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Threshold anomaly in the elastic scattering of 6He on 209Bi
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The energy dependence of the optical potential for the elastic scattering of 6He on 209Bi at near and subbarrier
energies is studied. Elastic angular distributions and the reaction cross section were simultaneously fitted by
performing some modifications in the ECIS code. A phenomenological optical model potential with the Woods-
Saxon form was used. There are signatures that the so-called breakup threshold anomaly (BTA) is present in
this system having a halo projectile 6He, as it had been found earlier for systems involving stable weakly bound
nuclei.
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One of the most widely used methods for studying the
interplay between different reaction mechanisms at near
barrier energies is the study of the energy dependence of
the optical potential. This energy dependence is produced by
polarization potentials originated from the coupling between
the elastic scattering and different reaction mechanisms, such
as inelastic excitation, transfer of nucleons or clusters of
nucleons, breakup, fusion, fission, and quasifission. These
mechanisms may produce polarizations of different signs,
attractive or repulsive. The net effect on the energy dependence
of the total optical potential depends on the importance and
strength of the different specific polarization potentials. For
systems containing only tightly bound nuclei, usually the
most important couplings are inelastic excitations of target
and projectile and the transfer of nucleons or clusters of
nucleons between them. For these systems, an attractive
polarization potential is produced, and, consequently, they
usually show enhancement of the fusion cross section at
energies near and below the Coulomb barrier, when compared
with predictions from one-dimensional barrier penetration
models (or no-coupling calculations). For these systems, the
energy dependence of the optical potential shows the so-called
threshold anomaly (TA), which manifests itself as a decrease in
the strength of the imaginary potential as the incident energy
decreases toward and below the nominal Coulomb barrier.
As the real and imaginary parts of the nuclear potential are
connected through the dispersion relation, due to the general
principle of causality [1,2], this behavior of the imaginary
potential is accompanied by a bell shape of the real part of the
potential, at the same energy region.

When weakly bound nuclei are involved in the interaction,
the breakup channel may remain open at energies below the
Coulomb barrier, with very large cross section. Then, the
imaginary part of the potential does not vanish near or even
below the barrier, since an important reaction channel does not
close at this energy regime. Actually, for stable weakly bound
nuclei, such as 6,7Li and 9Be, it has been observed [3–5] that the
strength of the imaginary part of the optical potential increases
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as the energy is reduced toward the nominal Coulomb barrier.
From this characteristic of the imaginary potential and because
of the dispersion relation, the strength of the real part of the
potential decreases at this energy region. This phenomenon
is called the breakup threshold anomaly (BTA) [3]. For halo
or neutron skin nuclei, not only the breakup channel but also
transfer channels may remain open, with cross sections much
larger than for fusion, at energies below the fusion barrier.

The aim of the present work is to investigate the presence of
BTA when halo or neutron skin nuclei are involved. However,
this is a very difficult task, since its manifestation should occur
at energies near and below the Coulomb barrier, where the
interacting potential is predominantly the Coulomb potential.
For scattering of secondary beam projectiles, the situation is
even worse because of the low intensities of such beams.

The approach most widely used to study the TA is to
adopt the Woods-Saxon form for both real and imaginary
parts of the optical potentials. However, this approach has
the disadvantage of containing several free parameters in the
real and imaginary parts of the potential, and consequently
it leads to many ambiguities. To minimize these ambiguities,
usually one calculates the potential at the strong absorption
or sensitivity radius, where all the potential families have the
same strength [6].

In the literature, one finds some apparent contradictions
regarding the effect of the breakup of stable weakly bound
nuclei on the energy dependence of the elastic scattering
[4,5,7–21]. For different targets, the elastic scattering of the
same stable weakly bound projectile may show the usual
TA, absence of any anomaly, or the BTA. To check if these
different behaviors were due to the methodologies used to
study the elastic angular distributions, the systems 6,7Li+27Al
were studied in Refs. [4,5,7] using different potentials, varying
from the phenomenological with the Woods-Saxon form to
the double folding and the admixture of them. The three
approaches led to the same results. So, we believe that possible
reasons for the different behaviors for systems with the same
projectile and different targets are the competition between
the Coulomb and nuclear breakups or the contribution of
different multipolarities, which may be different in these
various systems.
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So far, the energy dependence of the optical potential in the
scattering of weakly bound nuclei with halo or neutron skin
structure has been scarcely studied. In the present work, we
study the elastic scattering of the 6He+209Bi system using the
phenomenological approach. The 6He+209Bi system has been
studied before [22–24] through other approaches.

As a first step, we analyzed the elastic angular distributions
for the 6He+209Bi system reported in Refs. [25,26] for the c.m.
energies of 14.3, 15.8, 17.4, 18.6, and 21.4 MeV. The nominal
Coulomb barrier for this system is approximately 20.3 MeV
[25,27]. The calculations were performed using the ECIS code
[28]. However, this analysis was not conclusive, since the error
bars for the strength of the phenomenological potential values
at the sensitivity radius were too large because of the small
number of data points in the angular distributions, specially in
the rainbow region, and the low statistics associated with each
data point.

To overcome this problem, we included the reaction cross
sections σ .

R [25,26] in the fit procedure. We minimized the
quantity
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where N is the number of data points in the elastic scattering
angular distribution for a given energy.

For this purpose, some modifications were required to the
original version of the ECIS code in order to minimize this
quantity in the fit procedure. In the present work, reaction
cross section values σ .

R stand as experimental results from the
direct measurement of the sum of fusion, transfer, and breakup
yields; i.e., it is an independent quantity from dσElast.

dσRuth.
.We would

like to point out that reaction cross sections are usually
deduced values of cross sections obtained when one fits elastic
angular distributions in a one-channel calculation (optical
model calculations). This may be a good approximation when
the number of points in the angular distribution is much larger
than the ones available for this system, but not in the present
situation.

The approach applied to minimize the quantity given in
Eq. (1) was to use Woods-Saxon form factors for both real and
imaginary parts of the nuclear optical potential. Contrary to
what was done in Refs. [22–24], we do not divide the direct and
compound contributions in the absorption potential but rather
consider the total absorption of flux, since our present interest
is to verify the possible presence of the BTA in the elastic
scattering of this system. The radii for the real and imaginary
potentials were fixed at RV = RW = 9.68 fm to minimize the
ambiguities in the fitting procedure. These values correspond
to the sum of the root mean square radii of the projectile and
target. The depths and diffuseness V,W, aV , and aW were
kept as free parameters in the fitting procedure. The starting
values for V and aV were taken as the ones used in the study
of the elastic scattering of 4He on 209Bi at 22.0 MeV [29]. As
for the imaginary part parameters, W and aW , the ones used in

TABLE I. Optical potential parameters and σR for each energy.

Ec.m. V aV W aW χ 2 σ
Exp.

R σ Theor.
R

(MeV) (MeV) (fm) (MeV) (fm) (mb) (mb)

14.3 127.2 0.90 24.0 1.29 28.3 189(27) 215.0
15.8 130.0 0.73 19.0 1.21 7.0 302(32) 318.0
17.3 132.2 0.63 10.6 1.31 3.5 585(40) 572.4
18.6 134.6 0.44 8.0 1.33 7.7 716(59) 708.7
21.4 137.1 0.49 15.0 1.03 14.1 1083(54) 1088.6

the elastic scattering of 6He on 208Pb at 27.0 MeV [30] were
adopted.

Table I shows the optical model parameters that lead to
the best fit of the angular distributions. χ2 values correspond
to the quantity given in Eq. (1). It is important to notice that
the values of the diffuseness of the imaginary potential are
systematically larger than the ones of the real potential and
that their values are also much larger than the usual values
of 0.65 fm. This shows that the absorption of flux from the
elastic channel starts to occur at long distances, as it should be
expected for projectiles with halo structure, for which it has
already been shown that polarization potentials have a long
tail due to the presence of the breakup channel [31,32]. The
last two columns of Table I show the experimental and the
best fit values for the reaction cross sections. Figure 1 shows

FIG. 1. Elastic scattering angular distributions for the different
energies studied. Curves are obtained from calculations described in
the text.
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the fit to the elastic angular distributions. One can see that the
fits are quite good in the whole energy range, except for the
elastic angular distribution at the lowest energy, where there is
some overestimation of the data. A reasonable fit of the elastic
scattering angular distribution at the lowest energy at Ec.m. =
14.3 MeV has not been achieved by any of the previously
reported attempts to do so [22,24,25,33]. The reason for that
might be some normalization problem with data, the intrinsic
difficulty at such low energy, or the lack of transfer channels in
the coupling scheme (as will be explained later in this paper).
Even so, we kept the data for this energy in our analysis.
For Ec.m. = 18.6 MeV, there were two sets of data, as can be
observed in Fig. 1. In the fit procedure, obviously the dataset
with smaller error bars, corresponding to the smaller cross
sections, has a larger weight. The fit for this dataset is good.
To obtain the sensitivity radii for the real and imaginary parts
of the optical potential, first the diffuseness parameters of the
real part were varied in steps of �aV = 0.02 fm, and the
depths were fitted again. The same procedure was repeated
for the imaginary part of the optical potential. This procedure
allowed us to obtain the crossing point of different families
of the optical potential, i.e., the so-called radius of sensitivity.
These radii are very slowly energy dependent. The mean value
for the sensitivity radius is RS = 14.59 fm for both real and
imaginary parts of the potential.

Figure 2 shows the energy dependence of the real (upper
panel) and imaginary (lower panel) parts of the optical
potential at the sensitivity radius. The error bars correspond to

FIG. 2. Energy dependence of the real (upper panel) and imag-
inary (lower panel) parts of the optical potential at the sensitivity
radius (see text for details).

the variation of the χ2

N+1 in one unit, where N is the number
of data points of the elastic angular distributions for a given
energy. In the lower panel, the thick solid and dashed lines
represent a schematic behavior for the imaginary part of the
optical potential given by the parametrization

W (E) =
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, (2)

where the energies are given in MeV and the ordered
pairs (E0 = 12.8 MeV,W0 = 0), (E1 = 14.3 MeV,W1 =
−0.43 MeV), and (E2 = 19.6 MeV,W2 = −0.13 MeV) are
shown in Fig. 2. The dashed curve at low energies corresponds
to one of the several possibilities for the behavior of
the imaginary potential at this energy regime and is not
supported by experimental data. The only thing that we
can say is that below a certain energy, the total reaction
cross section must vanish and so does the imaginary
potential. In this parametrization, E0 is the energy for
which the reaction cross section vanishes. E1 is the
value from which the imaginary potential starts to drop
to zero, as the energy decreases. E2 is the value above
which the imaginary potential is energy independent. The
choice of E0 was governed by the extrapolation of the
empirical expression σR(E) = 128.1E − 166.8 mb given in
Ref. [25]. The choice of the value of E1 is arbitrary, but
our conclusions do not depend on this choice. Only the
shape of the real part is slightly modified by the variation of
the value of E1. The thick solid line in the upper panel of
Fig. 2 corresponds to the dispersion relation calculation
using the schematic segment representation of W (E) given
in Eq. (2). In Fig. 2 we show, as dotted and dotted-dashed
curves, two other possible parametrizations for the imaginary
potentials and the corresponding real potentials. The dotted
curve is not so sharp, a behavior more compatible with
calculations performed by Keeley and Mackintosh [34] for the
6He+208Pb system, in which the long-range breakup induced
potentials do not vary too much at subbarrier energies.
For the dotted-dashed curves, the energy for which the
imaginary potential starts to decrease is smaller than in the
first parametrization. Finally, the thin solid and dashed curves
correspond to a parametrization which fits the real potential
at the highest energy. One can notice that although the real
and imaginary parts of the potential have different forms in
each parametrization, our conclusion about the presence of
the BTA will not change.

From the points in Fig. 2, one may observe a clear increasing
trend of the imaginary potential strength for the four lowest
energies, all of them at the subbarrier energy region, when the
energy decreases from E2 to E1. However, one could argue
that the lowest energy has such a large error bar and such a
bad fit of the angular distribution (see Fig. 1), that it could
not be used to confirm the BTA phenomenon for this system.
If one wants to be even more cautious, one might say that at
Ec.m. = 18.6 MeV, the strength of the imaginary potential is
roughly the same as for the highest energy. Even so, points
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at two other energies show a clearly increasing trend of the
imaginary potential as the energy decreases. So far, BTA has
not been observed for more than two energies, even when
stable beams were involved and much more precise angular
distributions were available: 6Li+208Pb [3] and 6Li+27Al [5].
For the other three systems, BTA has been suggested to occur
based in the behavior of the imaginary potential at only one
energy [35]. So, we believe that the signatures of the presence
of BTA for this system are compatible with the ones observed
for stable beams.

A very important point to mention is that although the
behavior of the real and imaginary polarization potentials
is exactly the typical one of the BTA phenomenon, in this
situation where the projectile is 6He, one should be careful
before saying that the observed behavior is exclusively due
to the coupling to the breakup channel. The reason for that
comes from experimental evidence that the transfer of one or
two neutrons have very large cross sections for the similar
6He+238U, 208Pb systems [36,37], even at energies below

the Coulomb barrier. For the 6He+209Bi system, experiments
[38,39] show that one and two neutron transfer channels have
large cross sections above the Coulomb barrier. However, for
this system, four-body continuum discretized coupled channel
(CDCC) calculations for energies above the barrier, performed
by T. Matsumoto et al. [32], show that at this energy regime,
there is no room for transfer reactions as important coupling
channels, because when only the coupling to the breakup
channel is included in the calculations, there is good agreement
with data for the elastic angular distributions. So, as mentioned
earlier in this paper, transfer channels may explain the failure
of our calculations to reproduce the elastic scattering angular
distribution at the low energy of 14.3 MeV. So, one open
question is whether this apparent BTA is due to the breakup
itself or it is also influenced by transfer channels at subbarrier
energies. This aspect needs to be further investigated.
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