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�-nuclear spin-orbit coupling from two-pion exchange
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Using SU(3) chiral perturbation theory we calculate the density-dependent complex-valued spin-orbit coupling
strength U�ls(kf ) + iW�ls(kf ) of a � hyperon in the nuclear medium. The leading long-range �N interaction
arises from iterated one-pion exchange with a � or a � hyperon in the intermediate state. We find from this
unique long-range dynamics a sizable “wrong-sign” spin-orbit coupling strength of U�ls(kf 0) � −20 MeV fm2

at normal nuclear matter density ρ0 = 0.16 fm−3. The strong �N → �N conversion process contributes at the
same time an imaginary part of W�ls(kf 0) � −12 MeV fm2. When combined with estimates of the short-range
contribution the total �-nuclear spin-orbit coupling becomes rather weak.
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Hypernuclear physics has a long and well-documented
history [1–3]. One primary goal in this field is to determine
from the experimental data the nuclear mean-field potentials
relevant for the hyperon single-particle motion. For the �

hyperon the situation is by now rather clear and the following
quantitative features have emerged. The attractive nuclear
mean-field potential for a � hyperon is about half as strong
as the one for nucleons in nuclei: U� � −28 MeV [4]. With
this value of the potential depth the empirical single-particle
energies of a � bound in hypernuclei are well described over a
wide range in mass number. On the other hand, the �-nucleus
spin-orbit interaction is found to be extraordinarily weak. For
example, recent precision measurements [5] of E1-transitions
from p- to s-shell orbitals in 13

� C give a p3/2 − p1/2 spin-orbit
splitting of only (152 ± 65) keV to be compared with a value
of about 6 MeV in ordinary p-shell nuclei.

In the case of the � hyperon recent developments have
lead to a revision concerning the sign and magnitude of its
nuclear mean-field potential [6]. Whereas an earlier analysis
of the shifts and widths of x-ray transitions in �− atoms
came up with an attractive (real) �-nucleus optical potential
of about −27 MeV [1], there is currently good experimental
and phenomenological evidence for a substantial �-nucleus
repulsion. A reanalysis of the �− atom data in Ref. [7]
including the then available precise measurements of W and Pb
atoms and employing phenomenological density-dependent
fits has lead to a �-nucleus potential with a strongly repulsive
core (of height ∼ 95 MeV) and a shallow attractive tail outside
the nucleus. The inclusive (π−,K+) spectra on medium-
to-heavy nuclear targets measured at KEK [8,9] give more
direct evidence for a strongly repulsive �-nucleus potential.
In the framework of the distorted wave impulse approximation,
a best fit of the measured (π−,K+) inclusive spectra on
Si, Ni, In, and Bi targets is obtained with a �-nucleus
repulsion of about 90 MeV. However, the detailed description
of the �− production mechanism plays an important role
for the extracted value of the �-nucleus repulsion. Within
a semiclassical distorted wave model [10], which avoids the
factorization approximation by an averaged differential cross
section, the KEK data can also be well reproduced with a
complex �-nucleus potential of strength (30 − 20 i) MeV.
Concerning the �-nucleus spin-orbit coupling there exist
so far no experimental hints for it. Most theoretical models

[11,12] predict the �-nucleus spin-orbit coupling to be strong
(i.e., comparable to the one of nucleons). The basic argument
for a strong spin-orbit coupling is provided by the large and
positive value of the tensor-to-vector coupling ratio of the ω

meson to the � hyperon assuming vector meson dominance
and the nonrelativistic quark model with SU(6) spin-flavor
symmetry. The G-matrix calculations by the Kyoto-Niigata
group [13] using the hyperon-nucleon interaction as derived
from their SU(6) quark model predict a �-nucleus spin-orbit
coupling which is about half as strong as the one of nucleons.
However, due to the presence of the strong �N → �N

conversion process in the nuclear medium one expects the
�-nucleus spin-orbit coupling strength to have also an imagi-
nary part. This possibility has generally been ignored in quark
and one-boson exchange models.

Recently, we have applied chiral effective field theory to
calculate the hyperon mean-fields in nuclear matter [14]. In
this approach the small �-nuclear spin-orbit interaction finds
a novel explanation in terms of an almost complete cancellation
between short-range contributions (estimated from the known
nucleonic spin-orbit coupling strength) and long-range terms
generated by iterated one-pion exchange with intermediate
� hyperons. The exceptionally small �� mass splitting of
M� − M� = 77.5 MeV influences hereby prominently the
effect coming from the second order 1π -exchange tensor
interaction. Furthermore, it has been shown in Ref. [15] that the
proposed cancellation mechanism does not get disturbed by the
inclusion of analogous two-pion exchange processes involving
decuplet baryons [�(1232) and �∗(1385)] in the intermediate
state with considerably larger mass splittings. The density-
dependent complex �-nuclear mean-field U�(kf ) + iW�(kf )
has also been calculated in the same framework in Ref. [16].
It has been found that genuine long-range1 contributions

1Genuine long-range means that (unique) part of the pion-loop
which depends exclusively on small scales (kf , mπ ,�), but not on
any high-momentum cutoff. In case of the �-nuclear mean-field
U�(kf ) it seems that the net short-range contribution is small [16].
For the � single-particle potential U�(kf ) an attractive short-range
contribution [14] is however necessary in order to reproduce the
empirical potential depth of −28 MeV. A deeper understanding of
this feature is presently missing.

0556-2813/2007/76(6)/068201(4) 068201-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.76.068201


BRIEF REPORTS PHYSICAL REVIEW C 76, 068201 (2007)

from iterated one-pion exchange with intermediate � and
� hyperons sum up to a moderately repulsive (real) single-
particle potential of U�(kf 0) � 59 MeV at normal nuclear
matter density ρ0 = 0.16 fm−3. The �N → �N conversion
process induced by one-pion exchange generates at the same
time an imaginary single-particle potential of W�(kf 0) �
−21.5 MeV. This value is in fair agreement with empirical
determinations [7] and quark model predictions [17]. The
purpose of the present Brief Report is to calculate in the same
chiral effective field theory framework the density-dependent
complex-valued �-nuclear spin-orbit coupling strength. As
for the � hyperon [14] we do find a sizable “wrong-sign”
spin-orbit coupling from the second-order one-pion exchange
tensor interaction. When combined with estimates of the short-
range contribution (employing QCD sum rule predictions) the
total �-nuclear spin-orbit coupling becomes rather weak.

Let us begin with some basic considerations. The pertinent
quantity to extract the �-nuclear spin-orbit coupling is the
spin-dependent part of the self-energy of a � hyperon
interacting with weakly inhomogeneous isospin-symmetric
(spin-saturated) nuclear matter. Let the � hyperon scatter from
initial momentum �p − �q/2 to final momentum �p + �q/2. The
spin-orbit part of the self-energy is then

�spin = i

2
�σ · (�q × �p )[U�ls(kf ) + iW�ls(kf )] , (1)

where the density-dependent spin-orbit coupling strength
U�ls(kf ) + i W�ls(kf ) is taken in the limit of homogeneous
nuclear matter (characterized by its Fermi momentum kf )
and zero external �-momenta: �p = �q = 0. The more familiar
spin-orbit Hamiltonian follows from Eq. (1) by multiplica-
tion with a density form factor and Fourier transformation∫

d3q exp(i �q · �r ). For orientation, consider first the ω meson
exchange between the � hyperon and the nucleons. The
nonrelativistic expansion of the vector (and tensor) coupling
vertex between Dirac spinors of the � hyperon gives rise to a
spin-orbit term proportional to i �σ · (�q × �p )/4M2

� . Next one
takes the limit of homogeneous nuclear matter (i.e., �q = 0),
performs the remaining integral over the nuclear Fermi sphere
and arrives at the familiar result

U�ls(kf )(ω) = gω�(1 + 2κω�)gωN

2M2
�m2

ω

ρ , (2)

linear in density ρ = 2k3
f /3π2. Here, κω� denotes the tensor-

to-vector coupling ratio of the ω meson to the � hyperon.
The crucial observation is now that the (left) iterated

one-pion exchange diagram in Fig. 1 generates also a (sizable)
spin-orbit coupling term. The prefactor i

2 �σ × �q is immedi-
ately identified by rewriting the product of π�B-interaction
vertices �σ · (�l − �q/2) �σ · (�l + �q/2) = i

2 (�σ × �q ) · (−2�l ) + . . .

at the open baryon line. For all remaining parts of the
diagram one can then take the limit of homogeneous nuclear
matter (i.e., �q = 0). The other essential factor �p comes from
the energy denominator −�2 + �l · (�l − �p1 + �p ). The ��

mass splitting is rewritten here in terms of the small scale
parameter � = √

MB(M� − M�) � 285 MeV with MB =
(2MN + M� + M�)/4 � 1047 MeV a mean baryon mass. It
serves the purpose to average out small differences in the
kinetic energies of the various baryons involved. Keeping only
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FIG. 1. Iterated one-pion exchange diagrams with � and �

hyperons in the intermediate state generating a �-nuclear spin-orbit
coupling. The horizontal double-line symbolizes the filled Fermi
sea of nucleons, i.e., the medium insertion −θ (kf − | �pj |) in the
in-medium nucleon propagator.

the term linear in the external momentum �p one finds from
the left diagram in Fig. 1 with a � hyperon in the intermediate
state the following contribution to the �-nuclear spin-orbit
coupling strength:

U�ls(kf )(2π�) + iW�ls(kf )(2π�)

= −2D2g2
A

9f 4
π

∫
| �p1|<kf

d3p1d
3l

(2π )6

× MB
�l4

(m2
π + �l2)2[−�2 − i0 + �l2 − �l · �p1]2

= 2

3

∂

∂�2
[U�(kf )(2π�) + iW�(kf )(2π�)] . (3)

Here, D = 0.84 and F = 0.46 [14] denote the SU(3) axial
vector coupling constants together with gA = D + F = 1.3
the nucleon axial vector coupling constant. fπ = 92.4 MeV
is the pion decay constant and mπ = 138 MeV the average
pion mass. Note that the loop integral in Eq. (3) is convergent
as its stands. Most useful is actually the representation
of the spin-orbit coupling strength as a derivative of the
�-nuclear potential U�(kf ) + iW�(kf ) with respect to the
(mass splitting) parameter �2. Using the analytical expressions
in Ref. [16] to evaluate this derivative we find for the real and
imaginary part

U�ls(kf )(2π�) = D2g2
AMBm2

π

72π3f 4
π

{
(4 + 2δ) arctan

√
u

1 + δ

− 3u + (1 + δ)(4 + 2δ)

u + (1 + δ)2

√
u

}
, (4)

W�ls(kf )(2π�) = D2g2
AMBm2

π

72π3f 4
π

{
−u + (1 + δ)(2 + δ)

u + (1 + δ)2

×
√

u(4δ + u) + (4 + 2δ)

× ln
u + 2 + 2δ + √

u(4δ + u)

2[u + (1 + δ)2]1/2

}
, (5)

with the abbreviations u = k2
f /m2

π and δ = �2/m2
π . The right

diagram in Fig. 1 with two medium insertions represents the
Pauli blocking correction. In comparison to the expression in
Eq. (3) the sign is reverse and the momentum transfer �l gets
replaced by �l = �p1 − �p2 with �p2 to be integrated over a Fermi
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sphere of radius kf , i.e., | �p2| < kf . In case of the real part one
is left with a double-integral of the form

U�ls(kf )(2π�)
Pauli = D2g2

AMBm2
π

36π4f 4
π

−
∫ u

0
dx

∫ u

0
dy

× 1

(2δ + 1 + x − y)2

{
(2δ + x − y)2√xy

2(δ − y)2 − 2xy

+ 2
√

xy

(1 + x + y)2 − 4xy
+ 2δ + x − y

2δ + 1 + x − y

× ln
|δ − y − √

xy|(1 + x + y − 2
√

xy)

|δ − y + √
xy|(1 + x + y + 2

√
xy)

}
,

(6)

where the first term in brackets has to be treated as a
principal value integral. In practice this is done by solving
the

∫ u

0 dx-integral analytically and converting the occurring
logarithms into logarithms of absolute values. The Pauli
blocking correction to the imaginary part W�ls(kf ) can even
be written in closed analytical form

W�ls(kf )(2π�)
Pauli = D2g2

AMBm2
π

72π3f 4
π

θ (
√

2kf − �)
{u

2
− δ − 1

+ 1

1 + 2δ
+ uδ

u + δ2
+ u(1 − δ)

2u + 2(1 + δ)2

+ u + (1 + δ)(2 + δ)

2u + 2(1 + δ)2

√
u(4δ + u)

+ 2 ln(2 + 4δ) + δ ln(2 + 2δ2u−1) − (2 + δ)

× ln[u + 2 + 2δ +
√

u(4δ + u) ]
}

. (7)

Interestingly, there is a threshold condition kf > �/
√

2 for
Pauli blocking to become active in the imaginary part. The
threshold opens at about one half of nuclear matter saturation
density ρth = 0.072 fm−3 = 0.45ρ0.

The additional contributions from the iterated one-pion
exchange diagrams with a � hyperon in the intermediate state
are obtained by substituting axial vector coupling constants,
D2 → 6F 2, and dropping the �� mass splitting, δ → 0. The
explicit expressions for these contributions to the complex
�-nuclear spin-orbit coupling strength read

U�ls(kf )(2π�) = F 2g2
AMBm2

π

12π3f 4
π

{
4 arctan

√
u − 4 + 3u

1 + u

√
u

}
,

(8)

W�ls(kf )(2π�) = −W�ls(kf )(2π�)
Pauli

= F 2g2
AMBm2

π

12π3f 4
π

{
2 ln(1 + u) − 2u + u2

1 + u

}
, (9)

U�ls(kf )(2π�)
Pauli = F 2g2

AMBm2
π

12π4f 4
π

{
6
√

u arctan(2
√

u) − 2u

− 2
√

u√
1 + u

ln(
√

u + √
1 + u)
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FIG. 2. The complex-valued �-nuclear spin-orbit coupling
strength U�ls(kf ) + iW�ls(kf ) generated by iterated 1π -exchange
as a function of the nucleon density ρ = 2k3

f /3π 2. The imaginary
part W�ls(kf ) originates from the conversion process �N → �N

induced by 1π -exchange.

− 3

2
ln(1 + 4u) +

∫ u

0
dx

1 + 2u − 2x

(1 + u − x)2

× ln
(
√

u − √
x)(1 + u + x + 2

√
ux)

(
√

u + √
x)(1 + u + x − 2

√
ux)

}
,

(10)

where now almost all integrals could be solved for the Pauli
blocking correction.

Summing up all calculated two-loop terms written in
Eqs. (4)–(10) we show in Fig. 2 the resulting complex
�-nuclear spin-orbit coupling strength U�ls(kf ) + i W�ls(kf )
as a function of the nucleon density in the region
0 � ρ � 0.2 fm−3 (corresponding to Fermi momenta kf �
283 MeV). It is expected that higher-loop contributions related
to pion-absorption on two nucleons, in-medium nucleon and
pion self-energy corrections etc. are small in this low-density
region. The upper curve for the imaginary part W�ls(kf )
clearly displays the onset of the Pauli blocking effect at the
threshold density ρth = 0.072 fm−3. It may come as a surprise
that Pauli blocking increases the magnitude of the negative
imaginary part. But going back to the original expression
Eq. (3) one sees that the squared energy denominator intro-
duces as a weight function for imaginary part the derivative of
a delta-function. Therefore the usual argument of phase space
reduction by Pauli blocking becomes insufficient even for a
qualitative estimate. At normal nuclear matter density ρ0 =
0.16 fm−3 (corresponding to a Fermi momentum of kf 0 =
263 MeV) one finds for the total imaginary part W�ls(kf 0) =
(−6.83–4.89) MeV fm2 = −11.7 MeV fm2, where the sec-
ond entry stems from Pauli blocking. The physics behind
this imaginary spin-orbit coupling strength is, of course, the
�N → �N conversion process induced by 1π -exchange.
One can also see from Fig.2 that the cusp effect in the
imaginary part W�ls(kf ) causes some nonsmooth behavior of
the real part U�ls(kf ). The almost linear decrease with density
gets interrupted at the threshold density ρth = 0.072 fm−3. At

068201-3



BRIEF REPORTS PHYSICAL REVIEW C 76, 068201 (2007)

saturation density one finds a “wrong-sign” �-nuclear spin-
orbit coupling strength of U�ls(kf 0) = [(−1.83 − 2.32) +
(−18.21 + 2.43)] MeV fm2 = −19.9 MeV fm2, where the
individual entries correspond to respective terms written in
Eqs. (4), (6), (8), (10), in that order. It is somewhat larger
than the “wrong-sign” spin-orbit coupling of a � hyperon,
U�ls(kf 0) = −15 MeV fm2 [14]. This is our major result:
The second order 1π -exchange tensor interaction generates
sizable “wrong-sign” spin-orbit couplings for the � and the �

hyperon together. The negative sign in case of the � hyperon
is however less obvious, because the relevant loop integrals
are derivatives of six-dimensional principal value integrals
[see Eq. (3)]. As an aside we note that in the chiral limit
(mπ = 0) the �-nuclear spin-orbit coupling strength changes
to U�ls(kf 0) + i W�ls(kf 0) = (−25.0–13.0i) MeV fm2, with
the real part coming now entirely from the Pauli blocking
corrections.

It is expected that the additional 2π -exchange effects of
Ref. [15] including decuplet baryons in the intermediate state
do not change the present results in a significant way. Firstly,
the additional mass splittings in the energy denominators
are so high that no new contribution to the imaginary part
W�ls(kf ) is generated for ρ � ρ0. Secondly, the approximate
cancellation between the contributions from �(1232) and
�∗(1385) intermediate states works for � and � hyperons
together, since it is based on different signs of spin-sums
[15].

The short-range part of the �-nuclear spin-orbit interaction
results from a variety of processes, one of them being the
ω-exchange piece presented in Eq. (2). Following Ref. [14], we
relate the short-distance spin-orbit coupling of the � hyperon
to the one of the nucleon as follows:

U�ls(kf )(sh) = Cls

M2
N

M2
�

UNls(kf )(sh) . (11)

The factor (MN/M�)2 = 0.62 results from the replacement
of the nucleon by a � hyperon in these relativistic spin-
orbit terms. The coefficient Cls parametrizes the ratio of the
relevant coupling constants. The expectation from the naive
quark model would be Cls = 2/3. On the other hand, QCD

sum rule calculations of � hyperons in nuclear matter [18]
indicate that the Lorentz scalar and vector mean fields of a �

hyperon are similar to the corresponding ones of a nucleon,
i.e., Cls � 1. In case of the Lorentz scalar mean field, the
QCD sum rule calculations are subject to uncertainties due
to poorly known contributions from four-quark condensates.
Reference [18] concludes that due to a significant SU(3)
symmetry breaking in nuclear matter the short-range spin-orbit
term of a � hyperon may be comparable to the one of a
nucleon. For the further discussion we take for the short-
range nucleonic spin-orbit coupling strength UNls(kf )(sh) =
3ρW0/2 = 30 MeV fm2ρ/ρ0 with W0 = 124 MeV fm5 the
spin-orbit parameter in the Skyrme phenomenology [19].
Employing Cls � 1, as indicated by the sum rule calculations,
one estimates the short-range �-nuclear spin-orbit coupling
strength to U�ls(kf 0)(sh) � 18.6 MeV fm2. This would lead to
an almost complete cancellation of the long-range component
generated by iterated one-pion exchange, resulting in a
rather weak �-nuclear spin-orbit coupling (admittedly with
large uncertainties). Finally, we note that the long-range and
short-range pieces are distinguished by markedly different
dependences on the pion mass mπ (or light quark mass mq ∼
m2

π ) and the density ρ = 2k3
f /3π2. Therefore, there seems to

be no double counting problem when adding long-range and
short-range components.

In summary, we have calculated in this work the �-nuclear
spin-orbit coupling generated by iterated one-pion exchange
with a � or a � hyperon in the intermediate state. We find
from this unique long-range dynamics a sizable “wrong-sign”
spin-orbit coupling strength of U�ls(kf 0) � −20 MeV fm2.
When combined with estimates of the short-range component
a weak �-nuclear spin-orbit coupling will result in total.
Unfortunately, the prospects for an experimental check of
this feature are poor. The recently established repulsive
nature of the �-nucleus optical potential [6] precludes a
rich spectroscopy of heavy �-hypernuclei which could reveal
spin-orbit splittings.
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