [3,5], and we
shall not discuss this case in the present article.

For convenience we define

SI (l4, condition X on J and K)

=
∑
X




l l J

l l K

J K I


 . (14)

Now we discuss the case of n = 4 and F = 1. Here
(F2, F

′
2) can take the following values: (1,0), (0,1), (1,1).

Because of the symmetry of the wave functions of bosons,
corresponding requirements for (J,K) are (J = even,K =
odd), (J = odd,K = even), or (J = even,K = even). Thus
we obtain

6D(I, l, 4, 1)

=
∑

even J even K


1 − (−)I δJK

+ 36(2K + 1)(2J + 1)




l l J

l l K

J K I







1
2

1
2 1

1
2

1
2 1

1 1 1







+
∑

odd J even K


1 − (−)I δJK

+ 12(2J + 1)(2K + 1)




l l J

l l K

J K I







1
2

1
2 1

1
2

1
2 0

1 0 1







+
∑

even J odd K


1 − (−)I δJK

+ 12(2J + 1)(2K + 1)




l l J

l l K

J K I







1
2

1
2 0

1
2

1
2 1

0 1 1







=
∑

even J even K

[1 − (−)I δJK ]

+ 2
JKI forms a triangle∑

even J odd K

1 + S(l4, even J odd K) (15)

for F = 1.
When n = 4 and F = 1, Imax equals 4l. For I � 2l, let us

define I = Imax − 2I0 − 1 for odd I and Imax − 2I0 − 2 for
even I . Using (33) of Ref. [8], we obtain

D(I, l, 4, 1) =
([

I0

2

]
+ 1

){[
I0

2

]
+ 1 + (I0 mod 2)

}
.

(16)
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Now we come to case with n = 4 and I � 2l − 1. We define
I0 = (I − 1)/2 for odd I , and obtain

D({I, l, 4, 1}) = (I0 + 1)

(
l + 1

2

)

−
(

1 + 4

[
I0

2

]
+ 6

[
I0

2

]2

+ (I0 mod 2)

(
6

[
I0

2

]
+ 3

))/
2; (17)

we define I0 = I/2 for even I , and obtain

D({I, l, 4, 1}) = (I0 + 1)

(
l + 1

2

)
− (l − I0)

−
(

1 + 4

[
I0

2

]
+ 6

[
I0

2

]2

+ (I0 mod 2)

(
6

[
I0

2

]
+ 3

))/
2. (18)

Next we discuss the case of F = 0. Here (F2, F
′
2) can take

(1,1) and (0,0). Their corresponding requirements for (J,K)
are (J = even,K = even) or (J = odd,K = odd). We obtain

6D(I, l, 4, 0)

=
∑

even J even K


1 + (−)I δJK

+ 36(2J + 1)(2K + 1)




l l J

l l K

J K I







1
2

1
2 1

1
2

1
2 1

1 1 0







+
∑

odd J odd K


1 + (−)I δJK

+ 4(2J + 1)(2K + 1)




l l J

l l K

J K I







1
2

1
2 0

1
2

1
2 0

0 0 0







=
∑

even J even K

[1 + (−)I δJK ] +
∑

odd J odd K

[1 + (−)I δJK ]

+ 1

2
S(l4, odd J odd K) − 1

2
S(l4, even J even K). (19)

For F = 0 with I � 2l, we use Eqs. (25), (29), and (30) of
Ref. [8], and obtain for even I ,

D(I, l, 4, 0) =
([

I0

3

]
+ 1

)(
3

2

[
I0

3

]
+ 1 + I0 mod 3

)
, (20)

where I0 = (Imax − I )/2 − 1; for odd I with I � 2l, we have
D(I, l, 4, 0) = D(I + 3, l, 4, 0) and D(4n − 1, l, 4, 0) = 0.

For F = 0 with I � 2l, we define I = 6k + κ, L = [ l
3 ] −

k,m = l mod 3. We use Eqs. (23)–(25), (29), and (30) of
Ref. [8], and obtain

κ = 0 D(I, l, 4, 0) = (6k + 2)L + (2k + 1)m

+ 3
2k(k + 3) − 3k;

κ = 1 D(I, l, 4, 0) = 2k(l + 3/2)

− 1
2k(9k + 1) − 3k;

κ = 2 D(I, l, 4, 0) = (6k + 4)L + (2k + 1)m

+ 1
2 (k + 1)(3k + 4) − (3k + 2);

κ = 3 D(I, l, 4, 0) = (6k + 2)L + (2k + 1)m

+ 3
2k(k + 1) − (3k + 1);

κ = 4 D(I, l, 4, 0) = 1
2 (k + 1)(9k + 4) − 2(k + 1)l;

κ = 5 D(I, l, 4, 0) = (6k + 4)L + (2k + 1)m

+ 1
2k(3k + 1) − (3k + 2). (21)

We notice that

D(6k, l, 4, 0) − D(6k + 3, l, 4, 0) = 3k + 1;

D(6k + 2, l, 4, 0) − D(6k + 5, l, 4, 0) = 3k + 2; (22)

D(6k + 4, l, 4, 0) − D6k + 7, l, 4,) = 3(k + 1).

They are in the same form as Eqs. (16), (19), and (22) of
Ref. [7], which addressed dimension with four nucleons in a
single-j orbit.

We now come to cases with n = 3 and F = 1/2. Similarly,
we obtain

3D(I, l, 3, 1/2)

=
∑

even J

[
1 − 6(2J + 1)

{
l l J

l I J

} { 1
2

1
2 1

1
2

1
2 1

}]

+
∑
odd J

[
1 − 2(2J + 1)

{
l l J

l I J

} {
1
2

1
2 0

1
2

1
2 0

}]

=
∑

even J

[
1 − (2J + 1)

{
l l J

l I J

}]

+
∑
odd J

[
1 + (2J + 1)

{
l l J

l I J

} ]
. (23)

Substituting A(4) and A(11) of Ref. [9] into Eq. (23), we obtain
D(I, l, 3, 1/2) for three bosons with F = 1/2:

I � lD(I, l, 3, 1/2) = I −
[
I

3

]
(24)

I � lD(I, l, 3, 1/2) =
[
Imax − I + 2

3

]
.

IV. NUMBER OF STATES OF d BOSONS WITH GIVEN
SPIN I AND F SPIN

In most IBM calculations, one usually uses sd bosons. Thus
it is interesting to study number of states for d bosons with
given spin and F spin, denoted by D(I, F, n). Fmax = n/2
for n bosons. The case of D(I, Fmax, n) can be obtained by
SU(5) reduction rule. Formulas of D(I, Fmax, n) was already
given in Ref. [5] when n is even. The results with odd n and
F = n/2 will be given in Appendix. In this section, we present
our empirical formulas with F = Fmax − 1 and F = Fmax − 2.
We shall not go to cases of lower F states, because there has
been no observation of F = Fmax − 3 excitations so far.
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We first come to F = Fmax − 1 and classify our results into
two cases: (1) I � n and (2) I � n. Here n � 3. For I � n = 3k,

D(2I0,Fmax − 1,n) =
[
k − 1

2

]
+ 2kI0 − I 2

0 +
[
I0 + 2

3

]
,

D(2I0 + 1,Fmax − 1,n) =
[
k − 1

2

]
+ 2

[
k

2

]
− 1 + 2kI0 − I 2

0

+
[
I0 + 2

3

]
− 3

[
I0

3

]
+ 2δI0 mod 3,0;

(25)

For I � n = 3k + 1,

D(2I0, Fmax − 1, n) =
[
k

2

]
+ 2kI0 − I0(I0 − 1),

(26)

D(2I0 + 1, Fmax − 1, n) = k +
[
k + 1

2

]
+ 2kI0 − I 2

0 ;

For I � n = 3k + 2,

D(2I0, Fmax − 1, n) =
[
k + 1

2

]
+ 2kI0

− (I0 − 1)2 −
[
I0 − 1

3

]

D(2I0 + 1, Fmax − 1, n) =
[
k + 1

2

]
+ 2

[
k

2

]
+ 1 − (I0 − 1)2

+ 2kI0 −
[
I0 − 1

3

]
− 3

[
I0

3

]
− 2δ(I0+1) mod 3,0. (27)

For I > n,

D(Imax − 2I0, Fmax − 1, n)

= 3

[
I0

3

]([
I0

3

]
+ 1

)
−

[
I0

3

]
+

(
2

[
I0

3

]
+ 1

)
(I0 mod 3)

+ δ(I0+1) mod 3,0,

D(Imax − 2I0 − 3, Fmax − 1, n)

= D(Imax − 2I0, Fmax − 1, n) + I0 + 2. (28)

We now come to F = Fmax − 2. Here n � 3.
For I � n = 3k

D(2I0, Fmax − 2, n)

= 2k + 5kI0 + I0 − 5I0(I0 + 1)

2
− δk mod 2,1

− 3 + 2δI,0 + 2δI,n + δI,n−1,
(29)

D(2I0 + 1, Fmax − 2, n)

= 3k + 5kI0 − I0 − 5I0(I0 + 1)

2
− δk mod 2,1

− 2δk mod 2,0 − 3 + δI,1 + 2δI,n + δI,n−1;

For I � n = 3k + 1,

D(2I0, Fmax − 2, n)

= 5kI0 − 5I0(I0 − 1)

2
−

[
I0 − 1

3

]
+ 2k + 2δI,0

− δk mod 2,0 − 2I0 − 3 + 2δI,n + δI,n−1,

D(2I0 + 1, Fmax − 2, n)

= 5kI0 − 5I0(I0 + 1)

2
+ 6

[
k − 1

2

]
+ I0 − 2 −

[
I0 − 2

3

]
+ δk mod 2,0 + δI,1 + 2δI,n + δI,n−1; (30)

For I � n = 3k + 2,

D(2I0, Fmax − 2, n)

= 5kI0 − 5I0(I0 − 1)

2
+

[
I0 − 1

3

]
+ 2k − I0 − 1

− δk mod 2,1 + 2δI,0 + 2δI,n + δI,n−1,
(31)

D(I = 2I0 + 1, Fmax − 2, n)

= 5kI0 − 5I0(I0 − 1)

2
+

[
I0 + 1

3

]
+ 3k − 3I0 − 2

− δk mod 2,0 + δI,1 + 2δI,n + δI,n−1;

For I � n

D(Imax − 6k, Fmax − 2, n)

= 12(k − 1) + 15
2 (k − 1)(k − 2) + 10k − 3

− δImax−6k,n − δImax−6k,n+1,

D(Imax − 6k − 1, Fmax − 2, n)

= 12(k − 1) + 15
2 (k − 1)(k − 2) + 11k − 3

− δImax−6k−1,n − δImax−6k−1,n+1,

D(Imax − 6k − 2, Fmax − 2, n)

= 12(k − 1) + 15
2 (k − 1)(k − 2) + 15k − 2

−δImax−6k−2,n − δImax−6k−2,n+1,
(32)

D(Imax − 6k − 3, Fmax − 2, n)

= 12(k − 1) + 15
2 (k − 1)(k − 2) + 16k − 2

−δImax−6k−3,n − δImax−6k−3,n+1,

D(Imax − 6k − 4, Fmax − 2, n)

= 17k + 15
2 k(k − 1) + 3

−δImax−6k−4,n − δImax−6k−4,n+1,

D(Imax − 6k − 5, Fmax − 2, n)

= 18k + 15
2 k(k − 1) + 4

− δImax−6k−5,n − δImax−6k−5,n+1.

V. SUMMARY AND DISCUSSION

To summarize, in this article we studied number of spin-I
boson states for ln configurations [denoted by D(I, l, n)].
First, we extended Talmi’s recursion relations to bosons and
proved number of states with I = 1 and n = 5, which was
constructed empirically in Ref. [3]. The same procedure is
readily used to prove other formulas for bosons. Second, we
derived number of states for three and four spin-l bosons with
total angular momentum I and F spin, by using sum-rules
of six-j and nine-j symbols given in Ref. [9]. Third, we
empirically constructed formulas of number of states for d

bosons with total angular momentum I and F = Fmax − 1
and Fmax − 2. These results are interesting because F spin is
an approximately good quantum number and very relevant in
structure of medium and heavy nuclei.
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In Appendix, we presented in this article formulas of
dimension for d bosons with an odd particle number.
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APPENDIX: NUMBER OF SPIN I STATES FOR d BOSONS
WITH AN ODD PARTICLE NUMBER

D(I ) of d bosons with an even particle number was
enumerated in Ref. [5] by the reduction from SU(n + 1) to
SO(3). In this Appendix we present formulas for d bosons
with an odd particle number.

We define K = [ I0
6 ], κ = I0 mod 6, θ (x) = 1 if x > 0 or

zero otherwise. For I � n and n = 6k + 1,

DI=2I0 = (I0 + 1)k − [9K2 − K + 3Kκ +
+ (2κ − 5)θ (2κ − 5)]

+
[
I0 + 3

6

]
+ δκ,1 − δκ,3;

for I � n and n = 6k + 3,

DI=2I0 = (I0 + 1)k − [9K2 − K + 3Kκ

+ (2κ − 5)θ (2κ − 5)]

+ 2

[
I0 + 3

6

]
+

[
I0 + 4

6

]
+ δκ,0 + δκ,1

− δκ,3 − δκ,4;

for I � n and n = 6k + 5,

DI=2I0 = (I0 + 1)(k + 1) − [9K2 − K + 3Kκ

+ (2κ − 5)θ (2κ − 5)] −
[
I0 + 4

6

]
;

or I � n and I is odd,

DI=2I0 − DI=2I0+3 =
[
I0 + 1

2

]
. (A1)

For I � n,DI for odd particle number is equal to that for
even particle number:

DI=Imax−2I0 = DI=Imax−2I0−3 = 3

[
I0

6

]([
I0

6

]
+ 1

)

−
[
I0

6

]
+

([
I0

6

]
+ 1

)
[(I0 mod 6) + 1]

+ δI0 mod 6,0 − 1, (A2)

where Imax = 2n.
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