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The contribution of the box and crossed two-pion-exchange diagrams to proton-proton scattering at 90◦
c.m. is

calculated in the laboratory momentum range up to 12 GeV/c. Relativistic form factors related to the nucleon
and pion size and representing the pion source distribution are included at each vertex of the pion-nucleon
interaction. These form factors depend on the four-momenta of the exchanged pions and scattering nucleons.
Feynman-diagram amplitudes calculated without form factors are checked against those derived from dispersion
relations. In this comparison, it was observed that a very short-range part of the crossed diagram, neglected in
dispersion-relation calculations of the two-pion-exchange nucleon-nucleon potential, gives a sizable contribution.
In the Feynman-diagram calculation with form factors the agreement with measured spin-separated cross sections,
as well as amplitudes in the lower part of the energy range considered, is better for pion-nucleon pseudovector
vis à vis pseudoscalar coupling although potentially important corrections for inelastic effects are lacking. While
strengths of the box and crossed diagrams are comparable for laboratory momenta below 2 GeV/c, the crossed
diagram dominates for larger momenta, largely due to the kinematics of the crossed diagram allowing a smaller
momentum transfer in the nucleon center of mass. An important contribution arises from the principal-value part
of the integrals which is non-zero when form factors are included. The imaginary part of the amplitude arising
from the form factor remains to be understood. It seems that the importance of the exchange of color singlets
may extend higher in energy than expected.
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I. INTRODUCTION

The nucleon-nucleon interaction at intermediate energy (up
to 12 GeV/c laboratory momentum, PLab) has been the focus
of a number of experimental [1–9] and theoretical [10–13]
studies. The momentum dependence of the spin transfer shows
a very interesting behavior. The spin correlation observable,
CNN , for proton-proton scattering at 90◦

c.m., has values near
unity at low energies, decreases to a constant value of around
0.07 from 4 GeV/c to 8 GeV/c and then increases to values
around 0.5. A general explanation has been suggested for this
behavior by Ralston and Pire [14].

While one-pion exchange has been shown to be a very
important contributor to the NN interaction at low energies
[15–17] and at higher energies at small momentum transfer
[18], it alone predicts a constant value of 1/3 for CNN . Not
only is this value in disagreement with the data, but it is not
expected that single pion exchange will still be important at this
higher momentum transfer (see Fig. 1 and comments below).

Brodsky [10] and Farrar [11] have shown that the simple
quark-exchange mechanism also gives 1/3 for CNN . No
calculations of absolute cross sections with quark-exchange
models exist to our knowledge, although predictions do exist
[19] for the energy dependence of the cross section. These
predictions for the slope are in quite good agreement, not
only with proton-proton scattering, but with other scattering
processes at high energies.

While it is natural to think that this behavior could be an
indicator of the nature of the elastic scattering process, this

idea of the identification of a mechanism has languished for
many years for lack of candidate theories. We present here the
calculation of the contribution of two-pion exchange in this
energy region. We find that this mechanism predicts the right
size for the cross section, hence provides a candidate theory for
the dominant mechanism in this intermediate energy region.

The interest in two-pion exchange as a contributor to the
nucleon-nucleon interaction is very old, beginning just after
the discovery of the pion [20–24]. The seminal work of
Partovi and Lomon [25] was one of the first to create a viable
potential based on this idea. Since these works were aimed
at obtaining the two-pion-exchange contribution to the NN

potential, nonrelativistic approximations were made.
The Paris potential group [26–28] has worked extensively

with this contribution within a dispersion relation approach.
Again, the interest was primarily to obtain a nonrelativistic
potential for the nucleon-nucleon interaction.

Studies of the relation of chiral symmetry to the two-pion-
exchange potential have been made recently [29,30] which led
to more recent studies by Rentmester et al. [31] on the long-
range part of the two-pion-exchange potential. Reference [31]
concludes that there is strong evidence for the existence and
importance of two-pion exchange. Also of interest are the latest
chiral approaches to the nucleon-nucleon interaction [32].

Seeing this significant body of study at low energy, it is
natural to ask about the two-pion interaction at higher energies.
We will investigate its role by calculating the lowest order
Feynman graphs [33] for this process in the range PLab from 0
to 12 GeV/c.
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FIG. 1. Values of 2|b|2 (see Ref. [39] and Appendix A) at 90◦
c.m.,

extracted as discussed in the text, compared with one-pion exchange
and an estimated unitary limit. The dash-dot curve gives the energy
dependence predicted by Brodsky and Farrar [19] normalized at
6 GeV/c. The black dots represent data points obtained from a
combination of the CNN data [1–3] with the measured cross sections
at 90◦ [7–9] as explained in the text.

Before beginning the calculations, some discussion is
needed as to the general approach. A common methodology
has been to proceed by ranges [20,21]. In this point of view one
says that the one- and two-pion exchange are valid (and give
essentially all of the potential) beyond a certain inter-nucleon
separation. In order to confront the data it is then necessary
to construct the potential at shorter ranges, perhaps with
phenomenology as in Ref. [27]. We take the point of view that
the pion exchanges are between quarks and hence (to some
approximation) the interaction calculated remains valid even
at short distances. There is no reason a priori to exclude pion
exchange at short distances provided that the distribution of
quarks within the nucleon is properly taken into account. Even
when the relative coordinate between the centers is zero the
range of the exchange between the quarks will be of the order
of the size of the nucleon. In fact, there are a number of studies
of baryon spectra [34] or of baryon-baryon interactions [35]
based on the exchange of mesons between quarks within the in-
terior of a single nucleon or between quarks of the two baryons.

Of course, we do not expect that one- and two-pion
exchanges represent the entire interaction, other contributions
are certainly present. We calculate the two-pion contribution
with a view to examining to what extent the scattering
properties can be explained with this mechanism alone.

Since a common view is that nucleons and pions have
an intrinsic finite size, the present approach includes the
form factor resulting from this distribution in the Feynman
integrals. There is a long history of treating form factors of
complex systems in nuclear physics. It is often regarded as
the amplitude for the probability of being able to transfer the
three-momentum represented by its argument to the object
while leaving it intact, hence is related to the probability of an
elastic scattering or absorption.

The inclusion of such a form factor is not simple, however.
The full Feynman integrals are in four dimensions, requiring a

form factor with a dependence on all four variables. Many form
factors deal only with three-momentum, although the problem
of adding a fourth variable has been addressed by a number of
groups (see Sec. IV for a discussion). We approach the problem
of the form factor from the point of view of invariants and
analyticity with guidance from the argument that the function
should represent a boost into the center of mass frame of the
nucleon in the on-shell limit. We will argue that a selection
can be made on this dependence according to the view of the
physical origin of the size of the system, i.e., if it arises from the
interaction with virtual mesons (or more generally the sea) or
with the “permanent” quark core constituents. We assume here
that the pion exchanges take place between quarks contained
within the core of the nucleon.

We will treat the cases of both pure pseudoscalar (PS) and
pure pseudovector (PV) coupling even though some authors
have found evidence for a mixture of the couplings [36–38].
Some of the integrals involved in the PV calculation are
divergent and, while the PS integrals converge, the resulting
cross sections are orders of magnitude too large at the higher
energies if no form factor is included. The introduction of
form factors solves divergence problems which arise in the
calculation but, more importantly, it takes into account the
confinement core of the nucleon explicitly introducing an
interaction range of this size.

To represent the proton-proton amplitude, we use the
Saclay [39] decomposition into components called a, b, c, d,
and e. These independent amplitudes have individual char-
acteristics similar to common nonrelativistic representations
(see Appendix A in Ref. [18]) and hence provide a natural
extension of our familiar concepts of the spin dependence of
the amplitude at low energy. At 90◦ center of mass scattering
angle, some simplification occurs since a ≡ 0 and b ≡ −c so
that only three independent amplitudes are needed.

For data comparison we combine the values of CNN [1–3]
with the measured cross sections at 90◦ [7–9] to obtain the
value of the absolute square of the Saclay b amplitude and
the sum of the absolute squares of the d and e amplitudes
(see Appendix A). These experimental measurements will
constitute the primary data with which we will compare.
Figure 1 shows the values of 2|b|2 compared with a calculation
of the corresponding values from one-pion exchange with
a dipole form factor with a range of � = 1.4 GeV/c (see
Sec. IV for a discussion of this quantity). The one-pion-
exchange mechanism is clearly important below 1 GeV/c but
the predicted cross section decreases rapidly above that.

There are other problems with the comparison with data of
a simple perturbative calculation of the type that we make here.
The results will not, in general, be unitary. At low energies it is
not reasonable to compare with data without a unitary theory,
which is the reason that a potential is normally calculated
and followed by a solution of the Schrödinger equation or a
relativistic generalization. We have made an estimate of what
might be expected for a maximum cross section at 90◦ based
on unitarity by setting each partial-wave S-matrix element to
−1 and performing the partial-wave sum up to kc.m.R where R

was taken as 1 fm. From this estimate we see that above about
1.5 GeV/c the experimental cross section is sufficiently below
this limit that unitarity can be expected to play a minor role.
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FIG. 2. Kinematics for the box diagram.
Note that in our calculation, starting from Eq. (2)
form factors are used at each vertex even though
we have not indicated their presence here.

The introduction of a form factor also leads to questions about
causality [40–42] which we discuss in Sec. IV.

Section II presents the general method of calculation
with the introduction of the pseudoscalar and pseudovector
operators for the box and crossed kinematics. Section III
sketches the method for the numerical treatment of the
singularities of the propagators. Section IV introduces the form
factors used and discuses their physical basis. Sections III
and IV are independent and can be read in any order.
Section V presents the dispersion relation contributions.
Section VI gives the basic results of the study, Sec. VII provides
some comments and caveats while Sec. VIII gives a summary
of the work and states some conclusions. Appendix A gives the
projection of the spin-dependent amplitudes onto the Saclay
amplitudes, Appendix B outlines the general method used
to treat the singularities numerically, Appendix C gives an
interpretation of the variable used in the form factor in terms
of a four-dimensional cross product, and Appendix D presents
useful dispersion relation results.

II. METHOD OF CALCULATION

The differential cross section in the center of mass (c.m.) is
written in terms of the matrix element, M, as

σ (θ ) =
(

m2

4πE

)2

|M|2. (1)

Here E is the energy of one proton in the c.m. and m is the
proton mass. Spin sums are implicit. Since we consider both
the box and crossed diagrams, M will be the sum of the two.
We will study only the cases of pure pseudoscalar or pure
pseudovector coupling.

A. Pseudoscalar coupling

1. Box diagram

We may write the Feynman diagram for the matrix element
with the box kinematics (see Fig. 2) as

MPSδ(k1 + k2 − k′
1 − k′

2) = g4

(2π )4

∫
dqdq ′dpdp′[ū(k′

1)γ5(/p + m)γ5u(k1)]1[ū(k′
2)γ5(/p′ + m)γ5u(k2)]2

(p2 − m2 + iε)(p′2 − m2 + iε)(q2 − µ2 + iε)(q ′2 − µ2 + iε)
F(k1, k2, k

′
1, k

′
2q, q ′)

× δ(q − p + k1)δ(q ′ − p + k′
1)δ(−q − p′ + k2)δ(−q ′ − p′ + k′

2). (2)

Here g is the pseudoscalar coupling constant with the nor-
malization g2

4π
= 13.75 and F(k1, k2, k

′
1, k

′
2, q, q ′) is the form

factor derived from the intrinsic size of the interacting system.
Since F is assumed to have no spin dependence and has no
poles on the real axes, it plays no direct role in the treatment
of singularities or spin reduction. We suppress the arguments
of F in the equations for the remainder of this section and
for the next section. Using the first and third delta function to
eliminate the integral over p and p′ and the (one dimensional)
relationship δ(x)δ(y) = 2δ(x + y)δ(x − y), the remaining two
delta functions can be written as

24δ(k1 + k2 − k′
1 − k′

2)δ(2q − 2q ′ + k1 − k2 + k′
2 − k′

1).

The first delta function factors out of the integral and cancels
the one on the left-hand side of Eq. (2).

We work in the center-of-mass system where

k1 = −k2 ≡ k, E1 = E2, k′
1 = −k′

2 ≡ k′, E′
1 = E′

2,

(3)

since the external lines are on shell and

E1 = E′
2 ≡ E (4)

by the conservation of energy. With these relations, the
remaining delta function under the integral sign becomes

24δ(2q − 2q ′ + 2k − 2k′) = δ(q − q ′ + k − k′).
For the box, (see Fig. 2), we have

p = k + q = k′ + q′,
(5)

p′ = −k − q = −k′ − q′, p′ = −p,

and

q0 = q ′
0; p0 = E + q0; p′

0 = E − q0. (6)
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Thus, the expression to be evaluated reduces to a four-
dimensional integral

MPS = g4

(2π )4

∫
dq[ū(E, k′)γ5(/p + m)γ5u(E, k)]1[ū(E,−k′)γ5(/p′ + m)γ5u(E,−k)]2

(p2 − m2 + iε)(p′2 − m2 + iε)(q2 − µ2 + iε)(q ′2 − µ2 + iε)
F . (7)

MPS can be written as an operator in spin space in the form
[43]

MPS = g4

(2π )4

∫
dq�1(p0, p)�2(p′

0, p′)F
(p2 − m2 + iε)(p′2 − m2 + iε)(q2 − µ2 + iε)(q ′2 − µ2 + iε)

(8)

with

2m�1 = G + iσ 1 · H, (9)

G = E+(m − p0) − m + p0

E+ k · k′ + p · (k + k′), (10)

H = −
[
m + p0

E+ k′ × k − p × (k − k′)
]

, (11)

where E+ = E + m. For the lower line one has

2m�2 = G′ + iσ 2 · H′, (12)

G′ = E+(m − p′
0) − m + p′

0

E+ k · k′ − p′ · (k + k′);
(13)

H′ = −
[
m + p′

0

E+ k′ × k + p′ × (k − k′)
]

.

2. Crossed Diagram

The expressions for the matrix element in Eq. (8), and for
�1 and �2, for the two-pion crossed diagram are the same as
in the case of the box except that now the relations between
momenta are those corresponding to the diagram in Fig. 3,

p + q′ = k, p′ + q = −k, p + q = k′, p′ + q′ = −k′,
(14)

p0 = p′
0; q0 = q ′

0; q0 = E − p0. (15)

Since only neutral pions can be exchanged in the case of
the box diagram and both neutral and charged pions can be
exchanged in the crossed diagram, a factor of 5 multiplies the

crossed diagram result. This isospin factor is explicitly given
in the dispersion relation approach in Ref. [43].

B. Pseudovector coupling

In this case the interaction is given by f

µ
ψ̄γµγ5τ · ∂µφπψ

and for one nucleon propagator, PPV , the expectation value
leads to

PPV (p2 − m2 + iε) = −f 2

µ2
ū(k′)/q ′γ5(/p + m)/qγ5u(k). (16)

Using k + q = p = k′ + q ′ and the Dirac equation (/k −
m)u(k) = 0 we can write

PPV (p2 − m2 + iε)

= f 2

µ2
ū(k′)γ5(/p + m)(/p + m)(/p + m)γ5u(k). (17)

By regrouping the terms

PPV (p2 − m2 + iε) = f 2

µ2
ū(k′)γ5(/p + m)[(/p − m)

+ 2m][(/p − m) + 2m]γ5u(k), (18)

we find

PPV (p2 − m2 + iε) = f 2

µ2
ū(k′)γ5(p2 − m2)(/p + 3m)γ5u(k)

+ f 24m2

µ2
ū(k′)γ5(/p + m)γ5u(k). (19)

FIG. 3. Crossed diagram kinematics. Form
factors are to be included here as in Fig. 2.
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The last term can be seen to be the pseudo-scalar expression
considered in the last section for one nucleon propagator.
Hence, the operator can be separated into a term which
corresponds to a contact term and one which is identical to
the pseudoscalar expression developed before:

PPV = f 2

µ2
ū(k′)γ5(/p + 3m)γ5u(k)

+ g2 ū(k′)γ5(/p + m)γ5u(k)

p2 − m2
≡ PC + PPS, (20)

where we have used the standard correspondence g2 = f 24m2

µ2 .
We can write

PC = g2

4m2
[2mūr ′ (k′)ur (k) + χ

†
r ′�1(p0, p)χr ]. (21)

It is useful to define an operator analogous to the �1(p0, p)
as before for the contact term for the upper line for the case of
the box diagram

χ
†
r ′C1(p0, p)χr = 2mūr ′(k′)ur (k) + χ

†
r ′�1(p0, p)χr . (22)

We can also define operators corresponding to the contact
terms which are very similar to those defined before in
Eqs. (10) and (11).

GC = G + 2m

(
E+ − k′ · k

E+

)
;

(23)

G′
C = G′ + 2m

(
E+ − k′ · k

E+

)
,

HC = H − 2m
k′ × k
E+ ; H′

C = H′ − 2m
k′ × k
E+ , (24)

with

2mC1(p0, p) = GC + iσ 1 · HC ;
(25)

2mC2(p0, p′) = G′
C + iσ 2 · H′

C.

The same generalization to the crossed diagram can be made
as in the previous section and we do not repeat it here. We can
write for either the box or crossed diagram

MPV = g4

16m4

1

(2π )4

∫
dq

C1(p0, p)C2(p′
0, p′)F(

q2
0 − ω2

)(
q2

0 − ω′2)
+ g4

4m2

1

(2π )4

∫
dq

C1(p0, p)�2(p′
0, p′)F

(p′2 − m2)
(
q2

0 − ω2
)(

q2
0 − ω′2)

+ g4

4m2

1

(2π )4

∫
dq

�1(p0, p)C2(p′
0, p′)F

(p2 − m2)
(
q2

0 − ω2
)(

q2
0 − ω′2)

+MPS. (26)

The first term will be referred to as the bubble diagram
and the second and third (numerically equal) as the triangle.
Expressions of the Saclay amplitudes in term of the G and
H operators can be found in Appendix A. In particular at
90 degrees they are given in Eq. (A21).

III. TREATMENT OF SINGULARITIES

In principle, each of the propagators contributes two
δ-functions and two principal-value integrals. However, for
one fermion on shell neither pion can be on shell and for
one pion on shell neither fermion can be on shell. This fact
considerably reduces the number of terms which contributes.
For numerical calculation, the poles and their order must be
identified and separated into δ-function and principal value
parts. The general technique for doing this is outlined in
Appendix B. We cannot use the classical methods of reduction
[33] because of the existence of the form factor at each vertex.
We list below the poles occurring in the different terms of Eq.
(26). More details can be found in Ref. [43].

A. Contact-contact term (bubble diagram)

For the first term in Eq. (26) for either the crossed or box
configuration we have

MCC = g4

16m4

1

(2π )4

∫
dq

×
∫ ∞

−∞
dq0

C1(p0, p)C2(p′
0, p)F(

q2
0 − ω2 + iε

)(
q2

0 − ω′2 + iε
) (27)

= g4

16m4

1

(2π )4

∫
d

∫ ∞

0
dq̃

×
∫ ∞

−∞
dq0

O(q0, q)F(
q2

0 − ω2 + iε
)(

q2
0 − ω′2 + iε

) , (28)

where q̃ = |q| and the volume factor q̃2 has been included in
O(q0, q). Taking large finite limits for the integrals

MCC = − g4

16m4

1

(2π )4

∫
d

∫ q̃max

0

dq̃

ω2 − ω′2

×
∫ qmax

0

−qmax
0

dq0O(q0, q)

×
[

1

q2
0 − ω2 + iε

− 1

q2
0 − ω′2 + iε

]
F . (29)

If we consider the contribution of one pole in q0 (q0 = ω for
example) then a counting of powers of q̃ in the numerator
and denominator shows that, for large q̃, the integrand is
proportional to q̃ so that the integral diverges as q̃2

max if the form
factor is set to a constant. The integral can now be evaluated
by the method given in Appendix B.

B. Contact-PS and PS-contact terms (triangle diagram)

In this case there is one nucleon propagator in addition to
the two pion propagator and the second and third terms in
Eq. (26) can be written in the form

− g4

4m2

1

(2π )4

∫
d

∫ q̃max

0

dq̃

ω2 − ω′2 + iε

×
∫ qmax

0

−qmax
0

dq0O(q0, q)

p2
0 − E2

p + iε

×
[

1

q2
0 − ω2 + iε

− 1

q2
0 − ω′2 + iε

]
F . (30)
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A count of the powers of q̃ at a pole of q0 shows that the
integrand varies as 1/q̃ for large q̃ so the integral diverges (in
the absence of a form factor) logarithmically in q̃max. Again
there are no double poles and the first method of Appendix B
can be used to calculate the four poles in q0.

C. PS-PS term

The pseudoscalar term is given by Eq. (8). There are now
two more factors of q̃ in the denominator so the integral is
convergent. For this case, i.e., when there are two nucleon
poles, the box and crossed diagrams must be treated separately.

1. Crossed diagram

For the crossed-pion configuration, where p0 = p′
0 = E −

q0, there is formally a second order pole when Ep = Ep′ , so
we write

1(
p2

0 −E2
p + iε

)(
p2

0 −E2
p′ + iε

)(
q2

0 −ω2 + iε
)(

q2
0 −ω′2 + iε

)
= 1

E2
p − E2

p′

[
1

p2
0 − E2

p + iε
− 1

p2
0 − E2

p′ + iε

]
1

ω2 − ω′2

×
[

1

q2
0 − ω2 + iε

− 1

q2
0 − ω′2 + iε

]
. (31)

The integration can now be done with the methods of
Appendix B with four poles in the q0 integration.

2. Box diagram

For the box diagram we have for the pole structure

1(
p2

0 −E2
p + iε

)(
p′2

0 −E2
p + iε

)(
q2

0 −ω2 + iε
)(

q2
0 −ω′2 + iε

) .

The pion pole part can be expanded as before but the nucleon
poles have a very different development since the fourth
integration variable is not the same in the two factors but
Ep = Ep′ leading to a second order pole. We can write (with
p0 = E + q0 and p′

0 = E − q0)

1[
p2

0 − (Ep − iε)2
][

p′2
0 − (Ep − iε)2

]
= 1

[(E + q0)2 − (Ep − iε)2][(E − q0)2 − (Ep − iε)2]

= 1[
q2

0 − (E + Ep − iε)2
][

q2
0 − (E − Ep + iε)2

] . (32)

The first factor can be handled by standard methods since there
is no second order pole. The second factor, however, does
contain a second order pole when Ep = E. For this factor we
write

1

q2
0 − (E − Ep + iε)2

= E + Ep

2
(
E2 − E2

p + iε
) [

1

q0 − E + Ep − iε

− 1

q0 + E − Ep + iε

]
.

The integral can now be done with the methods of Appendix
B with five poles in the q0 integral.

IV. FORM FACTORS

The two protons are treated as finite-sized particles with
their intrinsic internal structure providing an extended source
for the exchanged pions. In this case the range of the form
factor is not a cut-off parameter to be taken to infinity at the
end of the calculation, as is often done in a local field theory,
but a physically meaningful quantity. We consider that the true
interaction of the pion is with the partons within the nucleons
but we use an effective field theory (assumed to obey Feynman
rules) to describe the composite system.

A. Basic considerations

In general, one may expect a finite distribution of the in-
teracting constituents of the nucleon to have two components:
one due to the confinement range of the valence quarks (and
other non-color-singlet partons) and one due to the meson
cloud. Because of G parity, the exchange pions cannot couple
directly to the pion part of the cloud (likely to be the most
important part) and the cloud can be expected to have a larger
extent (and hence be “softer” in momentum space). For these
reasons we consider only that part of the density due to the
distribution of valence quarks. This argument is by no means
new (see, e.g., Maekawa and Robilotta [44] for the case of
one-pion exchange as well as Refs. [45–47]). Form factors of
the mesonic dressing type have been extensively studied (see,
e.g., Ref. [48]).

The nonrelativistic form factor can be obtained directly
by calculating the Fourier transform of the density (see, e.g.,
Ref. [18]). While more realistic forms are possible, we assume
here an exponential density in the center of mass of the nucleon
corresponding to a dipole form factor of the type

(�2 − µ2)2

(q2 + �2)2
=

(
�2 − µ2

�2

)2 (
�2

q2 + �2

)2

(33)

if we chose to normalize the form factor to unity at the
nucleon pole and we have neglected the small recoil correction,
µ4/(4m2), to −µ2. The spatial distribution corresponding to
this form is proportional to e−�r . It is well known that there
is a problem with this density since it has a finite derivative
with respect to r at the origin but this presumably only causes
significant corrections at very high momenta. The value of
� = 1.4 GeV most often used in our calculations corresponds
to an rms core radius of the exponential density of 0.49 fm.

An exponential shape is indeed suggested by lattice
calculations. Lissia et al. [49] gave spatial distributions for
the distance between quarks, ρqq(rqq), in the nucleon, and the
pion and ρ mesons. To find the distribution about a fixed center,
ρq(r) needed here, a conversion must be made. If we assume
no correlations between quarks and make no center-of-mass
correction (in the same manner as Lissia et al. did to compare
with the MIT bag model) the conversion between these two
densities is given by the rule that the Fourier transform of ρqq
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is the square of that for ρq . The distributions given in Ref. [49]
for ρqq are well fit by an exponential, e−αrqq , except for the
smallest values of rqq , leading to a dipole form factor. The
square root of this form factor gives a monopole form factor
with the same value of α. Since the pion-nucleon interaction
will be governed by a convolution of the pion and nucleon
distributions, or a product of the form factors, the result of
this type of conversion is the product of two monopole form
factors, or, if the ranges are the same, a single dipole form
factor. The ranges we extract from the figures in Ref. [49] are
α = 7.0 fm−1 for the proton and β = 6.4 fm−1 for the pion. If
we were to take both ranges to be 7.0 fm−1 the result would be
a dipole form factor with a range very nearly 1.4 GeV/c which
is what we have used in most of the calculations shown. For
two different values of the ranges the density is given by

ρπq(r) = α2β2

β2 − α2

(e−αr − e−βr )

r
. (34)

This density is shown by the open circles in Fig. 4 compared
with densities resulting from dipole form factors, i.e., pure
exponentials. The root mean square radius, Rms, corresponding
to this distribution is 0.52 fm.

Another possibility for the conversion of the pion distribu-
tion is to take the distance to the center of mass to be half the
distance between quarks. This choice leads to a product form
factor

α2

α2 + q2

(
β2

β2 + q2

)2

, (35)

where the β is twice the value found in the fit to ρqq . This form
factor gives the density

ρπq(r) = α2β4

r(β2 − α2)2

[
e−αr − e−βr − (β2 − α2)r

2β
e−βr

]
,

(36)

which is shown as the solid dots in Fig. 4. The Rms

corresponding to this density is 0.44 fm.

FIG. 4. Comparison with distributions arising from the dipole
form factor with those obtained from the lattice calculations of Lissia
et al. [49] by the procedures given in the text.

Alexandrou et al. [50] also made calculations of ρqq and
commented that their distributions were very well fit with an
exponential form. In a variety of calculations they found Rms

values of the pion-proton system in the range from 0.55 to
0.60 fm.

Another estimate of this radius can be obtained directly
from form factors for pion-nucleon coupling. For a monopole
form factor, a value of � of 800 MeV to 1 GeV was found [51].
Choosing an equivalent rms radius leads to values in the range
1.13 to 1.41 GeV/c for a dipole form.

While the original MIT bag model used a radius near 1 fm
(for all of the constituents of the nucleon), corrections due to
the inclusion of a pion cloud and the recoil degree of freedom
made by Bolsterli and Parmentola [52] led to values of the rms
radius near 0.45 fm.

B. Relativistic generalization

One often attempts to make a generalization of Eq. (33) to
a relativistic dependence on momentum of the type

(�2 − µ2)2(
q2

0 − q2 − �2
)2 , (37)

i.e., −q2 → q2 = q2
0 − q2. While this substitution makes the

form factor invariant, it is not the only way to achieve this
objective. This procedure introduces additional singularities
on the real axis in q0 which are often regarded as spurious.

We suppose that the distribution of quarks is known in
the rest frame of the nucleon and assume it to be spherically
symmetric with its Fourier transform being a function of the
square of the conjugate momentum, t2. This distribution should
be boosted into the center of mass system of the two nucleons
but a boost is only defined for on-shell particles.

On general principle, to preserve Lorentz invariance, the
form factor should be a function of Lorentz scalars only. In
the case of a pion-nucleon vertex (neglecting spin) there are
three four-vectors to work with, the initial and final nucleon
momenta and the pion momentum. Due to four-momentum
conservation only two are independent. Let us choose the
initial nucleon momenta (k) and the pion momentum (q). From
them we can construct three scalars q2, k2, and k · q.

We expect the desired invariant to involve the nucleon
momentum if it is to represent a boost into the nucleon rest
frame in the on-shell limit. Working with these invariants
and taking into account that there should be scaling with the
dimensions of q, to evaluate to t2, the expression should be
bilinear in q. Since k · q is linear in q we must use its square,
which implies that, in order to be coherent in k as well, the
only two invariants to consider are (k · q)2 and k2q2. The linear
combination

(k · q)2 − k2q2 ≡ m2Z2(k, q) (38)

indeed reduces to m2t2 = m2q2 when the nucleon four-
momentum, k, is taken to be (m, 0). We shall adopt the variable
Z2(k, q), which provides an off-shell generalization of the
boost to the nucleon rest frame, to replace q2 in Eq. (33).
For a discussion of the Lorentz tensor which represents
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the four-dimensional cross product of k and q and can be
contracted to form Z2 see Appendix C.

C. Singularities in q0

The problem of the possible unwanted poles in q0 on the
real axis is at least partially resolved since the condition for a
singularity (k · q)2 − k2q2 + m2�2 = 0 gives as roots for q0:

q0 = k0k · q ±
√

−{k2[k2q2 − (k · q)2] + k2m2�2}
k2

. (39)

As long as the nucleon remains time-like (k2 > 0) the quantity
under the radical is negative so that there is no zero on the
real axis. Since, for the exchange of two pions, at least one of
the nucleons at each vertex is on shell, and there is no zero on
the real axis for q0 for the nucleon momentum on shell, the
problem of unwanted additional singularities is resolved.

Poles do exist in the complex plane and lead a finite value of
the principal-value integral on q0 (an integral over only poles
on the real axis will lead to a principal value contribution
of zero). Since, if the pole is very far from the real axis its
contribution will become negligible, in the limit of � → ∞
the principal-value part of the q0 integral vanishes as expected.
We can see from Eq. (39) that in the limit of k → 0 the pole also
moves far from the real axis so at low energies the principal-
value contribution tends to zero.

Such poles in the upper half of the complex plane are often
considered to lead to a violation of causality. In the present
case we are considering a pair of finite-size particles which
are described in terms of the motion of their centers. Hence,
they can start to interact when they are a distance apart equal to
twice their radii. The usual considerations of causality [40–42]
deal with two point particles and the expectation that any
interaction between them cannot propagate faster than the
speed of light. This criterion does not apply to the present case
since the points which need to be connected by the speed of
light are not the centers but any co-moving points included in
their structure. The scattered wave can start to appear before
the centers of the distributions can be connected by a light
ray. The appearance of these poles is natural and expected.
Of course, their contribution tends to zero as the size of the
system goes to zero (� → ∞).

Since the size of the system becomes unmeasurable at very
low energy we should expect that the nucleons could be treated
as point particles in this regime so that we expect that standard
causality will be valid in the low-energy limit. We see that,
since the pole off of the real axis gives a negligible contribution
in this region being very far from the real axis this expectation
is realized.

D. Properties of Z2

The function Z2 has the property

Z2(p ± q, q) = Z2(p, q) or, in particular
(40)

Z2(k′, q) = Z2(k, q).

Since Z2 is independent of the use of the initial or final nucleon
momentum, the vertex function is a property of the vertex itself

and not of the individual four-momenta. If the three 4-momenta
which are connected to the vertex are p1, p2, and p3 with a
conservation law between them, say p3 = ±p1 ± p2, then any
two of the momenta can be used for the evaluation of the vertex
function, i.e.,

Z2(p1, p2) = Z2(p1, p3) = Z2(p3, p2) = · · · . (41)

An equivalent way to express this function is

Z2 =
[
p2

1

]2 + [
p2

2

]2 + [
p2

3

]2 − 2
(
p2

1p
2
2 + p2

1p
2
3 + p2

2p
2
3

)
4m2

.

(42)

In a more general view, there are two invariants available;
(k · q)2/m2, which evaluates to q2

0 in the rest frame of the

nucleon and (k·q)2−k2q2

m2 which evaluates to q2 in this rest frame.
One could choose any combination of q2 and q2

0 desired for
the dependence in the rest frame. However, only [(k · q)2 −
k2q2]/m2 (and q2 by dint of containing no reference to the
nucleon momentum at all) are independent of which nucleon
momentum (k or k′) is used.

The use of the form factor obtained from the Fourier
transform of the density in the nucleon center of mass without
any dependence on q0 corresponds to an interaction which is
instantaneous in time. This is perhaps to be expected since the
valence quarks are always present for interaction, whereas the
interaction through the intermediate step of the emission of a
meson requires a time h̄/mass for the meson to be formed and
propagate.

Other authors [53,54] have used relativistic generalizations
of the form factor. In particular Ramalho, Arriaga, and
Pẽna [53] have argued that the first type of form factor
dependence, Eq. (37) corresponds to the dressing of the
nucleon by mesons of mass � and suggest that the variable
q2 should be replaced by

Q2 ≡ (P · q)2

P 2
− q2, (43)

where P is the center-of-mass momentum of the two nucleons.
The value of Q2 evaluates to q2 in the center of mass system
so that there is no dependence on q0 if one calculates in that
reference frame, hence no possible singularity in that variable.
This may be a useful form but the underlying basis in physics
is not clear since the form factor should be a property of the
pion-nucleon vertex and not the entire system. How a pion
interacts with a single nucleon should not depend on the
momentum of a second nucleon.

E. Conditions on the form factor

Reviewing the previous paragraphs, we may summarize the
desired properties of an off-shell form factor arising from an
extended source.

(i) There should be no poles of q0 on the real axis.
(ii) For the case of the nucleon on shell and at rest, the form

factor should be independent of q0 so that the interaction
is instantaneous.

(iii) As the nucleon energy approaches zero, poles in q0

should tend to ±i∞. This is necessary since, in this limit,
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the interaction could be regarded as being among point
particles and, by causality, there can be no contribution
from poles off of the real axis. While the arguments
of the previous point and this one arise from different
physical bases, they are mathematically related. For a
typical example consider a form factor of the type

�2

gq2
0 + hq0 + q2 + �2

, (44)

where g and h are real functions of q, k and k0. The poles
in q0 will be given by

q0 = −h ±
√

h2 − 4g(q2 + �2)

2g
. (45)

In order that q0 → ±i∞ as |k| → 0 both g and h must
tend to zero in this limit. This, in turn, means that the form
factor becomes independent of q0 in the limit |k| → 0.
Of course, the contribution of the principal-value integral
must also go to zero at threshold since the amplitude
must be real at that point, there being no open inelastic
channel.

(iv) In the nucleon rest frame the form factor (which is a
function of |q|2 only) is the Fourier transform of the
source density, a positive definite function.

F. Application to the present case

For the application of the form factor in the present
calculation we can always choose the nucleon to be one of
the external lines and hence on shell with energy E. If we
define

f (E, k, q0, q) = f (k, q) =
[

�2 − µ2

(k·q)2

m2 − q2 + �2

]2

, (46)

a product of four of these factors will appear, one for each
vertex. For the box diagram we have

F = f (E, k, q0, q)f (E,−k, q0, q)

× f (E, k′, q0, q′)f (E,−k′, q0, q′), (47)

while for the crossed diagram the product

F = f (E, k, q0, q′)f (E,−k, q0, q)

× f (E, k′, q0, q)f (E,−k′, q0, q′) (48)

enters. Since these functions are scalars and do not have any
poles on the real axis, the manipulation of the spin observables
and the treatment of the singularities is not affected by their
presence.

V. DISPERSION RELATION APPROACH

In order to cross-check our Feynman diagram results we
have calculated the two-pion exchange in the dispersion
relation approach following Ref. [26]. The matrix element
M of Eq. (1) in section II can be written as,

M =
5∑

i=1

[3p+
i (w, t, t̄) + 2p−

i (w, t, t̄)τ 1 · τ 2]Pi. (49)

Here, w, t, t̄ are the Mandelstam invariants satisfying w + t +
t̄ = 4m2, τ 1(2) the isospin Pauli matrices for the nucleon 1(2)
and Pi the perturbative invariants. One has

w = (k1 + k2)2, t = (k1 − k′
1)2, t̄ = (k1 − k′

2)2. (50)

Remember that, in the center of mass of the nucleon-nucleon
w-channel, w = 4E2 = 4(k2 + m2) and t = −2k2(1 − cos θ ),
where θ is the scattering angle and k = |k| = |k′|. The Pi

operators are defined as

P1 = 1112,

P2 = −[(γ 1 · N )12 + (γ 2 · P )11],

P3 = (γ 1 · N )(γ 2 · P ), (51)

P4 = γ 1 · γ 2,

P5 = γ 1
5 γ 2

5 ,

with

N = 1
2 (k2 + k′

2), P = 1
2 (k1 + k′

1). (52)

The expressions needed to convert from the pi amplitudes to
the Saclay amplitudes are given in Appendix A.

Assuming the Mandelstam representation [55], the two-
pion exchange invariant amplitudes p±

i (w, t, t̄) of Eq. (49)
satisfy the following double dispersion relations:

p±
i (w, t, t̄) = 1

π2

∫ +∞

4µ2

dt ′

t ′ − t − ıε

×
∫ +∞

4m2

dw′

w′ − w − ıε
y±

i (w′, t ′)

∓ (−1)i
1

π2

∫ +∞

4µ2

dt ′

t ′ − t − ıε

×
∫ +∞

4m2

dw′

w′ − t̄ − ıε
y±

i (w′, t ′), (53)

where the y±
i (w, t) are the double spectral functions. In

Eq. (53) the first double integrals represent the contributions of
the two-pion-exchange box diagram (see Fig. 2). The second
double integrals give the contribution of the crossed-pion
diagram (Fig. 3). They are obtained from the contributions
of the box diagram by the substitution k1 ↔ −k′

1 which is
equivalent to that of w ↔ t̄ . This substitution changes the sign
of the invariants P1, P3, P5 while P2 and P4 are not modified.
It also changes the isospin dependence. These changes result
in the signs given here. The method for calculating the
two-pion-exchange double spectral functions y±

i (w, t) can be
found, for instance, in Refs. [26,28,43,56]. Eq. (53) can be
written as [43]

p±
i (w, t, t̄) = 1

π

∫ +∞

4µ2

dt ′

t ′ − t − ıε
[ρ±

i (w, t ′)

∓ (−1)iρ±
i (4m2 − w − t ′, t ′)]

∓ (−1)i
1

π

∫ +∞

4m2

dw′

w′ − t̄ − ıε

× a±
i (w′, 4m2 − w − w′), (54)
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with

ρ±
i (w, t) = Imt p

±
i (w, t) = 1

π

∫ +∞

4m2

dw′

w′ − w − ıε
y±

i (w′, t),

(55)

and

a±
i (w′, 4m2 − w − w′)

= 1

π

∫ +∞

4µ2

dt ′

t ′ − (4m2 − w − w′) − ıε
y±

i (w′, t ′). (56)

Since the term with a±
i (w′, 4m2 − w − w′) in Eq. (54) gives

rise to a rather short range force with mass exchanges larger
than 2m it was neglected in the Paris Potential [26–28]. In
Eq. (55) the notation Imt comes from the use of the relation

1

t ′ − t − ıε
= P

t ′ − t
+ ıπδ(t ′ − t), (57)

where P indicates the principal value part of the integral.
Expressions of the ρ±

i (w, t ′) and a±
i (w′, 4m2 − w − w′) for

the nucleon pole contributions for pseudo-scalar coupling are
given in Appendix D. The proton-proton amplitude being a
pure isospin one state (I = 1), one has [see Eq. (49)],

MI=1
PS =

4∑
i=1

[
p+box

i (w, t) + ıImp+
i (w, t)

+ 5p+ cro
i (t̄ , t)

]
Pi, (58)

where the superscript “box” denotes the contribution of the
box diagram and the superscript “cro” that of the crossed one.

The nucleon pole contributions of the bubble (superscript
“bub”) and triangle (superscript “tri”) for the pseudovector
coupling are [43]

ρ+bub
1 (t ′) = g4

32πm2

√
t ′ − 4µ2

t ′
,

ρ+tri
1 (t ′) = g4

16π

√
t ′ − 4µ2

t ′
t ′ − 4µ2

t ′ − 2µ2
I2(t ′),

ρ−tri
2 (t ′) = − g4

128πm

√
t ′ − 4µ2

t ′
t ′ − 4µ2

t ′ − 4m2
[I0(t ′) − 3I2(t ′)],

ρ−bub
4 (t ′) = − t ′ − 4µ2

48m2
ρ+bub

1 (t ′),

ρ−tri
4 (t ′) = g4

256πm2

√
t ′ − 4µ2

t ′
(t ′ − 4µ2)[I0(t ′) − I2(t ′)].

(59)

In the above formulas (59)

I2n(t ′) =
∫ +1

−1

u2ndu

α + β̄u
, I2(t ′) = α

β̄2
[−2 + αI0(t ′)], (60)

with α = µ2 − t ′/2 and β̄ = 2[(t ′/4 − m2)(t ′/4 − µ2)]1/2.
The expressions of the integrals I0(t ′) for t ′ < 4m2, t ′ =
4m2 and t ′ > 4m2 are given in Eqs. (D34), (D36), and
(D35), respectively. The divergence properties of the bubble
and triangle diagrams are also studied in this Appendix D.
The ρ+bub

1 (t ′), ρ+tri
1 (t ′) contributions and those of ρ−tri

2 (t ′),
ρ

−bub(tri)
4 (t ′) can be interpreted as coming from the correlated

2π -exchange in the S-wave [σ or f0(600) exchange] and
in the P-wave (ρ exchange), respectively (see Eqs. (2.29),
(2.30), (2.31) of Ref. [28] and Eqs. (2.12), (2.13) of Ref. [26]).
However, in the present case there is no contribution to ρ−

1 .
The box- and crossed-diagram contributions to the bubble

and triangle diagrams are [43]

ρ±bub
1box (t ′) = ±ρ±bub

1cro (t ′) = ± 1
2ρ+bub

1 (t ′),

ρ±tri
1box(t ′) = ±ρ±tri

1cro(t ′) = ± 1
2ρ+tri

1 (t ′),

ρ±tri
2box(t ′) = ∓ρ±tri

2cro(t ′) = ∓ 1
2ρ−tri

2 (t ′), (61)

ρ±bub
4box (t ′) = ∓ρ±bub

4cro (t ′) = ∓ 1
2ρ−bub

4 (t ′),

ρ±tri
4box(t ′) = ∓ρ±tri

4cro(t ′) = ∓ 1
2ρ−tri

4 (t ′).

It can be seen that the total ρ±bub(tri)
ibox (t ′) + ρ

±bub(tri)
icro (t ′) from the

above formulas (61) are in agreement with the formulas (59).
Formulas (61) satisfy the relations of Eq. (D22) between the
box and crossed ρi .

A. Comparison with Feynman diagram calculation

We have checked, at different energies and angles, that the
Saclay amplitudes given by Eq. (A3) for both box and crossed
diagrams for pseudoscalar coupling calculated in Sec. II A
from the Feynman diagram expressions with no form factor
(� → ∞) are in agreement with the corresponding dispersion
relation results Eqs. (D25), (D26), and (D27). We found that
the short range contribution of the crossed diagram coming
from the term containing a±

i (w′, 4m2 − w − w′) in Eq. (54) is
crucial for the agreement. Numerical results will be shown in
the next section.

For the pseudovector coupling, the comparison of the bub-
ble and triangle contributions in Eq. (59) is less straightforward
due to the divergence of some of these terms when integrated
on t ′ in the dispersion relation or of the corresponding terms
in the limit of � → ∞ in the Feynman method. The results
of both approaches for the convergent invariant amplitudes
p+tri

1 (t) and p−tri
2 (t) [see Eqs. (59)] compare well. The logarith-

mically divergent p+bub
1 (t) and p−tri

4 (t) require one subtraction
and a comparison can be made with the dp+bub

1 (t)/dt and
dp−tri

4 (t)/dt . For the linearly divergent p−bub
4 (t) the second

derivative, d2p−bub
4 (t)/dt2, converges and can be compared

with the Feynman calculation.
To obtain these amplitudes in the Feynman calculation the

amplitudes p4 and p1 are extracted from Eqs. (A4) and (A3)
thus removing the explicit dependence on the cosine of the
scattering angle, z. Then the derivatives with respect to z are
essentially the same as the derivatives with respect to t in the
case of the dispersion relations allowing a direct numerical
comparison. Since this process requires numerical derivatives
and a calculation for large � it is more difficult, but a good
agreement is obtained.

VI. RESULTS AND DISCUSSION

Test calculations were made with and without the antiproton
poles (p0 = −E). At low values of PLab or for large � they
give significant contributions and are essential to get agreement
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FIG. 5. Contributions to the real (left) and imaginary (right) parts of the amplitudes b, d , and e as a function of energy for pseudoscalar
coupling. The dashed line corresponds to the box, the dashed-dot line to the crossed-pion diagram, and the solid line to their sum.

with the dispersion relation results. However, for realistic
values of � at higher energies they become unimportant and
can be neglected (but were not neglected in the calculations
presented here).

Figure 5 shows the behavior of the real and imaginary
parts of the amplitudes as a function of incident momentum
for the pseudoscalar coupling. For the crossed-pion diagram
only terms with a single nucleon or pion on shell and the
principal value integral on q0 survive. That is to say, only the
contributions from the q0 integral need to be treated specially,
the rest of the indicated integrals have no singularities. For
the box diagram, in addition to the two contributions just
mentioned, the diagram in which two nucleons are on shell also
gives a real contribution (in the form we are looking at now,
it becomes an imaginary contribution to the amplitude after
application of the factor of i to be consistent with the dispersion
relation approach). That is, the integral on the magnitude of the
three-momentum also has a δ-function part which contributes.

In Fig. 5 (imaginary part) we see that the principal-value
part of the integral goes rapidly to zero for the crossed diagram
as the momentum drops below 500 MeV/c. This behavior can
be traced to the form factor and its dependence on q0. For low
energy the form factor becomes independent of q0, since the
pole moves far from the real axis. Since it is the only pole off of
the real axis the integrand limits to a function with only poles
on the real axis and hence contains only the δ-function parts.

The imaginary part of the box contains both the principal
value and double pole contribution. At low energies the real
parts of the amplitudes are dominated by the term with two

nucleons on shell. By 2 GeV/c that situation has been reversed
with the crossed-pion principal value dominating.

Figure 6 compares the results for the pseudoscalar and
pseudovector couplings. One sees that the real part of the
Saclay amplitude b is very large for the PS coupling but is
greatly reduced for PV coupling. The d amplitude shows only
a modest difference between PS and PV coupling while the e

amplitude is again significantly modified. We note that the b

amplitude is a mixture of central and spin-spin character, the
d amplitude is of tensor character and the e amplitude is of
spin-orbit character [18].

Figures 7 and 8 show a comparison of the box and
crossed-pion contributions. It is readily seen that the crossed-
pion diagram dominates at high energy. This result can be
traced back to the relative ability of the two diagrams to
transfer energy and momentum. Because factors of momentum
transfer in the numerator cancel the decrease coming from the
propagators, the integrand without form factors does not fall
off with increasing momentum transfer so that the decrease in
cross section is mainly due to the form factors. Since the form
factor falls off with increasing pion momentum in the center of
mass of the nucleon, one can see that for the box diagram with
the four-vector q connecting vertices with (E, k) and (E,−k)
both momenta in the respective centers of momentum cannot
be zero (or even small) at the same time. The crossed diagram
does not suffer from this contradiction since q connects −k and
k′ and, for some value of the four-vector, q, there is a chance
to minimize the momenta at both vertices. We now look at the
behavior of the form factor chosen for these calculations.
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FIG. 6. Comparison of the real (left) and imaginary (right) parts of the amplitudes b, d , and e corresponding to the pseudoscalar and
pseudovector couplings. The dashed curve represents the PS and the solid curve the PV.

The crucial element for the understanding of the behavior
of the box and crossed diagrams is the argument Z2 in
Eq. (46). Since one nucleon is always on shell we can write
Z2 and any vertex for either diagram as

Z2 = (u · v)2

m2
− v2, (62)

where u = (E,±k) or (E,±k′) and v = q or q ′.
The order of magnitude of q̃ = |q| will be the same as |k|

since q̃ cannot be taken as small to maximize the integrand
because of the powers of q̃ in the numerator. For values of

momenta greater than the mass of the nucleon, the first term,
(u · v)2, will dominate so we need only consider the size of that
term to obtain some sense of the behavior of the form factor.
Out-of-plane values of q (in the y direction in the system we
are using) only increase Z2 so consider qy = 0. Let x be the
cosine between the incident direction k and the vector q and
consider the pole at q0 = ω in an extreme relativistic limit
E → k̃ (̃k = |k|) and ω → q̃.

It is useful to look for the minimum in the four values of
Z2 in order to maximize the form factor. Corresponding to the
four factors in Eq. (47) we have (neglecting the second term

FIG. 7. Results for the crossed (left) and box diagram (right) for the b amplitude. The dash-dot curves show the results of the dispersion
relation calculation, equivalent to the Feynman calculation for � → ∞. The black dots represent data points as in Fig. 1.
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FIG. 8. Results for the crossed (left) and box diagram (right) for the d and e amplitudes. The curves and dots have the same meaning as in
Fig. 7.

in Z2) the following four values for u · v for the box diagram:

1) Eω − k · q → k̃q̃(1 − x);

2) Eω + k · q → k̃q̃(1 + x);
(63)

3) Eω − k′ · q′ → k̃[̃q(1 −
√

1 − x2) + k̃];

4) Eω + k′ · q′ → k̃[̃q(1 +
√

1 − x2) − k̃].

Since the first and second vertices involve the sum and
difference of the same quantities, they cannot both be small at
the same time. The form factor being an even function of x,
there is an extremum at x = 0 and, in fact, it is a maximum. If
we choose x = 0 and the fourth value of u · v to be zero with
q̃ = 1

2 k̃ then, in this limit

Fmax
box → 1(

1 + k̃4

4m2�2

)4

1(
1 + k̃4

m2�2

)2 . (64)

We can apply the same considerations for the crossed-pion
graph from Eq. (48). The values of u · v at the four vertices are

1) Eω − k · q′ → k̃q̃(1 − x) − k̃2;

2) Eω + k · q → k̃q̃(1 + x);
(65)

3) Eω − k′ · q → k̃q̃(1 −
√

1 − x2);

4) Eω + k′ · q′ → k̃q̃(1 +
√

1 − x2) − k̃2.

It is possible to find values of q̃ and x such that any of the values
of Z2 is zeroed, unlike the case of the box diagram where the
third value can never be zero. For example, one could take
x = −1 and q̃ = 1

2 k̃ to set the first and second values of Z2 to
zero. The maximum comes about, however, if we take the first
and fourth values of u · v to be zero which leads to

q̃ = (2 −
√

2)̃k; x = −1/
√

2. (66)

The second and third values of u · v become

(3 − 2
√

2)̃k2 ≈ 0.1716 k̃2, (67)

which is much smaller than what one was able to achieve in
the case of the box diagram. The form factor is then

Fmax
crossed → 1[

1 + (
0.1716 k̃2

m�

)2]4 . (68)

Thus, not only is it possible to make two of the arguments
zero at the same time but the other two are relatively small
also. Numerical studies of the relative sizes of the form
factors alone confirm that the values of the maximum of the
crossed form factor occurs at the values given by Eq. (66).
While it is necessary to go to very high energy to justify
the ultrarelativistic limit used above for illustration, at PLab =
5.5 GeV/c typical values of the crossed diagram form factor
are more than two orders of magnitude larger than that for the
box diagram.

Since the crossed-pion form factor peaks at definite values
of q and x at high energies, analytical predictions of the relative
size of the different amplitudes can be made. From these values
we find for the Saclay amplitudes, in the very high-energy limit

e = −2b; d = 0, (69)

which was verified by a calculation at PLab = 46 GeV/c. These
values lead to a value of CNN which is again 1/3. In the energy
range where we compare with data we are far from this limit,
however.

We see that the values of the spin separated cross sections
shown in Fig. 9 indicate a preference for the PV coupling which
gives a semiquantitative representation of the data. Figure 10
indicates that values of � in the range 1.2 to 1.4 are in the
appropriate range. Since � has been limited from other sources
(see Sec. IV A), the agreement is obtained in a nearly parameter
free manner.

Some experimental values of the Saclay amplitudes are
known at high enough energy that unitarity corrections can
be expected to be small enough that they can be compared
with the present calculation. Arndt et al. [57] give amplitudes
up to PLab = 3.82 GeV/c and Bystricky et al. [58] present
several single energy values. Ghahramany and Forozani [59]
found values of the amplitudes at two energies in reasonable
agreement with Refs. [57] and [58]. Figure 11 shows a
comparison of the present calculation with the SAID values
(broken line) and the Bystricky et al. points. The agreement
for the pseudovector coupling is seen to be considerably
better than the pseudoscalar one and gives a reasonable
representation of the data except for the imaginary part of b.
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FIG. 9. Results of the sum of the crossed and box diagrams for 2|b|2 (left) and |d|2 + |e|2 (right). The dash-dot curves show the results of
the dispersion relation calculation, equivalent to the Feynman calculation for � → ∞. The black dots represent data points as in Fig. 1.

One may ask if the difference in fall-off of the crossed
and box diagrams is a general result of the kinematics or if
it depends on the particular form of the variable Z2 used in
the form factor. To attempt to give a partial answer to this
question we have calculated the pseudo-scalar result for the
crossed diagram with a different, though superficially similar,
variable. Haberzettl et al. [47] use a variable which is of the
form

W 2(p1, p2, p3) =
(
p2

1 − m2
1

)2 + (
p2

2 − m2
2

)2 + (
p2

3 − m2
3

)2

4m2
,

(70)

where we have chosen the normalization such that the limit for
large values of the invariant masses matches that of Eq. (42).
Figure 13 shows the comparison of the two calculations and
one sees that the fall-off for this variable is very similar to
the presently used form factor. The rise at small momenta is
at least partially due to the contribution of the principal value
integral since the pole in the complex plane does not move far
from the real axis as the energy goes to zero so that causality
is not respected in that limit.

It is useful to examine the decrease of the cross section
with increasing energy. The prediction of slope of Brodsky and

Farrar [19] (see Fig. 1) based on counting of internal propa-
gators and our calculation of 2|b|2 are very similar. The high
energy limit of a form factor has been compared with the pic-
ture of the propagators between interacting constituents by the
authors of Ref. [60] for the case of scattering from nuclear con-
stituents. The two-pion-exchange diagram may be able to pro-
vide a bridge between the low and high-energy points of view.

The present result bears directly on the question of the en-
ergy regime where the transition from a color singlet hadronic
exchange to a quark-gluon basis might reasonably take place.
This, in turn, may impact the question of color transparency
(see, for example Jain et al. [61]). If the exchange of color
singlets (pions in this case) continues to be important through
12 GeV/c it might negate the basis for color transparency
(dominance of quark-gluon exchange) in the moderate energy
range PLab � 12 GeV/c. This is the entire range covered in the
color transparency experiments of Carroll et al. [62]. However,
it may be that, even if color singlet exchange continues to be
very important for elastic scattering, quark-gluon exchange
might dominate the inelastic processes.

The comparison with the spin transfer observable CNN is
given in Fig. 14 for several values of �. For the pseudovector
choice of coupling it is seen that the qualitative features
are reproduced. One, in fact, needs a mechanism (or several

FIG. 10. Comparison of the data for 2|b|2 (left) and |d|2 + |e|2 (right) with the results of the sum of the crossed and box diagrams for
different values of �. Increasing cross sections correspond to increasing values of �. The black dots represent data points as in Fig. 1.
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FIG. 11. Comparison of the real parts of the calculated PS (left) and PV (right) b, d , and e amplitudes (solid lines) with the results of
SAID [57] (dashed lines) and those obtained by Bystricky et al. (points) [58]. The phase has been chosen such that the amplitude e is real.

mechanisms) with considerable structure in order to reproduce
the data. The plateau in the data from 4 to 8 GeV/c is not found
but there is a minimum in the calculation in this region.

VII. COMMENTS AND CAVEATS

We emphasize that we make no attempt to calculate a
complete theory of the nucleon-nucleon interaction at these
energies. Our purpose is to investigate the possibility that

two-pion exchange could remain important in this energy
region. Since we find that it does seem to have a significant
contribution, one may ask what would be necessary to
complete the theory.

Kaiser et al. [63] (see also Machleidt et al. [64]) find (at
relatively low energy) that uncorrelated two-pion exchange
dominates over correlations in the form of a sigma meson.
They point out the importance of � excitation in low-energy
nucleon-nucleon scattering in the higher partial waves. It is
not clear if these conclusions can be taken over to the higher
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FIG. 12. As in Fig. 11 but for the imaginary part of the b and d

amplitudes.

energies where we are working, but it seems likely that some
form of intermediate excited baryon states will be needed.

It is clear that some sort of unitarization will be needed
to have a complete calculation. This would normally take the
form of a Schrödinger or Bethe-Salpeter equation. However,
one must be careful since we find that the crossed diagram
dominates at high energies. These equations commonly treat
only the ladder approximation which means that the complete
cross diagrams are not generated. One could certainly use the

FIG. 14. Comparison of the result for the spin-correlation observ-
able CNN for the PS and PV couplings for three values of �. Data are:
squares, Bhatia et al. [2]; filled circles, Lin et al. [1]; open circles,
Crosbie et al. [3].

diagrams we have calculated as the basis for the construction
of a potential or kernel and that is a useful endeavor. However,
triply crossed pions (for example) would not be included in
this manner and so potentially important physics might be left
out.

The appearance of an imaginary component of the ampli-
tude from the principal value integral is interesting but its role
is not understood. This component arises from the pole in q0

(off the real axis in the complex plane) in the form factor
which is related to the ground-state density of quarks in the
nucleon. It may be that the imaginary part appears in this
second order calculation but will disappear with the addition
of higher order terms, that it is an artefact in the calculation
which must be dealt with or that it represents the inelasticity
with the underlying short-range physics not understood. The
choice among these possibilities is beyond the scope of the
present paper.

A theorem displaying the cancellation between the isoscalar
box and crossed diagrams is often cited [30,65,66]. We used

FIG. 13. Comparison of calculations using Z2 as the variable in a dipole form factor with that of Eq. (70) from Haberzettl et al. [47]. No
attempt has been made to make the range the same in the two calculations and this figure gives only the PS contribution. The graph shows that
the slopes of the calculations with the different form factors are similar and in both cases the box diagram contribution falls off much more
rapidly than that of the crossed diagram. The black dots represent data points as in Fig. 1.
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this theorem (in the form given by Gross [67], valid for
the isoscalar part of the amplitude and large nucleon mass),
to check the numerical codes in the beginning. However,
since we are calculating the T = 1 amplitude (proton-proton
scattering), there is a factor of 5 to be multiplied by the basic
crossed diagram relative to the box so that this cancellation
is only modest. Since we are mostly dealing with momenta
of the order of, or greater than, the mass of the nucleon, the
infinite nucleon mass limit cannot be expected to be relevant.

At the relatively high momentum transfers in the present
work the typical pion momenta in the pion propagator far
exceed the pion mass so that the pion mass no longer provides
a scale for decrease in cross section with momentum transfer.
The scale of fall off with momentum transfer is completely
controlled by the the value of �.

VIII. SUMMARY AND CONCLUSIONS

We have calculated the contribution of the box and crossed
two-pion-exchange diagrams to proton-proton scattering at
90◦

c.m. for laboratory momenta up to 12 GeV/c. The cases of
both pure pseudoscalar and pure pseudovector pion-nucleon
coupling are treated.

We assume that the interaction of the pion is with the
valence quarks within the nucleons and use an effective field
theory obeying Feynman rules to describe the composite
system. At each pion-nucleon-interaction vertex we introduce
a relativistic Lorentz-invariant form factor. These form factors
are related to the convolution of the nucleon and pion sizes
and represent the pion source distribution based on the quark
structure of the hadronic cores and explicitly introduce an
interaction range of this size. These form factors are functions
of the four-momenta of the exchanged pions and scattering
nucleons. One can use any two of the three momenta which
converge at a given vertex to calculate the function so that the
dependence on the nucleon and pion momenta displays a high
degree of symmetry. This behavior can be traced to the fact
that the basic scalar on which the form factors depend can be
written as the square of the four-dimensional cross product of
any two of the three four-vectors.

While we believe the form factors that we introduce are
quite reasonable, we make no claim as to their uniqueness.
However, there exist a set of conditions, based on short reaction
time, causality, etc., that any relativistic Lorentz invariant form
factor should satisfy. Our form factors obey these rules, but
other form factors used by some authors do not.

As always, the existence of a pole in the fourth component
of the momentum off of the real axis in a form factor
produces an imaginary contribution to the amplitude. We do
not understand at the moment if this imaginary part has a
physical origin or if it is simply a spurious effect.

As a check of the calculation, we compare the two-pion-
exchange Feynman-diagram amplitudes for both pseudoscalar
and pseudovector coupling calculated with point-like nucleons
with those obtained from the dispersion relation approach and
find agreement. The antiproton poles in the Feynman calcula-
tions are essential for the comparison but for a more realistic
calculation with a finite value of the form-factor range, �,
they are unimportant. While performing this study, we found

it essential to include a contribution of the crossed diagram
which was neglected in the dispersion-relation calculations of
the two-pion-exchange Paris potential because of its very short
range.

The numerical technique for calculating the four-
dimensional Feynman integrals, taking into account multiple
poles is presented. Standard transformation methods are not
always applicable in the presence of form factors.

In the Feynman diagram calculations, using the form factors
constrained by the valence quark distribution, comparison
with experimental data favors the pseudovector coupling over
the pseudoscalar one. This is seen in the comparison with
the magnitude of the spin-separated cross sections, in the
agreement with amplitudes extracted up to 4 GeV/c and in
the spin transfer parameter CNN , although in this later case
it is only the general behavior which is correctly given.
This conclusion is based only on the present calculation and
could well change with the inclusion of higher order pion
exchanges, heavier mesons and (especially) the inclusion of
meson production.

The exchange of one pion is important only at momentum
less than PLab = 1 GeV/c. While the strengths of the box
and crossed diagrams for the exchange of two pions are
comparable for laboratory momenta below 2 GeV/c, for larger
momenta the crossed diagram dominates, mainly due to the
mathematical structure of the form factors and to the fact that
the kinematics of the crossed diagram allows a repartition of
momenta at the vertices in a favorable manner. An impor-
tant contribution arises from the principal-value contribution
of the integrals which is nonzero when form factors are
included.

While here we compare only with the extracted spin-
separated cross sections at 90◦

c.m., our calculation can be
extended to all scattering angles. Further studies such as
unitarity corrections can be considered.

To conclude, we have shown that the two-pion exchange
plays a significant role in proton-proton scattering even up to
PLab = 12 GeV/c. This result suggests that the importance of
the exchange of color singlets in elastic scattering may extend
to higher energies than expected.
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APPENDIX A: PROJECTION ONTO THE SACLAY
AMPLITUDES

The Saclay amplitudes [39] are defined by the equation

M(k′, k) = 1
2 [(a + b) + (a − b)σ 1 · nσ 2 · n

+ (c + d)σ 1 · mσ 2 · m,

+ (c − d)σ 1 · lσ 2 · l + e(σ 1 + σ 2) · n], (A1)
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where the center-of-mass basis vectors are

l = k′ + k
|k′ + k| , m = k′ − k′

|k′ − k| , n = k × k′

|k × k′| . (A2)

The Saclay amplitudes a, b, c, d, and e are given in terms of
the nucleon-nucleon helicity amplitudes, ϕi by the following
expressions [39]:

a = 1
2 [(ϕ1 + ϕ2 + ϕ3 − ϕ4) cos θ − 4ϕ5 sin θ ],

b = 1
2 (ϕ1 − ϕ2 + ϕ3 + ϕ4),

c = 1
2 (−ϕ1 + ϕ2 + ϕ3 + ϕ4), (A3)

d = 1
2 (ϕ1 + ϕ2 − ϕ3 + ϕ4),

e = − i
2 [(ϕ1 + ϕ2 + ϕ3 − ϕ4) sin θ + 4ϕ5 cos θ ].

We give below the formulas which express the amplitudes
ϕi in terms of the pi amplitudes [28] used in Sec. V:

ϕ1 = 1 + cos θ

2
(p1 − 2mDp2 + m2D2p3)

+
(

D − 1 − cos θ

2

)
p4,

ϕ2 = −1 − cos θ

2

(
E2

m2
p1 − 2E2

m
p2 + E2p3 + p4 + k2

m2
p5

)
,

ϕ3 = 1 + cos θ

2
(p1 − 2mDp2 + m2D2p3 + Dp4), (A4)

ϕ4 = 1 − cos θ

2

(
E2

m2
p1 − 2E2

m
p2 + E2p3 + p4 − k2

m2
p5

)
,

ϕ5 = E sin θ

2m

(
−p1 + 2E2

m
p2 − m2Dp3 − p4

)
,

where D = (E2 + k2)/m2.
Observables at 90◦ are

σ = 1
2 (2|b|2 + |d|2 + |e|2);

(A5)
σCNN = 1

2 (−2|b|2 + |d|2 + |e|2);

σDNN = 1
2 (−|d|2 + |e|2) = σKNN ;

(A6)
σCMMMM = 1

2 (2|b|2 + |d|2 − |e|2).

The expressions for the amplitudes in terms of the singlet-
triplet matrix elements are

a = 1

2
(M11 + M00 − M1−1);

(A7)

b = 1

2
(M11 + Mss + M1−1);

c = 1

2
(M11 − Mss + M1−1);

(A8)

d = − 1√
2 sin θ

(M10 + M01); e = i√
2

(M10 − M01).

The two-pion exchange box and crossed amplitudes can be
written in the form

M(k′, k) = 〈〈(G1 + iσ1 · H1)(G2 + iσ2 · H2)〉〉, (A9)

where the double brackets indicate integrations over the prop-
agators and the G and H here are related to the corresponding
quantities in Sec. II by the factor m2

4πE
(G1 = m2

4πE
G,G2 =

m2

4πE
G′, etc.). With our choice of coordinate system G and

Hy are even in qy while Hx and Hz are odd. Any totally
odd quantity will integrate to zero and those terms have been
dropped in the following expressions. In the remainder of this
appendix it is to be understood that each term bilinear in G
and/or H is surrounded by double brackets. One has

M1,1 = G1G2 − H 1
z H 2

z ; Ms,s = G1G2 + H1 · H2;
(A10)

M1,−1 = −H 1
x H 2

x + H 1
y H 2

y ;

M0,0 = G1G2 + H 1
z H 2

z − H 1
x H 2

x − H 1
y H 2

y ; (A11)

M0,1 = 1√
2

[−H 1
z H 2

x − H 1
x H 2

z − G1H 2
y − G2H 1

y

]
; (A12)

M1,0 = 1√
2

[−H 1
z H 2

x − H 1
x H 2

z + G1H 2
y + G2H 1

y

]
. (A13)

From these expressions we can construct the amplitudes as

a = G1G2 − H 1
y H 2

y ;

b = G1G2 + H 2
y H 2

y ; (A14)

c = −H 1
x H 2

x − H 1
z H 2

z ;

d = 1

sin θ

(
H 1

z H 2
x + H 1

x H 2
z

)
;

(A15)
e = i

(
G1H 2

y + G2H 1
y

)
.

With the symmetry due to the identical particles

a(θ ) → a(θ ) − a(π − θ ), (A16)

b(θ ) → b(θ ) − c(π − θ )

= G1(θ )G2(θ ) + H1(π − θ ) · H2(π − θ ), (A17)

c(θ ) = −b(π − θ ), (A18)

d(θ ) → 1

sin θ

[
H 1

z (θ )H 2
x (θ ) + H 1

x (θ )H 2
z (θ )H 1

z (π − θ )

×H 2
x (π − θ ) + H 1

x (π − θ )H 2
z (π − θ )

]
, (A19)

e(θ) → G1(θ)H 2
y (θ ) +G2(θ )H 1

y (θ) +G1(π − θ)H 2
y (π − θ)

+G2(π − θ )H 1
y (π − θ ). (A20)

At 90◦

a = 0; b = G1G2 + H1 · H2 = −c;
(A21)

d = 2
(
H 1

z H 2
x + H 1

x H 2
z

)
; e = 2

(
G1H 2

y + G2H 1
y

)
,

where the quantities are evaluated at 90◦.

APPENDIX B: CALCULATION TECHNIQUE

Consider the interior integrals over q and q0 with the
integrals over the solid angle to be done at the exterior. We
apply two formulas depending on the case. In the integral of
the type ∫

dy

∫
dx

{
f (x, y)

[x − x1(y)][x − x2(y)]

}
(B1)
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there are two possibilities. If x1 and x2 are distinct for all values
of y then we can write the integral as∫

dy

∫
dx

f (x, y) − g(x, y)

[x − x1(y)][x − x2(y)]

+
∫

dy

∫
dx

g(x, y)

[x − x1(y)][x − x2(y)]
, (B2)

where

g(x, y) = x − x2(y)

x1(y) − x2(y)
f (x1(y), y)

+ x − x1(y)

x2(y) − x1(y)
f (x2(y), y). (B3)

The combination f (x, y) − g(x, y) vanishes at each of the
poles so that there is no singularity in the first term. For the
second integral we have∫ x0

−x0

g(x, y)dx

[x − x1(y)][x − x2(y)]

= f (x1(y), y)

x1(y) − x2(y)

∫ x0

−x0

dx

x − x1(y)

+ f (x2(y), y)

x2(y) − x1(y)

∫ x0

−x0

dx

x − x2(y)
(B4)

= f (x1(y), y)

x1(y) − x2(y)

[
±iπ + ln

(
x0 − x1(y)

x0 + x1(y)

)]
+ f (x2(y), y)

x2(y) − x1(y)

[
±iπ + ln

(
x0 − x2(y)

x0 + x2(y)

)]
. (B5)

For the general case of n distinct poles∫
dy

∫
dxf (x, y)∏n

i=1[x − xi(y)]

=
∫

dy

∫
dx[f (x, y) − g(x, y)]∏n

i=1[x − xi(y)]

+
∫

dy

∫
dxg(x, y)∏n

i=1[x − xi(y)]
, (B6)

where

g(x, y) =
n∑

i=1

∏
j �=i[x − xj (y)]∏

j �=i[xi(y) − xj (y)]
f (xi(y), y) (B7)

and the second integral is given by
n∑

i=1

f (xi(y), y)∏
j �=i[xi(y) − xj (y)]

[
±iπ + ln

(
x0 − xi(y)

x0 + xi(y)

)]
. (B8)

If two poles are not distinct (for some value of y) then this
method does not work. Instead we may write∫

dy

∫
dxf (x, y)

[x − x1(y)][x − x2(y)]

=
∫

dy
1

x1(y) − x2(y)

×
∫

dxf (x, y)

[
1

x − x1(y)
− 1

x − x2(y)

]
. (B9)

Each of these integrals can be done separately and a second
singularity has been pushed into the y integral. In the cases

where the pole occurs in quadratic expressions it may be more
efficient to take that into account as∫

dy

∫
dx

f (x, y)

[x2 − x2
1 (y)][x2 − x2

2 (y)]

=
∫

dy
1

x2
1 (y) − x2

2 (y)

×
∫

dxf (x, y)

[
1

x2 − x2
1 (y)

− 1

x2 − x2
2 (y)

]
. (B10)

APPENDIX C: INTERPRETATION OF Z2

One can be led to the form of Eq. (38) from the condition
given in Eq. (40). Since k′ = k + q (for example) we observe
the analogous condition in three dimensions is indicative of
the vector cross product and are thus led to consider the four-
dimensional version of the cross product. If we define this cross
product by the use of a totally antisymmetric four-component
tensor, εijk�, in analogy with the three-dimensional case, for
two vectors (say u and v) the result is a tensor

Tij =
∑

0,1,2,3

εijk�ukv�. (C1)

Since this tensor has six independent components, it cannot
be expressed as an ordinary four-vector. It is useful to separate
the components into two classes: one in which the zero index
is free and one in which it is contained in the sum

T0j =
∑
1,2,3

ε0jk�ukv� = [u × v]j ; j = 1, 2, 3, (C2)

Tij = u0vk − v0uk = [u0v − v0u]k,
(C3)

i, j, k = 1, 2, 3 and cyclic.

Contracting this tensor with itself with the standard metric
tensor gi,j = giδi,j ; g0 = 1; gi = −1, i = 1, 2, 3 we find

1

2

∑
gii ′gjj ′TijTi ′j ′ = 1

2

∑
giigjjTijTij = (u0v − v0u)2

− (u × v)2 ≡ (u · v)2 − u2v2. (C4)

The last identity may be verified by direct evaluation and
has the form used for Z2 showing that it corresponds to the
contraction of a four-dimensional cross product.

APPENDIX D: USEFUL DISPERSION RELATION RESULTS

1. The PS dispersion relation contributions

The integration over t ′ in Eq. (55) is performed analytically.
One obtains [43,68]

ρ±
1 (w, t ′) = ρ±

11(w, t ′) − ρ±
12(w, t ′) (D1)

with

ρ±
11(w, t ′) = ±π

2

(
g2

4π

)2
m2

√
t ′

(t ′ − 2µ2)2

4m2 − w − t ′

×
[
A(w, t ′) −A(4m2 − t ′,t ′)

4m2 −w − t ′
+C(4m2 − t ′,t ′)

]
,
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ρ±
12(w, t ′) = ±π

2

(
g2

4π

)2
m2

√
t ′

[F1A(0, t ′) + F2A(w, t ′)

+F3C(4m2 − t ′, t ′) + F4A(4m2 − t ′, t ′)]. (D2)

The Fi are given by

F1 = −4[m2(t ′ − 4µ2) + µ4]

w(4m2 − t ′)
,

F2 = −η(w, t ′)(2w + t ′ − 4m2)

w(w + t ′ − 4m2)2
, (D3)

F3 = − (t ′ − 2µ2)2

4m2 − w − t ′
, F4 = −F1 − F2.

The expression for ρ±
2 (w, t ′) is

ρ±
2 (w, t ′) = ρ±

11(w, t ′)
m

±π

2

(
g2

4π

)2
m√
t ′

(t ′ − 4m2)

× [G1A(0, t ′) + G2A(w, t ′) + G3C(4m2 − t ′, t ′)

+G4A(4m2 − t ′, t ′)] (D4)

with

G1 = − F1

4m2 − t ′
, G2 = F2

2w + t ′ − 4m2
,

(D5)

G3 = F3

4m2 − t ′
, G4 = −G1 − G2.

Furthermore,

ρ±
3 (w, t ′) = ρ±

1 (w, t ′)
m2

, (D6)

ρ±
4 (w, t ′) = ±π2

2

(
g2

4π

)2
1√
t ′

1

4m2 − w − t ′

× [η(w,t ′)A(w,t ′) − (t ′ − 2µ2)2A(4m2 − t ′, t ′)].
(D7)

In Eqs. (D3) and (D7)

η(w′, t ′) = 4µ4 − (t ′ − 4µ2)(w′ − 4m2)

= (x0 − w′)(t ′ − 4µ2), (D8)

with

x0(t ′) = 4m2 + 4µ4

t ′ − 4µ2
� 4m2. (D9)

The function C(y, t ′) is

C(y, t ′) = −
√

t ′ − 4µ2

(t ′ − 4m2)(t ′ − 2µ2)2

+ (t ′ − 4µ2)(2t ′ − 4m2) + 4µ4

(t ′ − 4m2)(t ′ − 2µ2)2
A(y, t ′), (D10)

with, depending on the value of y, the following expressions
for A(y, t ′):

(i) if y < 0, then η(y, t ′) = (x0 − y)(t ′ − 4µ2) > 0

A(y, t ′) = 1√−η(y, t ′)y
ln

1 +
√

−y(t ′−4µ2)
η(y,t ′)

1 −
√

−y(t ′−4µ2

η(y,t ′)

= 1√−η(y, t ′)y
ln

1 +
√

y

y−x0

1 −
√

y

y−x0

, (D11)

(ii) if 0 < y < x0, then η(y, t ′) > 0 and

A(y, t ′) = 2√
η(y, t ′)y

arctan

√
y(t ′ − 4µ2)

η(y, t ′)

= 2√
η(y, t ′)y

arctan
√

y

x0 − y
, (D12)

(iii) if y > x0, then η(y, t ′) < 0, A has an imaginary part:

ReA(y, t ′) = − 1√−η(y, t ′)y
ln

1 +
√

−y(t ′−4µ2)
η(y,t ′)√

−y(t ′−4µ2)
η(y,t ′) − 1

= − 1√−η(y, t ′)y
ln

1 +
√

y

y−x0√
y

y−x0
− 1

, (D13)

ImA(y, t ′) = (t ′ − 4µ2)(w′ − 4m2) − 4µ4.

It can be seen from Eqs. (D11) and (D12) that A is
continuous at y = 0 with the value,

A(0, t ′) = 2
√

t ′ − 4µ2

η(0, t ′)w
. (D14)

On the other hand, A is discontinuous at x0, since taking the
limits in Eqs. (D12) and (D13),

A(y, t ′) ∼
y→x−

0

π√
(x0 − y)(t ′ − 4µ2)y

−→ ∞,

lim
y→x+

0

A(y, t ′) = − 1

y
√

t ′ − 4µ2
. (D15)

This square root divergence will disappear after performing
the integration over t ′.

For the a±
i (w′, 4m2 − w − w′) the integration over t ′ in

Eq. (56) is performed analytically. One obtains, with ỹ =
4m2 − w − w′ and w̃′ = 4m2 − w′,

a±
1 (w′, ỹ) = ±π

2

(
g2

4π

)2

[a11(w′, ỹ) + a12(w′, ỹ)],

a±
2 (w′, ỹ) = ±π

2

(
g2

4π

)2 [
a11(w′, ỹ)

m
+ ã12(w′, ỹ)

]
,

a±
3 (w′, ỹ) = a±

1 (w′, ỹ)

m2
, (D16)

a±
4 (w′, ỹ) = ±π

2

(
g2

4π

)2
1

w
√

w′ [η(w′, ỹ)Ã(w′, ỹ)

− η(w′, w̃′)Ã(w′, w̃′)].
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In Eq. (D16),

a11(w′, ỹ) = m2

w2
√

w′ [(̃y − 2µ2)2Ã(w′, w̃′)

− (w̃′ − 2µ2)(̃y − w − 2µ2)Ã(w′, w̃′)

+w(w̃′ − 2µ2)2C̃(w′, w̃′)],

a12(w′, ỹ) = m2

w2w′√w′ [(w − w′)η(w′, ỹ)Ã(w′, ỹ)

− [w2 + (w′ − w)η(w′, ỹ)]Ã(w′, w̃′)

+ww′η(w′, w̃′)C̃(w′, w̃′)],

ã12(w′, ỹ) = m

w2w′√w′ [(w + w′)η(w′, ỹ)Ã(w′, ỹ)

+ [w2 − (w + w′)η(w′, ỹ)]Ã(w′, w̃′)

+ww′η(w′, w̃′)C̃(w′, w̃′)]. (D17)

The functions Ã(w′, ỹ) and C̃(w′, ỹ) with ỹ � 0 are

Ã(w′, ỹ) = 1√−η(w′, ỹ )̃y
ln

1 +
√

ỹ

ỹ−x̃0

1 −
√

ỹ

ỹ−x̃0

, (D18)

C̃(w′, ỹ) =
√−w̃′

ỹη(w′, ỹ)
− w̃′(̃y − 2m2) + 2µ4

ỹη(w′, ỹ)
Ã(w′, ỹ),

(D19)

with

x̃0(t ′) = 4µ2 + 4µ4

w′ − 4m2
� 4µ2. (D20)

We have calculated the discontinuities of the p±
i along w,

i.e.,

lim
ε→0

[pi(w + ıε, t ′) − pi(w − ıε, t ′)]

= 2iImwpi(w, t ′) = 2i
1

π

∫ +∞

4µ2

dt ′

t ′ − t
Imwρ±

i (w, t ′). (D21)

We introduce the following explicit notations:

ρ±box
i (w, t ′) = Reρ±

i (w, t ′),

ρ±cro
i (w, t ′) = ∓(−1)iρ±box

i (w ↔ 4m2 − t ′ − w, t ′),

Imwρ±box
i (w, t ′) = Imwρ±

i (w, t ′) = y±
i,N (w, t ′).

(D22)

The double spectral functions y±
i,N (w, t) of the box diagram

for pseudo-scalar (PS) pion-nucleon coupling are [43]

y±
1,N (w, t) = ±π2

2

(
g2

4π

)2
m2

√
t

K(w, t)

(4m2 − t − w)2

×
[

4m2 − 2w − t

w2K(w, t)2
+ (t − 2µ2)2

]
,

y±
2,N (w, t) = ±π2

2

(
g2

4π

)2
m√
t

K(w, t)

(4m2 − t − w)2

×
[
− 4m2 − t

w2K(w, t)2
+ (t − 2µ2)2

]
,

y±
3,N (w, t) = y±

1 (w, t)

m2
,

y±
4,N (w, t) = ±π2

2

(
g2

4π

)2
1√
t
K(w, t)

×
[
− 1

w
(
4m2 − t − w

)
K(w, t)2

]
,

y±
5,N (w, t) = 0, (D23)

with

K(w, t) = w−1/2[(t − 4µ2)(w − 4m2) − 4µ4]−1/2. (D24)

Here again, the last equalities of Eq. (D22) follows from the
application of Eq. (57). In the expressions (D2), (D4), (D7),
and (D13), the imaginary part of the ρ±

i (w, t ′) comes only
from A. There are only three A terms: A(w, t ′), A(0, t ′) and
A(4m2 − t ′, t ′) in Eqs. (D2) and (D4) that have a non-zero
imaginary part for y > x0. However, from (D9) one cannot
have 4m2 − t ′ > x0, so, a fortiori one cannot have 4m2 −
t ′ − w > x0 and only the box diagram has an imaginary part
which justifies the superscript “box” in the expression for the
imaginary part. The superscript “cro” denotes the contribution
from the crossed diagram. We write

p±box
i (w, t) = 1

π

∫ +∞

4µ2

dt ′

t ′ − t
ρ±box

i (w, t ′), (D25)

p±cro
i (t̄ , t) = 1

π

∫ +∞

4µ2

dt ′

t ′ − t
ρ±cro

i (t̄ , t ′)

∓ (−1)i
1

π

∫ +∞

4m2

dw′

w′ − t̄

× a±
i (w′, 4m2 − w − w′), (D26)

Imwp±
i (w, t) = 1

π

∫ +∞

4µ2

dt ′

t ′ − t
y±

i,N (w, t ′). (D27)

It can be seen from studying the high t ′ behavior of the
functions (D22) that they decrease like 1/t ′ or ln(t ′)/t ′ for
t ′ → +∞, so that the integrals (D25), (D26), and (D27) on t ′
converge. A similar convergence holds for the integrals on w′.
Note that the physical values of t(t̄) being negative, there are
no poles in the t ′(w′) integration, so there is no further imag-
inary part. In the present form, the numerical calculation of
Eqs. (D25), (D26), and (D27) requires one numerical integra-
tion over t ′ or w′.

We have seen [Eq. (D15)] that A(y, t ′) has a divergence in
y → x−

o . In the expressions for integration on t ′, y takes the
values 4m2 − t ′, 0, 4m2 − t ′ − w and w [see Eqs. (D2), (D4),
and (D22)]. The divergence at y = x0 is in the expression
for ρ±

11 in Eq. (D2) where the first argument of A is w, so
that only the box diagram has this divergence. Fixing w and
using Eq. (D9) the condition w = x0 gives for ρ±box

i (w, t ′) a
discontinuity at t ′ = t ′0 with

t ′0 = 4µ2 + 4µ4

w − 4m2
. (D28)
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The integral (D25) can be split into two pieces,

p±box
i (w, t) = 1

π

∫ t ′0

4µ2

dt ′

t ′ − t
ρ±box

i (w, t ′)

+ 1

π

∫ +∞

t ′0

dt ′

t ′ − t
ρ±box

i (w, t ′). (D29)

The first integral, of the type,∫ t ′0

4µ2

dt ′√
t ′0 − t ′

F (t ′), (D30)

becomes, with x = √
t ′0 − t ′,

2
∫ √

t ′0−4µ2

0
dxF (t ′0 − x2). (D31)

This transformation is applied to F (t ′) = [
√

t ′0 − t ′/(π (t ′ −
t))] ρ±box

i (w, t ′). The second integral can be recast into a finite
domain by the following change of variable:

t ′ = λ(x + 1) − 2t ′0
x − 1

,

where λ is a free parameter. One then has to calculate

1

π

∫ 1

−1

2(t ′0 − λ)dx

[λ(x + 1) − 2t ′0 − t(x − 1)]
ρ±box

i (w, t ′(x)). (D32)

For the calculation of p±cro
i (t̄ , t) and Imwp±

i (w, t) there is
no discontinuity in t ′0. For p±cro

i (t̄ , t), one can transform the first
term of Eq. (D26) into an integral of the type Eq. (D32). For the
imaginary part the domain of definition of K(w, t ′) restricts
the integration interval to [t ′0,+∞]. There is a singularity at
the lower limit in 1/

√
t ′ − t ′0 which we treat as above [see

Eqs. (D30) and (D31)].
We have [see Eqs. (D23), (D22), and (D26)]

p+box
i (w, t) = −p−box

i (w, t),
(D33)

p+cro
i (t̄ , t) = p−cro

i (t̄ , t).

2. Divergence properties of the bubble and triangle diagrams

For t ′ < 4m2, β̄ = iβ = i2[(m2 − t ′/4)(t ′/4 − µ2)]1/2 and

I0(t ′) = 2

β
arctan

β

α
. (D34)

For t ′ > 4m2, β̄ = β = 2[(t ′/4 − m2)(t ′/4 − µ2)]1/2 and

I0(t ′) = 1

β
ln

∣∣∣∣α + β

α − β

∣∣∣∣ . (D35)

The functions I0(t ′) and I2(t ′) are continuous at t ′ = 4m2 and

I0(4m2) = 2

α
, I2(4m2) = 2

3α
. (D36)

Furthermore ρ−tri
2 (t ′) is also continuous at t ′ = 4m2, with

lim
t ′→4m2

I0(t ′) − 3I2(t ′)
t ′ − 4m2

= 2(m2 − µ2)

(µ2 − 2m2)3
. (D37)

For t ′ → ∞ the functions I0,2(t ′) → (2/t ′) ln(t ′/m2) and
(t ′/4 − µ2)[I0(t ′) − I2(t ′)] → constant. It can then be seen
from Eqs. (54) and (59) that the amplitudes p+tri

1 (t) and p−tri
2 (t)

are convergent, p+bub
1 (t) and p−tri

4 (t) are logarithmically
divergent and p−bub

4 (t) is linearly divergent. Introducing an
upper limit of integration, tM , in the integrals (54), one
finds

p+bub
1 (t, tM ) = g4

32π2m2
I1(t, tM ), (D38)

p−bub
4 (t, tM ) = g4

1536π2m4
I4(t, tM ), (D39)

with

I1(t, tM ) = I1(0, tM ) + J1(t, tM ), (D40)

I1(0, tM ) = −2X(tM ) − Iln(X(tM ), 1), (D41)

J1(t, tM ) = 2X(tm) + X(t)Iln(X(tM ), X(t)), (D42)

X(t) =
√

1 − 4µ2

t
, Iln(Y,Z) = ln

∣∣∣∣Y − Z

Y + Z

∣∣∣∣ , (D43)

I4(t, tM ) = I4(0, tM ) + J 1
4 (t, tM ) + J 2

4 (t, tM ), (D44)

I4(0, tM ) = tMX5(tM ) − 6(µ2/tM )J 1
4 (tM, tM ), (D45)

J 1
4 (t, tM ) = −t[(2/3)X3(tM ) − I1(0, tM )], (D46)

J 2
4 (t, tM ) = t[(2/3)X3(tM ) + X2(t)J1(t, tM )]. (D47)

The logarithmic divergence of p+bub
1 (t) is seen in Eq. (D42)

and the linear divergence of p−bub
4 (t) in Eq. (D45).
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