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Y -nuclear spin-orbit coupling from two-pion exchange
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Using SU(3) chiral perturbation theory we calculate the density-dependent complex-valued spin-orbit coupling
strength Us(ks) + i Wy (ks) of a ¥ hyperon in the nuclear medium. The leading long-range ¥ N interaction
arises from iterated one-pion exchange with a A or a ¥ hyperon in the intermediate state. We find from this
unique long-range dynamics a sizable “wrong-sign” spin-orbit coupling strength of Us,(k o) ~ —20 MeV fm?
at normal nuclear matter density py = 0.16 fm ™. The strong ¥ N — AN conversion process contributes at the
same time an imaginary part of Wy, (ko) ~ —12 MeV fm?. When combined with estimates of the short-range
contribution the total X-nuclear spin-orbit coupling becomes rather weak.
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Hypernuclear physics has a long and well-documented
history [1-3]. One primary goal in this field is to determine
from the experimental data the nuclear mean-field potentials
relevant for the hyperon single-particle motion. For the A
hyperon the situation is by now rather clear and the following
quantitative features have emerged. The attractive nuclear
mean-field potential for a A hyperon is about half as strong
as the one for nucleons in nuclei: Uy >~ —28 MeV [4]. With
this value of the potential depth the empirical single-particle
energies of a A bound in hypernuclei are well described over a
wide range in mass number. On the other hand, the A-nucleus
spin-orbit interaction is found to be extraordinarily weak. For
example, recent precision measurements [5] of E 1-transitions
from p- to s-shell orbitals in }\3C give a p3;» — pi2 spin-orbit
splitting of only (152 £ 65) keV to be compared with a value
of about 6 MeV in ordinary p-shell nuclei.

In the case of the ¥ hyperon recent developments have
lead to a revision concerning the sign and magnitude of its
nuclear mean-field potential [6]. Whereas an earlier analysis
of the shifts and widths of x-ray transitions in X~ atoms
came up with an attractive (real) X-nucleus optical potential
of about —27 MeV [1], there is currently good experimental
and phenomenological evidence for a substantial X-nucleus
repulsion. A reanalysis of the £~ atom data in Ref. [7]
including the then available precise measurements of W and Pb
atoms and employing phenomenological density-dependent
fits has lead to a ¥ -nucleus potential with a strongly repulsive
core (of height ~ 95 MeV) and a shallow attractive tail outside
the nucleus. The inclusive (m~, K*) spectra on medium-
to-heavy nuclear targets measured at KEK [8,9] give more
direct evidence for a strongly repulsive X-nucleus potential.
In the framework of the distorted wave impulse approximation,
a best fit of the measured (r~, K™) inclusive spectra on
Si, Ni, In, and Bi targets is obtained with a X-nucleus
repulsion of about 90 MeV. However, the detailed description
of the ¥~ production mechanism plays an important role
for the extracted value of the X-nucleus repulsion. Within
a semiclassical distorted wave model [10], which avoids the
factorization approximation by an averaged differential cross
section, the KEK data can also be well reproduced with a
complex X-nucleus potential of strength (30 —20i) MeV.
Concerning the X-nucleus spin-orbit coupling there exist
so far no experimental hints for it. Most theoretical models
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[11,12] predict the X-nucleus spin-orbit coupling to be strong
(i.e., comparable to the one of nucleons). The basic argument
for a strong spin-orbit coupling is provided by the large and
positive value of the tensor-to-vector coupling ratio of the w
meson to the ¥ hyperon assuming vector meson dominance
and the nonrelativistic quark model with SU(6) spin-flavor
symmetry. The G-matrix calculations by the Kyoto-Niigata
group [13] using the hyperon-nucleon interaction as derived
from their SU(6) quark model predict a X-nucleus spin-orbit
coupling which is about half as strong as the one of nucleons.
However, due to the presence of the strong XN — AN
conversion process in the nuclear medium one expects the
> -nucleus spin-orbit coupling strength to have also an imagi-
nary part. This possibility has generally been ignored in quark
and one-boson exchange models.

Recently, we have applied chiral effective field theory to
calculate the hyperon mean-fields in nuclear matter [14]. In
this approach the small A-nuclear spin-orbit interaction finds
anovel explanation in terms of an almost complete cancellation
between short-range contributions (estimated from the known
nucleonic spin-orbit coupling strength) and long-range terms
generated by iterated one-pion exchange with intermediate
% hyperons. The exceptionally small ¥ A mass splitting of
My — M =77.5MeV influences hereby prominently the
effect coming from the second order 1m-exchange tensor
interaction. Furthermore, it has been shown in Ref. [15] that the
proposed cancellation mechanism does not get disturbed by the
inclusion of analogous two-pion exchange processes involving
decuplet baryons [A(1232) and £*(1385)] in the intermediate
state with considerably larger mass splittings. The density-
dependent complex X-nuclear mean-field Us (k) +iWx(ky)
has also been calculated in the same framework in Ref. [16].
It has been found that genuine long-range' contributions

!Genuine long-range means that (unique) part of the pion-loop
which depends exclusively on small scales (ks, m,, A), but not on
any high-momentum cutoff. In case of the X-nuclear mean-field
Us(ky) it seems that the net short-range contribution is small [16].
For the A single-particle potential Uy, (k) an attractive short-range
contribution [14] is however necessary in order to reproduce the
empirical potential depth of —28 MeV. A deeper understanding of
this feature is presently missing.
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from iterated one-pion exchange with intermediate A and
% hyperons sum up to a moderately repulsive (real) single-
particle potential of Us(kyo) >~ 59 MeV at normal nuclear
matter density po = 0.16fm™>. The ¥N — AN conversion
process induced by one-pion exchange generates at the same
time an imaginary single-particle potential of Wx (ko) >~
—21.5 MeV. This value is in fair agreement with empirical
determinations [7] and quark model predictions [17]. The
purpose of the present Brief Report is to calculate in the same
chiral effective field theory framework the density-dependent
complex-valued X-nuclear spin-orbit coupling strength. As
for the A hyperon [14] we do find a sizable “wrong-sign”
spin-orbit coupling from the second-order one-pion exchange
tensor interaction. When combined with estimates of the short-
range contribution (employing QCD sum rule predictions) the
total X-nuclear spin-orbit coupling becomes rather weak.

Let us begin with some basic considerations. The pertinent
quantity to extract the X-nuclear spin-orbit coupling is the
spin-dependent part of the self-energy of a X hyperon
interacting with weakly inhomogeneous isospin-symmetric
(spin-saturated) nuclear matter. Let the X hyperon scatter from
initial momentum p — ¢/2 to final momentum p + ¢ /2. The
spin-orbit part of the self-energy is then

iL .. .
2:spin = E o - (q X p)[UElv(kf) + lW):lx(kf)] ’ (1)

where the density-dependent spin-orbit coupling strength
Usis(ky) 4+ i Wyys(k ) is taken in the limit of homogeneous
nuclear matter (characterized by its Fermi momentum k)
and zero external ¥-momenta: p = g = 0. The more familiar
spin-orbit Hamiltonian follows from Eq. (1) by multiplica-
tion with a density form factor and Fourier transformation
[d 3g exp(ig - 7). For orientation, consider first the » meson
exchange between the ¥ hyperon and the nucleons. The
nonrelativistic expansion of the vector (and tensor) coupling
vertex between Dirac spinors of the ¥ hyperon gives rise to a
spin-orbit term proportional to i & - (§ x p )/4M%. Next one
takes the limit of homogeneous nuclear matter (i.e., ¢ = 0),
performs the remaining integral over the nuclear Fermi sphere
and arrives at the familiar result

8wz (1 + 2Kkux)8wN
2Mim?

Usys (k)@ = o, 2)

linear in density p = Zk? /372, Here, k.5 denotes the tensor-
to-vector coupling ratio of the w meson to the ¥ hyperon.

The crucial observation is now that the (left) iterated
one-pion exchange diagram in Fig. 1 generates also a (sizable)
spin-orbit coupling term. The prefactor é& x ¢ is immedi-
ately identified by rewritillg the product of nZB—intgraction
vertices 5 - (1 — G/2)5 - (I +3/2) = 5@ x §) - (=20) +...
at the open baryon line. For all remaining parts of the
diagram one can then take the limit of homogeneous nuclear
matter (i.e., g = 0). The other essential factor p comes from
the energy denominator —A%> +/[-(l — p; + p). The TA
mass splitting is rewritten here in terms of the small scale
parameter A = /Mp(Myx — M) >~ 285MeV with Mp =
2My + My + Mx)/4 >~ 1047 MeV a mean baryon mass. It
serves the purpose to average out small differences in the
kinetic energies of the various baryons involved. Keeping only
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FIG. 1. Iterated one-pion exchange diagrams with A and X
hyperons in the intermediate state generating a X-nuclear spin-orbit
coupling. The horizontal double-line symbolizes the filled Fermi
sea of nucleons, i.e., the medium insertion —0(k, — |p;|) in the
in-medium nucleon propagator.

the term linear in the external momentum p one finds from
the left diagram in Fig. 1 with a A hyperon in the intermediate
state the following contribution to the X-nuclear spin-orbit
coupling strength:

Usis(k )& + i Wy (k)&

2D / d’pd’l
9fd (2n)s
[p1l<ky
y Ml
(m2 4+ P2[—A2—i04+12—1-p
2 9 ,
=350 Us®k)TV +iWs k)P ()

Here, D = 0.84 and F = 0.46 [14] denote the SU(3) axial
vector coupling constants together with g4 = D+ F =1.3
the nucleon axial vector coupling constant. f; = 92.4 MeV
is the pion decay constant and m, = 138 MeV the average
pion mass. Note that the loop integral in Eq. (3) is convergent
as its stands. Most useful is actually the representation
of the spin-orbit coupling strength as a derivative of the
Y -nuclear potential Us(ks)+iWx(ky) with respect to the
(mass splitting) parameter A2, Using the analytical expressions
in Ref. [16] to evaluate this derivative we find for the real and
imaginary part

D2g2 MBmZ ﬁ
\exay _ D gaMpmy
Usis(ky) = z {(4 + 28) arctan T4
3u + (1 + 8)(4 +25)
— s 4
u+ (1+ 5y ﬁ} @
22 2
W (k)P = D gy Mpmy | u+(1+8)2+59)
' 7273 f U+ (1+6)>

X/ u(48 + u) + (4 + 26)
u+2+26+«/u(46+u)} 5)
2[u + (1 + §)2]1/2 ’

X In

with the abbreviations u = k% /m2 and § = A%/m?>. The right
diagram in Fig. 1 with two medium insertions represents the
Pauli blocking correction. In comparison to the expression in
Eq. (3) the sign is reverse and the momentum transfer ! gets
replaced by [ = p; — p» with p» to be integrated over a Fermi
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sphere of radius k7, i.e., | p2| < k. In case of the real part one
is left with a double-integral of the form

D23 Mym?
vt = e 3 o] o
(26 +x — y)* /xy
(25+1+x—y)2 26 =y = 2xy
A+x+y?—dxy  25+1+x-y

X In

16—y — VIl +x+y— 2¢—)}
16 —y+ Xyl +x+y+2/xy)
(6)

where the first term in brackets has to be treated as a
principal value integral. In practice this is done by solving
the foudx-integral analytically and converting the occurring
logarithms into logarithms of absolute values. The Pauli
blocking correction to the imaginary part Ws; (ks) can even
be written in closed analytical form

Dngn

Wl ) = A0/ 2k — ) [5-6-1
. 1 N us u(l —38)
1428 u+68> 2u+2(1+38)7

+M+(1+5)(2+3)\/m

2u 4+ 2(1 + 8)?
+2In(2 +48) + 8 In(2 +28%u~") — (2 + 6)

x 1n[u+2+25+,/u(45+u)]} G

Interestingly, there is a threshold condition ky > A/ V2 for
Pauli blocking to become active in the imaginary part. The
threshold opens at about one half of nuclear matter saturation
density pg = 0.072fm™3 = 0.45p,.

The additional contributions from the iterated one-pion
exchange diagrams with a X hyperon in the intermediate state
are obtained by substituting axial vector coupling constants,
D? — 6F2, and dropping the ¥ A mass splitting, § — 0. The
explicit expressions for these contributions to the complex
Y -nuclear spin-orbit coupling strength read

Fzgi MBmJZr
1273 f2

4+ 3u

Usis (k)™ = o

{4arctanf_ ﬁ} ,

®)
Wik )@ = — Wy (k f);ZaZIEi:)

F?g*M 2 2
:M{2ln(l+u)— At } ©)

12703 £ I+u
- F?g> Mpm?
Uzzs(kf)gau“z) = EA—& {6ﬁarctan(2ﬁ) -
2/u
— In(u +~1+u
T Vu+V1+u)
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FIG. 2. The complex-valued X-nuclear spin-orbit coupling
strength Uy (ks) +i Wy (ks) generated by iterated 1m-exchange
as a function of the nucleon density p = 2k} /372, The imaginary
part Wy (ks) originates from the conversion process N — AN
induced by lm-exchange.

3 Yoo 14 2u—2x
(f—ﬁ)(1+u+x+2dﬁ)}

n(ﬁ+ﬁ)(1+u+x—2m)
(10)

where now almost all integrals could be solved for the Pauli
blocking correction.

Summing up all calculated two-loop terms written in
Egs. (4)—(10) we show in Fig. 2 the resulting complex
Y -nuclear spin-orbit coupling strength Uss(k ) 4+ i Wyys(k )
as a function of the nucleon density in the region
0<p<0.2fm™? (corresponding to Fermi momenta ks <
283 MeV). Itis expected that higher-loop contributions related
to pion-absorption on two nucleons, in-medium nucleon and
pion self-energy corrections etc. are small in this low-density
region. The upper curve for the imaginary part Wy (ky)
clearly displays the onset of the Pauli blocking effect at the
threshold density pg, = 0.072 fm~>. It may come as a surprise
that Pauli blocking increases the magnitude of the negative
imaginary part. But going back to the original expression
Eq. (3) one sees that the squared energy denominator intro-
duces as a weight function for imaginary part the derivative of
a delta-function. Therefore the usual argument of phase space
reduction by Pauli blocking becomes insufficient even for a
qualitative estimate. At normal nuclear matter density py =
0.16fm™? (corresponding to a Fermi momentum of k o=
263 MeV) one finds for the total imaginary part Wy (k ro) =
(—6.83-4.89)MeV fm? = —11.7 MeV fm?, where the sec-
ond entry stems from Pauli blocking. The physics behind
this imaginary spin-orbit coupling strength is, of course, the
XN — AN conversion process induced by lm-exchange.
One can also see from Fig.2 that the cusp effect in the
imaginary part Wy (k r) causes some nonsmooth behavior of
the real part Uy (k ¢). The almost linear decrease with density
gets interrupted at the threshold density py, = 0.072 fm 3. At
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saturation density one finds a “wrong-sign” ¥ -nuclear spin-
orbit coupling strength of Uss(kfo) = [(—1.83 — 2.32) +
(—18.21 +2.43)]MeV fm? = —19.9 MeV fm?, where the
individual entries correspond to respective terms written in
Egs. (4), (6), (8), (10), in that order. It is somewhat larger
than the “wrong-sign” spin-orbit coupling of a A hyperon,
Unis(kpo) = —15MeV fm? [14]. This is our major result:
The second order lm-exchange tensor interaction generates
sizable “wrong-sign” spin-orbit couplings for the A and the ¥
hyperon together. The negative sign in case of the X hyperon
is however less obvious, because the relevant loop integrals
are derivatives of six-dimensional principal value integrals
[see Eq. (3)]. As an aside we note that in the chiral limit
(m, = 0) the X-nuclear spin-orbit coupling strength changes
to Usys(k o) + i Wyys(k o) = (—=25.0-13.0i)) MeV fm?, with
the real part coming now entirely from the Pauli blocking
corrections.

It is expected that the additional 2m-exchange effects of
Ref. [15] including decuplet baryons in the intermediate state
do not change the present results in a significant way. Firstly,
the additional mass splittings in the energy denominators
are so high that no new contribution to the imaginary part
Wsis(ky) is generated for p < pp. Secondly, the approximate
cancellation between the contributions from A(1232) and
Y *(1385) intermediate states works for A and ¥ hyperons
together, since it is based on different signs of spin-sums
[15].

The short-range part of the X -nuclear spin-orbit interaction
results from a variety of processes, one of them being the
w-exchange piece presented in Eq. (2). Following Ref. [14], we
relate the short-distance spin-orbit coupling of the ¥ hyperon
to the one of the nucleon as follows:

MZ
Usis(kp)™ = Cis—S Upi(k )™ (11)
M):

The factor (My/Ms)*> = 0.62 results from the replacement
of the nucleon by a ¥ hyperon in these relativistic spin-
orbit terms. The coefficient C;; parametrizes the ratio of the
relevant coupling constants. The expectation from the naive
quark model would be C;; = 2/3. On the other hand, QCD
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sum rule calculations of ¥ hyperons in nuclear matter [18]
indicate that the Lorentz scalar and vector mean fields of a ¥
hyperon are similar to the corresponding ones of a nucleon,
i.e., C;y >~ 1. In case of the Lorentz scalar mean field, the
QCD sum rule calculations are subject to uncertainties due
to poorly known contributions from four-quark condensates.
Reference [18] concludes that due to a significant SU(3)
symmetry breaking in nuclear matter the short-range spin-orbit
term of a ¥ hyperon may be comparable to the one of a
nucleon. For the further discussion we take for the short-
range nucleonic spin-orbit coupling strength Uy, (k)P =
3pWy/2 =30MeV fm?p/py with Wy = 124 MeV fm® the
spin-orbit parameter in the Skyrme phenomenology [19].
Employing C;; >~ 1, as indicated by the sum rule calculations,
one estimates the short-range X-nuclear spin-orbit coupling
strength to Usys(k r0)*" =~ 18.6 MeV fm?. This would lead to
an almost complete cancellation of the long-range component
generated by iterated one-pion exchange, resulting in a
rather weak X -nuclear spin-orbit coupling (admittedly with
large uncertainties). Finally, we note that the long-range and
short-range pieces are distinguished by markedly different
dependences on the pion mass m (or light quark mass m, ~
m?) and the density p = 2k§- /37?2, Therefore, there seems to
be no double counting problem when adding long-range and
short-range components.

In summary, we have calculated in this work the ¥-nuclear
spin-orbit coupling generated by iterated one-pion exchange
with a A or a ¥ hyperon in the intermediate state. We find
from this unique long-range dynamics a sizable “wrong-sign”
spin-orbit coupling strength of Usys(k ro) >~ —20 MeV fm?.
When combined with estimates of the short-range component
a weak X-nuclear spin-orbit coupling will result in total.
Unfortunately, the prospects for an experimental check of
this feature are poor. The recently established repulsive
nature of the X-nucleus optical potential [6] precludes a
rich spectroscopy of heavy X-hypernuclei which could reveal
spin-orbit splittings.
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