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Density functional theory for self-bound systems
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The density functional theory is extended to account for self-bound systems. To this end the Hohenberg-Kohn
theorem is formulated for the intrinsic density and a Kohn-Sham-like procedure for an N -body system is derived
using the adiabatic approximation to account for the center of mass motion.
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Introduction. The formulation of a density functional
theory (DFT) for self-bound systems is a question of current
interest in nuclear physics [1,2]. Nuclear application of the
DFT through the Skyrme model or using different density
functionals is the only viable way to study heavy nuclei.
The basic physical quantity in the DFT is the single particle
density. This quantity, being well defined for an N -body
system being localized by an external field is essentially
zero for a freely moving self-bound system [1]. Therefore,
when treating finite self-bound many-particle systems the DFT
should be modified to account for center of mass motion.
This modification can be looked for along two possible lines.
One is to to add an external potential, confine the system
so that the DFT applies, and remove the center of mass
effects at the end of the calculation [2]. The other possibility
is to derive the Hohenberg-Kohn (HK) theorem [3] for the
intrinsic density and construct a Kohn-Sham (KS) [4] type
procedure for calculating the density and energy [1]. In this
article we follow the second path. We first derive the HK
theorem for the intrinsic density. This theorem, as the original
HK theorem, is a specific case of a more general theorem by
Valiev and Fernando who proved the existence of an energy
functional for any Hermitian operator [1,5]. Here we rederive
this proof using our notation for completeness and clarity.
Once we have the HK theorem at our disposal, we follow the
KS procedure, and construct a KS-like Schrödinger equation,
which can be separated into a single particle equation using a
Born-Oppenheimer type approximation for the “slow” center
of mass coordinate. In this last step one is forced to introduce
some approximations because the desired KS orbitals break
the translation invariance.

For clarity we restrict our discussion to a particle system
interacting via two-body forces which only depend on the rel-
ative distance between the particles. Furthermore, in deriving
the KS-like equations we follow the Hartree rather than the
Hartree-Fock scheme.

HK theorem for the intrinsic density. Consider a system of
N particles moving under the influence of a two-body potential

U =
N∑

i �=j

u(r i − rj ) (1)

*nir@phys.huji.ac.il

and an intrinsic “one”-body potential

Vin =
N∑
i

vin(r i − R), (2)

where R = 1
N

∑N
i r i is the center of mass coordinate. The

Hamiltonian describing the internal motion of the system is

H = Tin + U + Vin, (3)

where the intrinsic kinetic energy operator is given by

Tin =
N∑
i

p2
i

2
− P2

2N
. (4)

Here P = ∑N
i pi is the center of mass momentum. Following

HK we assume a nondegenerate ground state �. The intrinsic
translational invariant density

nin(r) = 〈�|
N∑
i

δ(r i − R − r)|�〉 (5)

is clearly a functional of vin(r). Following the HK method
we can prove that conversely (up to a constant) vin(r) is
a functional of nin(r). We start by assuming that another
potential v′

in(r) with a ground state � ′ gives rise to the same
intrinsic density nin(r). The two wave functions �,� ′ must
be different unless vin − v′

in = const, because they correspond
to two different Hamiltonians H and H ′ = Tin + U + V ′

in.
Utilizing the variational principle one gets

E′ = 〈� ′|H ′|� ′〉 < 〈�|H ′|�〉 = 〈�|H + V ′
in − Vin|�〉 (6)

or

E′ < E +
∫

d r nin(r)(v′
in(r) − vin(r)). (7)

Interchanging primed and unprimed quantities, we get

E < E′ +
∫

d r nin(r)(vin(r) − v′
in(r)). (8)

Adding the last two equations we reproduce the famous
inconsistency

E + E′ < E′ + E. (9)

Thus we have shown that vin(r) is a functional of the intrinsic
density nin(r). Because vin(r) fixes H , we see that the intrinsic
N -body ground state is a functional of nin(r).
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Because � is a functional of the intrinsic density we can
define the functional

F [nin(r)] = 〈�|Tin + U |�〉, (10)

which is a universal functional valid for any number of particles
as we can repeat the proof for any number of particles N , which
by itself is a functional of nin(r). The HK variational principle
for the ground state energy

E[nin(r)] ≡
∫

d r nin(r)vin(r) + F [nin(r)] (11)

follows trivially from the original proof [3].
KS equations. Once it has been established that the energy

of the finite self-bound many-body system is a functional of
the intrinsic density the next step is to construct extended KS
equations for such a system. The ground state energy of the
N -body system interacting via two-body potential u can be
written in the form

E = 1

2

∫ ∫
d r d r ′nin(r)u(r − r ′)nin(r ′) + G[nin(r)], (12)

where G is a universal functional of the intrinsic density.
Following KS we write

G[nin(r)] = Ts[nin] + Exc[nin], (13)

where Ts[nin] is the intrinsic kinetic energy of a system of
particles interacting with a “one”-body potential vin[nin] and
Exc[nin] is the exchange-correlation functional. Due to the HK
variational principle for the energy, Eq. (12), we obtain the
equation ∫

d r δnin(r)

[
δTs[nin]

δnin(r)
+ ϕ(r)

]
= 0, (14)

subject to the condition∫
d r δnin(r) = 0. (15)

Here

ϕ(r) = ϕxc(r) +
∫

d r ′u(r − r ′)nin(r ′) (16)

and

ϕxc(r) = δExc[nin]

δnin(r)
. (17)

Equations (14) and (15) are precisely the same equations one
obtains starting with the Hamiltonian

H =
N∑
i

p2
i

2
− P2

2N
+

∑
i

ϕ(r i − R). (18)

Unfortunately this Hamiltonian cannot be separated into single
particle orbitals like the original KS Hamiltonian. However,
because the center of mass coordinate is a slow coordinate we
can replace all the center of mass operators by their expectation
values. To do so, let us assume that ϕ is a smooth function that
can be expanded in the following manner,

ϕ(r − R) ∼= ϕ(r) − Ra∂aϕ(r) + 1
2RaRb∂

2
abϕ(r) − . . . , (19)

where

∂aϕ(r) = ∂ϕ(r)

∂ra
(20)

∂2
abϕ(r) = ∂2ϕ(r)

∂ra∂rb

,

and summation over the spatial directions a, b = {x, y, z}
is assumed. Replacing the center of mass terms by their
expectation values and choosing a coordinate system such that
〈R〉 = 0, we obtain

H ∼=
N∑
i

p2
i

2
− 〈P2〉

2N
− N

〈
R2

a

〉
∂2
aaϕ

∣∣
0

+
∑

i

{
ϕ(r i) + 1

2
〈RaRb〉∂2

abϕ(r i)

}
, (21)

retaining only the leading center of mass corrections. The
∂2
aaϕ|0 correction accounts for a linear term in ∇ϕ which upon

summation over all particles is proportional to R. Clearly this
Hamiltonian is a sum of N single particle Hamiltonians leading
to the KS type orbitals in the Hartree approximation[− 1

2∇2 + ϕ(r) + 1
2 〈RaRb〉∂2

abϕ(r)
]
ψi = εiψi. (22)

To be more concrete let us consider the local density approxi-
mation (LDA) in which it is assumed that ϕxc(r) = ϕxc(nin(r)).
In this approximation the leading correction to the single
particle potential due to the center of mass is

δϕ(r) = 1
2 〈RaRb〉∂2

abϕ(r), (23)

where

∂2
abϕ(r) = dϕxc

dnin
∂2
abn(r) + d2ϕxc

dn2
in

∂an(r)∂bn(r)

+
∫

d r ′u(r − r ′)∂2
abn(r ′). (24)

Here n(r) is the laboratory one-body density given by

n(r) =
N∑
i

|ψi(r)|2. (25)

Equations (16), (17), and (22)–(25) together with

〈RaRb〉 = 〈rarb〉
N

= 1

N2

N∑
i

〈ψi |rarb|ψi〉 (26)

form a closed set of equations to be solved self-consistently,
just as in the case of a system bounded by an external potential.

The nature of the center of mass expansion depends on
the system at hand. This point is most easily demonstrated in
the Hartree picture where the expectation value of all the odd
moments of Ra can be set to zero and the second even moment
is given by

〈RaRbRcRd〉 = 1

N2
(〈rarb〉〈rcrd〉 + 〈rarc〉〈rbrd〉

+ 〈rard〉〈rbrc〉) + O

(
1

N3

)
. (27)
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From Eqs. (26) and (27) it is clear that the leading orders
in the expansion (19) can be regarded as a Taylor series
in 〈r2〉/N and that in the limit N −→ ∞ the original KS
equations are recovered. For a collapsing system where the
size of the system does not depend on the number of particles
the expansion (19) behaves as a 1/N series. For noncollapsing
systems, such as nuclei, the rms radius grows as 3

√
N and

the expansion converges much slower as 1/
3
√

N , unless the r

dependence of the potential scales as the rms matter radius,
i.e., ϕ ≈ ϕ(r/ 3

√
Na).

Example. As an example for our procedure consider a
system of N fermions moving in a harmonic oscillator
potential,

H =
N∑
i

p2
i

2
+

∑
i

1

2
ω2r2

i . (28)

Using the relation
N∑
i

(r i − R)2 =
N∑
i

r2
i − N R2, (29)

we can rewrite this Hamiltonian as a sum of a center of mass
term,

Hcm = P2

2N
+ 1

2
Nω2 R2, (30)

and an internal Hamiltonian written in the form (18)

Hin =
N∑
i

p2
i

2
− P2

2N
+ 1

2

N∑
i

ω2(r i − R)2. (31)

Following Eq. (21), we evaluate the center of mass corrections

N〈RaRa〉∂2
aaϕ |0 = N〈R2〉ω2,

(32)
1
2 〈RaRb〉∂2

abϕ(r i) = 1
2 〈R2〉ω2,

and we get the approximated internal Hamiltonian

Hin
∼=

N∑
i

p2
i

2
− 〈P2〉

2N
− 1

2
Nω2〈R2〉 +

∑
i

1

2
ω2r2

i . (33)

Comparing Eq. (33) with Eq. (30) it is clear that for
the harmonic oscillator case the corrections to the internal
Hamiltonian ensure the right cancellation of the center of mass
energy.

Discussion. It is already known for some time that the
HK theorem can be generalized to any Hermitian operator,
including the intrinsic density. The challenge, however, is
to find a useful KS-like procedure that reduces the self-
bound many-body system into a set of single quasiparticle
orbitals. From the onset it is clear that such orbitals break the
translational symmetry, and therefore some approximations
are called for. In this brief report we have demonstrated that
starting with the HK theorem for the intrinsic density one
can reach this goal by treating the center of mass coordinate
as an adiabatic variable. This approximation recovers the KS
equation in the limit N −→ ∞ and includes center of mass
recoil effects in the orbital equations and to the ground state
energy. We have demonstrated that for the case of N -particles
moving in a harmonic-oscillator potential this procedure yields
the right center of mass correction.

We argue that the importance of the center of mass correc-
tions might vary for different systems. Regardless whether the
effect is small or large the current approach helps bridge the
gap between the DFT and its application to finite self-bound
systems.
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