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Astrophysical S(E) factor of the 15N( p, α)12C reaction at sub-Coulomb energies via the
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The low-energy bare-nucleus cross section for 15N(p, α)12C is extracted by means of the Trojan horse method
applied to the 2H(15N,α12C)n reaction at Ebeam = 60 MeV. For the first time we applied the modified half-off-
energy-shell resonant R-matrix method that takes into account off-energy-shell effects and initial- and final-state
interactions. In particular it has been shown that inclusion of Coulomb 15N-d scattering and off-shell effects
do not affect the determination of the astrophysical factor. Also the simple plane-wave approximation used in
previous analyses is justified. The results extracted via the Trojan horse method are compared to direct data in
the same energy region and show very good agreement in the energy interval 70–312 keV. These results confirm
the extrapolations of the S factor reported in literature.
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I. INTRODUCTION

An open question in nuclear astrophysics is 19F abundance
in the Milky Way [1]. Even its production sites are still a largely
debated topic: it has been shown that this isotope is synthesized
in type II supernovae explosions as well as in Wolf-Rayet stars
and during the AGB phase of stellar evolution [1]. In particular
it was shown that it is not possible to explain the observed
abundances of 19F in Milky Way giants without taking into
account its production in the AGB phases [2].

Large efforts were then devoted to understand how 19F
nucleosynthesis proceeds in AGB’s and its production chain
is extensively discussed in Ref. [3], because the fluorine
abundances observed in giants can constrain AGB star models
[2]. In this context it has been shown that a key isotope
for 19F production in AGB stars is 15N and a crucial role
is played by the 15N(p, α)12C reaction, removing both proton
and 15N nuclei from 19F production chain in the AGB intershell
environment. The available reaction rates have at least an 8%
uncertainty in the fluorine surface abundance [2], due to a
factor 2 difference between NACRE [4] and CF88 [5] reaction
rates usually employed in calculations.

For charged-particle-induced reactions, such as
15N(p, α)12C, the Coulomb barrier, EC.B., (about 2 MeV in
the present case), is much higher than the energies of interest
(�100 keV), thus implying that the reaction takes place via
a tunneling effect with an exponential decrease of the cross
section, σ (E) ∼ exp(−2πη) (where η is the Sommerfeld
parameter).

*Spitaleri@lns.infn.it

The 15N(p, α)12C experimental cross section has been
measured down to 73 keV [6]. Owing to the strong Coulomb
suppression, the behavior of the cross section σ (E) at low
energy has been extrapolated [4] from higher energies (E >

73 keV) using the astrophysical S(E) factor

S(E) = Eσ (E) exp(2πη), (1)

where exp(2πη) is the inverse of the Gamow factor, which
removes the dominant energy dependence of σ (E) due to
the barrier penetration. Although the S(E) factor allows
for an extrapolation with simple energy dependence, large
uncertainties to σ (E) may be introduced, for instance, because
of the presence of unexpected resonances.

A second relevant source of uncertainty in extrapolating the
S factor down to zero energy is the enhancement of the S factor
due to the electron screening effect. In the extrapolation of the
cross section using Eq. (1), it is assumed that the Coulomb
potential of the target nucleus and projectile is that resulting
from bare nuclei. However, as regards nuclear reactions studied
in the laboratory, the target nuclei and the projectiles are
usually in the form of neutral atoms or molecules and ions,
respectively. Because of the electron clouds surrounding the
interacting nuclei, the projectile effectively sees a reduced
Coulomb barrier. This, in turn, leads to a higher cross section
for screened nuclei, σs(E), compared to the cross section one
would get in the case of bare nuclei σb(E) [7–9]. Therefore
the enhancement factor, defined by the following relation

flab(E) = σs(E)/σb(E) ≈ exp(πηUe/E), (2)

where Ue is the so-called electron screening potential [7–9],
must be taken into account to determine the bare nucleus cross
section.
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Although it is sometimes possible to measure cross sections
in the Gamow energy range (see, for example, the discussion
in Ref. [10]), the bare nucleus cross section σb is often
extracted by extrapolating direct data at higher energies where
a negligible electron screening contribution is expected. This
method has been adopted, for example, in the 3He(d, p)4He
reaction to determine the behavior of the astrophysical S factor
below 30 keV ([10] and references therein). Anyway alterna-
tive methods for determining bare-nucleus cross sections of
astrophysical interest are highly required because of the large
uncertainties introduced in the extrapolation procedure. An
additional source of uncertainty is related to the present poor
understanding of the electron screening effect. Indeed, though
the electron screening potential has been experimentally
deduced for many reactions ( [9,10] and references therein),
experimental Ue values were found to be much larger than the
upper theoretical estimates, i.e., the adiabatic limits [7–9].

In this context a number of indirect methods, the Coulomb
dissociation [11–16], the asymptotic normalization coefficient
(ANC) method [17–25], and the Trojan horse method (THM)
[26–30] were developed. Some of these make use of direct
reaction mechanisms, such as transfer processes (stripping
and pick-up) and quasi-free reactions (knock-out reactions).
In particular, the THM is a powerful tool that selects the
quasi-free (QF) contribution of an appropriate TH reaction
performed at energies well above the Coulomb barrier to
extract a charged-particle binary reaction cross section at
astrophysical energies free of Coulomb suppression. The
THM has already been applied several times to reactions
connected with fundamental astrophysical problems. A list
of the reactions studied via the THM is reported in Table I.

The present work reports on a new recent investigation
of the 15N(p, α)12C reaction. Preliminary results obtained
from a single detector configuration have been reported in
previous work [31]. The 15N(p, α)12C reaction is studied
through the 2H(15N,α12C)n TH reaction and its astrophysical
S(E) factor is extracted. The 15N(p, α)12C reaction proceeds in
the astrophysically relevant energy region through a Jπ = 1−
state in the intermediate 16O nucleus at Ex = 12.44 MeV

(� = 91 keV) [32], associated with the resonance at Ec.m. =
312 keV in the 15N-p excitation function. To extract the
astrophysical factor in our previous publications (see Ref. [31]
and references therein) the plane-wave approximation for the
initial and final-state scatterings of the nuclei in the TH reaction
was used. This approximation led to a factorized form of
the TH double differential cross section. In the THM the
transferred particle is virtual (off-energy-shell). However, we
neglected the off-shell character of the transferred particle
and used the on-shell approximation. Here, for the first time,
we take into account the off-shell character of the transferred
proton by applying a HOES R-matrix analysis and estimate the
impact of the Coulomb 15N-d scattering in the entry channel
of the TH reaction 2H(15N,α12C)n.

II. THEORY

The reaction

A + a → C + c + s, (3)

which we call the Trojan horse reaction, is used in the THM to
determine the energy dependence of the cross section for the
binary subreaction

A + x → C + c. (4)

It is assumed here that nucleus a has a strong x ⊕ s cluster
structure. The TH reaction, which is 2 particles → 3 particles
process (3), can proceed through various reaction mechanisms.
In the application of the THM, we are interested in the
process that is characterized as a transfer reaction to the
continuum, where the Trojan horse a breaks up into a nucleus
x that is transferred and where the nucleus s can be regarded
as a spectator to the subreaction (4). This direct reaction
mechanism gives the dominating contribution to the cross
section in a restricted region of the three-body phase space
when the momentum transfer to the spectator s is small, i.e., for
QF scattering conditions. Because the energy and momentum
of the nucleus x do not obey the usual dispersion relation for a

TABLE I. List of the binary reactions connected with fundamental astrophysical problems
studied via the THM. The corresponding TH reaction and the beam energy are also reported.
The reference list is given in the last column.

Binary reaction Indirect reaction Elab (MeV) Ref.

12C(α, α)12C 6Li(12C,α12C)2H 15,18 [63,68]
7Li(p, α)4He 2H(7Li,αα)n 19,19.5,20,21 [48,62–65,70,71]
6Li(d, α)4He 6Li(6Li,αα)4He 6 [28,49,50,71]
6Li(p, α)3He 6Li(d, α 3He)n 14,25 [51,52]
9Be(p,6Li)4He 2H(9Be,α 6Li)n 22 [74]
10B(p,7Be)4He 2H(10B,α 7Be)n 27 [67]
11B(p,8Be)4He 2H(11B,α 8Be)n 27 [47,73]
3He(d, p)4He 6Li(3He,p α)4He 5,6 [10,66]
2H(d, p)3H 2H(6Li,t p)4He 14 [72]
15N(p, α)12C 2H(15N,α 12C)n 60 [31]
1H(p, p)1H 2H(p, pp)n 6 [69]
6Li(n, t)4He 2H(6Li,n α)1H 14 [76]
7Li(p, α)4He 7Li(3He,α α)d 27 [75,77]
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FIG. 1. (a) Diagram representing the quasi-free process
2H(15N,α12C)n; the escaping neutron is considered as spectator to
the process, whereas the transferred proton interacts only with the
15N nucleus. (b) Sequential decay mechanism proceeding trough the
16O∗ compound nucleus, later decaying to the 12C+α channel. (c and
d) Two additional examples of sequential decay feeding the 12C+α+n

exit channel that can take place in the 15N+d interaction. In (c) the
TH reaction proceeds via the formation of the 13C∗ excited nucleus,
subsequently decaying to 12C+n, whereas in (d) the same process
involving the 5He∗ → 4He+n sequential decay is shown.

free particle, the transferred nucleus appears only as a virtual
particle in the reaction process.

A. Quasi-free mechanism and impulse approximation

The QF TH reaction (3) can be described by a Feynman pole
diagram shown in Fig. 1(a) ([33] and references therein). In
this figure the 2H(15N,α12C)n QF reaction is shown in the pole
approximation where the deuteron a = d is the Trojan horse
nucleus, the neutron s = n is the spectator and the proton
x = p is the transferred virtual particle. The amplitude of
the pole diagram describing the TH reaction (3) consists of
two factors: the amplitude of the virtual breakup a → s + x,
i.e. d → n + p in our case and the amplitude of the binary
reaction (4) that is relevant to astrophysics, i.e., 15N(p, α)12C
in our case.

The QF reaction is well described in the the impulse
approximation (IA) formalism [34–45], provided that (i)
the momentum in the initial channel is sufficiently high or
the associated wavelength is smaller than the nuclear radius

of the Trojan horse nucleus a and the incident nucleus A can
interact only with the fragment x, leaving the second fragment
s as a spectator; (ii) the incident center-of-mass (c.m.) energy
is higher than the binding energy of the clusters x and s in a.
In the theoretical formalism of the IA, the interaction of the
spectator s with the other participating nuclei is neglected and,
therefore, the full T matrix describing the reaction mechanism
factorizes. Then relations become particularly simple in the
plane-wave impulse approximation (PWIA). As desired, the
cross section of the TH reaction (3) can be factorized into two
terms corresponding to Fig. 1(a) [36–38,40–42,45] by

d3σ

dEcd�cd�C

∝ [KF |ϕa(psx)|2]

(
dσ

d�c.m.

)HOES

. (5)

KF, which is a kinematical factor containing the final state
phase-space factor, is

KF = µAa mc

(2π )5h̄7

kC k3
c

kAa

[(
kFs

µFs

− kCc

mc

)
· kc

kc

]−1

. (6)

Here, kj , mj , and �j are the momentum, mass, and solid
angle of particle j ; kij and µij are the relative momentum
and reduced mass of particles i and j (F = A + x = c +
C); ϕa(psx) is the Fourier transform of the radial wave function
ϕa(rxs) for the x-s intercluster relative motion; and rxs is the
x-s relative coordinate. The momentum of the virtual particle
x is px and the relative momentum of nucleus i and x is pix . For
the case under consideration, a = d, the Hulthén wave func-
tion is a good approximation. The factor [(dσ/d�)c.m.]HOES

is the half-off-energy-shell (HOES) differential cross section
for the binary reaction (4) at the relative energy ExA of
particles x and A in the entry channel given by

EAx = ECc − Q2b. (7)

Here, Q2b is the Q value of the binary reaction (4) and EcC

is the relative energy of the outgoing particles C and c.1

In the experimental work reported in the present article the
validity conditions of the IA appear to be fulfilled. Indeed
the sufficiently high 15N beam energy of 60 MeV (1.3 GeV/c
in momentum) corresponds to the 15N-d relative momentum
k−1
aA value of 1.3 fm, which is much smaller than the deuteron

effective radius of 4.5 fm. In particular the value of the TH
reaction cross section can be determined at psx ∼ 0 MeV/c
for different combinations of the QF reaction angles and/or
different incident energies. In this case the value of the TH
reaction cross section divided by the kinematical factor is
proportional to the HOES cross section because ϕa(psx =
0 MeV/c) is a constant [see Eq. (5)].

To check whether the approximations employed are reliable
a number of experiments were carried out to provide critical

1We note that for the HOES cross section the relative kinetic energy
of the particles A and x in the entry channel of the subreaction and
the relative kinetic energy of the exit particles C and c are related by
energy conservation (7). The relative momentum of the final particles
C and c, which are on-shell, is related to their relative kinetic energy
by kCc = √

2 µCc ECc. The relative momentum of the entry particles
A and x, due to the off-shell character of x, is related to their relative
kinetic energy by a more complicated Eq. (22).
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tests of the IA. To this aim, it was suggested [27,28,46,47] that
the excitation function and/or the angular distribution of the
QF HOES cross section should be measured and compared
with the corresponding on-energy-shell (OES) cross section.
This leads to two necessary conditions for the factorization
of the TH cross section using Eq. (5), namely the agreement
between the two data sets in terms of both excitation functions
and angular distributions [10,47].

Because |ϕa(psx)|2 is known from nuclear structure studies,
the product [KF |ϕa(psx)|2] can be calculated either analyt-
ically (for fixed angles) or via a Monte Carlo simulation.
Therefore it is possible to determine (dσ/d�c.m.)HOES from a
measurement of d3σ/dEcd�cd�C and Eq. (5). The goal of the
THM is to determine the astrophysical factor at astrophysically
relevant energies. This is achieved by relating the HOES
cross section for the binary reaction (4) to the relevant OES
astrophysical factor. Normalization of this astrophysical factor
to the OES results available from direct measurements at
higher energies is a key procedure in the THM allowing one
to determine the astrophysical factor down to astrophysically
important energies.

B. Half-off-shell R-matrix approach

We begin this subsection by explaining why a new theo-
retical approach for analysis of the resonant binary reactions
(4) using the THM is highly desired. In an earlier approach
[29,30], called modified plane-wave Born approximation
(MPWBA), the HOES binary cross section is replaced by the
OES. To explain this, consider the post form of the exact
amplitude for the TH reaction

M̃(P, kaA) = 〈χ (−)
ksF

ϕs 	
(−)
F |
VsF |�(+)

i 〉. (8)

Here, �
(+)
i is the exact a + A scattering wave function;

	
(−)
F is the wave function of the system F = C + c = A +

x; χ
(−)
ksF

(rsF ) is the distorted wave of the system s + F ; P =
{ksF , kCc} is the six-dimensional momentum describing the
three-body system s, C, and c in the final system; 
VsF =
VsF − UsF , VsF = VsC + Vsc = VsA + Vsx is the interaction
potential of s and the system F and UsF is their optical
potential. The surface approximation assumes that the TH
reaction (3) amplitude has a dominant contribution from the
external region where the interaction between the fragments
C and c (A and x) can be neglected and the wave function
	

(−)
F can be replaced by its leading asymptotic form that

contains the ingoing wave in the channel x + A. The amplitude
of this ingoing wave is the OES amplitude for the inverse
reaction C + c → A + x. This has been applied earlier for the
determination of nonresonant binary reaction cross sections
in the THM [48–52]. However, the surface approximation
cannot be applied for analysis of the TH reactions proceeding
through the resonance in the subsystem F = A + x → C + c

because the dominant contribution comes from the nuclear
interior of the subsystem F where both channels A + x and
C + c are coupled and where the asymptotic approximation
for 	

(+)
F cannot be applied (see Ref. [53]).

The analysis of the TH reaction to determine the resonant
binary reaction (4) cross section requires a different approach

that takes explicitly into account the off-shell character of
the transferred particle x because it is a fundamental feature
of the THM. The R-matrix method provides a powerful tool
to analyze the resonant reactions. However, the conventional
R-matrix approach cannnot be applied for analysis of the
TH reactions because of the off-shell character of particle
x. In Ref. [53] the theory of the Trojan horse method for
resonant binary subreactions has been presented. It is based
on the HOES R-matrix approach and takes into account the
off-energy-shell effects and initial and final state interactions.
We follow the same approach here. We see from Eq. (8) that the
wave function 	

(−)
F contains information about the resonance

in the subsystem F . To single out the resonant contribution
the wave function 	

(−)
F in Ref. [53] has been written in the

resonant spectral representation given by Eq. (3.8.1) [54]. It is
assumed that the resonant reaction A + x → C + c proceeds
through the formation of the intermediate compound state, i.e.,
the direct coupling between the initial A + x and final C + c

channels, which contributes dominantly to direct reactions but
gives negligible contribution to resonant ones, is neglected.
The resonant spectral decomposition of the wave function 	

(−)
F

is similar to the level decomposition for the wave function
in the internal region in the R-matrix approach. Then the
TH reaction amplitude in the presence of two interfering
resonances in the subsystem F , which is the case under
consideration, takes the form (for the sake of simplicity here
the spins of the nuclei are neglected) [53]

M (R)(P, kaA) =
∑
τ=1,2

�
1/2
Cc(τ )(ECc) Mτ (ksF , kaA)

EAx − ERτ
+ i �τ (EAx )

2

, (9)

where �Cc(τ )(ECc) is the partial observable width of resonance
τ in the channel C + c, �τ (EAx) is the total observable width
of this resonance, and ERτ

its energy. Mτ (ksF , kaA) is the
exact amplitude for the direct transfer reaction a + A → s +
Fτ populating the compound state Fτ of the system F = A +
x = C + c:

Mτ (ksF , kaA) = 〈χ (−)
sF ϕs 	τ |
VsF |�(+)

i 〉. (10)

Equation (9) is like the two-level, two-channel R-matrix am-
plitude when the distance between the interfering resonances
is significantly larger than the widths of the resonances [55].
The only difference between the OES R-matrix amplitude
for the binary resonant reactions A + x → C + c and the
HOES R-matrix amplitude for the TH reaction a + A →
C + c + s is the presence in the latter of the off-shell form
factors Mτ (ksF , kaA) rather than the corresponding partial
width amplitudes for the entry channel A + x. The amplitude
Mτ (ksF , kaA) may be considered a generalized form factor
in the TH resonant amplitude that takes into account the off-
energy-shell character of the transferred particle x. Note also
that the amplitude Mτ (ksF , kaA) contains only the penetration
factors in the initial channel a + A and final channel s + F

of the transfer reaction a + A → s + Fτ rather then the
penetration factor in the subchannel A + x. That is why
the TH amplitude is not affected by the Coulomb barrier in the
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channel A + x. Then the triple TH differential cross section is

d3σ

dEcd�cd�C

∝ |KF |
∣∣∣∣∣
∑
τ=1,2

�
1/2
Cc(τ )(ECc) MDW

τ (ksF , kaA)

EAx −ERτ
+i �

1/2
τ (EAx )

2

∣∣∣∣∣
2

.

(11)

The goal of the THM is to determine the energy dependence of
the astrophysical factor at the astrophysically relevant energies.
It is achieved by normalizing the TH triple differential cross
section to the OES experimental astrophysical factor at the
resonance peak ER1 (we assume that ER1 < ER2 ) where the
contribution from the second resonance can be neglected.
This normalization, which can be done by multiplying the
TH triple differential cross section by the factor (π e2 π ηAx )/
(2µAx) �Ax(1)(EAx) |KF |−1 |MDW

τ (ksF , kaA)|−2, provides the
astrophysical factor determined from the TH reaction [53]:

STH(ExA) = π e2 π ηAx

2µAx

�Ax(1)(EAx)

×
∣∣∣∣∣
[

�
1/2
Cc(1)(ECc)

EAx − ER1 + i �1(EAx )
2

+ �
1/2
Cc(2)(ECc) M21

EAx − ER2 + i �τ (EAx )
2

]∣∣∣∣∣
2

. (12)

Here, M21 = M2(kyF , kaA)/M1(kyF , kaA) is the ratio of the
exact transfer reaction amplitudes to the resonant states F2

and F1, which is practically constant in the interval of a
few hundreds keV EAx � ER1 . As we see the normalization
of the TH cross section to the available data at the first
resonance peak plays a very crucial role in the THM.
The energy dependence of the TH astrophysical factor is
determined by the ratio M21 rather then by the individual
transfer reaction amplitudes Mτ (kyF , kaA), τ = 1, 2. This
ratio is practically constant. It is well known that the direct
transfer reaction amplitude is very well approximated by the
DWBA amplitude. Hence the ratio M21 can be approximated
by M21 ≈ MDW

2 (kyF , kaA)/MDW
1 (kyF , kaA), where

MDW
τ (ksF , kaA) = 〈χ (−)

sF ϕs 	τ |
VsF |ϕa ϕA χ
(+)
i 〉 (13)

is the DWBA amplitude of the direct transfer reaction a +
A → s + Fτ populating the resonance state Fτ described by
the wave function 	τ . Thus the problem of taking into account
the initial- and final-state interactions in the TH reaction
is reduced to a calculation of the ratio MDW

21 . But now we
can simplify MDW

21 even more. It is also very well known
that a simple plane-wave approximation gives similar angular
and energy dependence as DWBA but fails to reproduce the
absolute value. Hence a simple plane-wave approximation
should work very well when calculating the ratio M21. This
explains why a simple plane-wave approximation worked
so well in the previous TH analyses [47]. Note that in the
plane-wave approximation MDW

τ (ksF , kaA) is replaced by

M0
τ (ksF , kaA) = 〈eiksF ·rsF ϕs 	τ |VsA + VxA|ϕa ϕA ei kaA·raA〉.

(14)

The post and prior forms are equivalent but the post form
is more convenient for our purpose. For sufficiently high

momentum of the the projectile A in the QF kinematics, it will
interact dominantly with the fragment x while the contribution
of the term with VsA is minimized. Consequently, we neglect
the term containing VsA below. Then the transfer reaction
amplitude in the plane-wave approximation takes the form

M0
τ (ksF , kaA) ≈ 〈

eiksF ·rsF I
Fτ

Ax

∣∣〈VxA〉Ax

∣∣I a
sx ei kaA·raA

〉
, (15)

where I
Fτ

Ax = 〈ϕA ϕx |	τ 〉 is the overlap function of the wave
function of the resonance state Fτ and the bound-state wave
functions of A and x, I a

sx = 〈ϕs ϕx |ϕa〉 is the overlap function
of the bound-state wave functions of nuclei a, x and s,
and 〈VxA〉 = 〈ϕA ϕx |VxA|ϕx ϕA〉. The plane-wave amplitude
M0

τ (ksF , kaA) can be written in a factorized form

M0
τ (ksF , kaA) =

[
W

Fτ

Ax

(
kA − mA

mF

kF

)]∗

× I a
sx

(
ks − ms

ma

ka

)
. (16)

Here, I a
sx(psx) is the Fourier transform of the overlap function

I a
sx(rsx) and

W
Fτ

Ax(kAx) = 〈eikAx ·rAx |〈VxA〉Ax(rAx)
∣∣IFτ

Ax(rAx)
〉

(17)

is the vertex form factor for A + x → Fτ . Then Eq. (11) for
the TH triple differential cross section takes the form

d3σ

dEcd�cd�C

∝ |KF |
∣∣∣∣I a

sx

(
ks − ms

ma

ka

)∣∣∣∣
2

×

∣∣∣∣∣∣∣
∑
τ=1,2

�
1/2
Cc(τ )(ECc)

[
W

Fτ

Ax

(
kA − mA

mF
kF

)]∗

EAx − ERτ
+ i �τ (EAx )

2

∣∣∣∣∣∣∣
2

. (18)

Now we can get the HOES cross section for the binary
subprocess A + x → C + c from the triple differential cross
section(

dσ

d�c.m.

)HOES

∝
[

d3σ

dEcd�cd�C

]
1

KF |I a
sx(psx)|2 , (19)

where psx = ks − ms

ma
ka . Equation (19) explains and justifies

the procedure used in IA (see subsection II A) to connect
the triple and binary TH cross sections. Note that in a strict
approach the triple differential cross section is expressed in
terms of the overlap function I a

sx rather then the two-body
bound state wave function ϕa . Note that I a

sx and ϕa are related
by

I a
sx = S1/2

sx ϕa, (20)

where S
1/2
sx is the spectroscopic factor. The astrophysical

factor obtained by normalization of the triple differential
cross section or the HOES cross section for the binary
subprocess to the available OES astrophysical factor at the first
resonance peak is given by Eq. (12) where, in the plane-wave
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approximation, M21 is replaced by

M0
21 =

[
W

Fτ

Ax

(
kA − mA

mF
kF

)]∗

[
W

Fτ

Ax

(
kA − mA

mF
kF

)]∗ . (21)

C. From quasi-free reactions to the Trojan horse method

The THM was first proposed by Baur [26]. It was motivated
by the observation of a close resemblence of binary and closely
related TH reactions under certain kinematical conditions, see,
e.g., Ref. [56]. The basic idea is to extract a binary reaction (4)
cross section at low energies from a suitable three-body TH
reaction (3) at higher energies under appropriate kinematical
conditions. The TH reaction is described as the virtual decay
of the Trojan horse nucleus a into the clusters x and s and
the subsequent interaction of A with x inside the nuclear
region, whereby the nucleus s can be considered a spectator
during the reaction. If one chooses the bombarding energy EA

high enough to overcome the Coulomb barrier in the entrance
channel of the TH reaction, both Coulomb barrier and electron
screening effects are negligible.

In the original article [26] it was proposed that the initial
velocity of the projectile A is compensated for by the Fermi
motion of particle x to reach the low energies for the binary
reaction. In this framework, a momentum of the order of
hundreds of MeV/c is needed. However, in the case of a Trojan
horse nucleus with a predominant l = 0 intercluster motion,
such momenta populate the tail of the momentum distribution
for particle x, making the separation from eventual background
reaction mechanisms like sequential decays feeding the same
exit channel [see, e.g., Figs. 1(b)–1(d) for the 15N(p, α)12C
reaction] very critical. Moreover, as already mentioned, the
tail of the calculated momentum distribution entering Eq. (5)
changes depending on the theoretical approach applied (PWIA
or DWIA [47]), therefore a very sophisticated treatment might
be required to get the relevant binary reaction cross section. In
addition, because short intercluster distances are associated
with high relative momenta, distortion of the binary cross
section owing to the interaction with s could not be neglected.

To overcome these problems, we introduced a different
approach [47,52] based on the idea that the initial projectile
velocity is compensated for by the binding energy of particle
x inside a. Our approach becomes clear by invoking energy
and momentum conservation in the three-ray vertex, a → s +
x, and in the four-ray vertex, A + x → C + c, of the pole
diagram of Fig. 1(a) yielding

EAx = p2
Ax

2 µAx

− p2
sx

2 µsx

− εs x, (22)

where εsx = ms + mx − ma . In the QF kinematics psx = 0
and

EAx = p2
Ax

2 µAx

− εs x. (23)

Because the transferred particle x is virtual, pAx 
= kAx =√
2 µxA EAx , where kAx is the OES relative A − x momentum.

Moreover, Eq. (23) demonstrates that pAx > kAx in the THM.

Let us consider the coordinate system in which ka = 0. In QF
kinematics

kAx = mx kA − mA px

mx + mA

= mx

mx + mA

kA, (24)

where kA is the momemtum of projectile A. Then from
Eqs. (23) and (24) we get

EAx = mx

mx + mA

EA − εs x. (25)

This equation explains how the binary reaction can be induced
at very low energies EAx in the THM [52]. Even if the
energy of projectile A exceeds the Coulomb barrier in the
initial channel, A + a, of the TH reaction, it is compensated
by the binding energy εsx . Thus the relative energy of the
fragments in the initial channel A + x of the binary reaction
(4) can be very low and even negative. In contrast, this
condition is difficult or impossible to be satisfied in binary
reactions due to the Coulomb barrier. We also conclude
from Eq. (25) that the energy EAx is uniquely determined
by the incident beam energy EA in QF kinematics. Hence,
determining the energy dependence of the binary reaction
cross section from the TH reaction requires changing the beam
energy. From a practical point of view it is more convenient
to fix the beam energy and vary the relative momentum psx in
the interval 0 � psx � p(max)

sx < κsx , where κsx = √
2 µsx εsx

is the a = (s x) bound-state wave number. In this case the
kinematics of the experiment given by Eq. (22) deviates
slightly from the QF condition. The role of the cutoff, 
psx =
p(max)

sx , in the psx momentum distribution of the Fermi motion
for s and x in a is to fix the accessible astrophysical energy
region. To show this, consider the laboratory system in which
the TH nucleus a is at rest, ka = 0, i.e., psx = −px = ks .
Then we derive from Eq. (22)

EAx = mx

mxA

EA − p2
s

2 µsF

+ 1

mxA

ks · kA − εsx. (26)

Thus the astrophysically relevant energy interval at fixed
beam energy EA can be achieved by varying the absolute
value and/or direction of the spectator momentum ps in the
laboratory system.

In principle the THM allows one to determine both the
energy dependence and absolute value of the astrophysical
factor. However, usually we measure only the energy depen-
dence of the TH cross section and not the absolute value
because it is much easier to normalize the TH astrophysical
S factor to direct data at higher energies where they are well
determined than to make absolute measurements of the triple
differential cross section. Our procedure has been discussed in
many of our previous publications (see Table I). The THM
technique is not an alternative to direct measurement, but
it operates as a complementary tool allowing to extract the
low-energy behavior. Direct data from literature are necessary
both for normalization purpose and to perform the validity
test of the method before extracting the THM cross section.
The normalization factor can be determined by scaling THM
results to direct measurements, which are available at energies
above the Coulomb barrier. There are two main questions
for the application of the THM: the off-shell effects and the
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initial- and final-state interactions. While experimental efforts
(see Table I) corroborate the THM approach offering a variety
of validity tests of the method only recently has it been shown
that close agreement between OES and HOES cross sections
(in arbitrary units) in case of nonresonant binary reactions
is expected because off-energy-shell distortions to the cross
section are comparable or smaller than the uncertainty of
experimental data [57]. In this work we address, for the first
time, the application of the THM to resonant binary reactions
taking into account the off-shell effects; see subsection VI A.
The presence of the same resonant behavior in the 15N+p

low-energy excitation function indirectly extracted via the
THM, with respect to direct data [6,58,59], would constitute
a further validity test for the method. However, even if the
HOES excitation function for the binary reaction extracted
from the TH reaction differs from the OES one, by proper
renormalization of the indirect excitation function we can
obtain the same energy behavior as direct data.

III. EXPERIMENTAL SETUP

The experiment was performed with a 60-MeV 15N beam,
with a spot size on target of a diameter of 1 mm and
intensities up to 5 enA, which was provided by the K500
superconducting cyclotron at Texas A&M University. The
relative beam energy spread was about 10−3. Self-supported
deuterated polyethylene targets (CD2) of about 150 µg/cm2

thickness were placed at 90◦ with respect to the beam direction.
The detection setup consisted of a telescope (A) made up of

an ionization chamber and a silicon position sensitive detector
(single area, resistive redout) (PSD A) to discriminate carbon
nuclei and of two silicon PSDs (B, C) placed on the opposite
side with respect to the beam direction. Table II shows the most
relevant experimental details concerning all the coincidence
detectors. The ionization chamber, closed by two 1.5-µm-thick
Mylar foil windows, was filled with 60-mbar butane. To lower
detection thresholds for the α particle spectra, no 
E detectors
were put in front of PSDs B and C. Thus particle identification
was done from the kinematics of the events. Two kinds of
events were triggered by using a time-to-amplitude converter
(TAC): A-B and A-C coincidences. The alignment of the three
detectors was checked by an optical system.

Angular conditions were selected to maximize the expected
quasi-free contribution. Indeed they were chosen to cover
momentum values ps of the undetected neutron ranging

TABLE II. Laboratory central angles (θ0), angular ranges
spanned (
θ ), solid angles subtended (
�), distances from the
target (d), thickness (s), and intrinsic angular resolution (δθ ) for
each detector.

Detector θ0

(deg)

θ

(deg)

�

(msr)
d (mm) s (mm) δθ

(deg)


E-A −15.3 – – 164 50 –
PSD-A −15.3 11.9 8.7 240 0.492 0.2
PSD-B 12.7 13.5 11.2 211 0.984 0.3
PSD-C 32.7 18.0 20.0 158 0.984 0.4

from 0 to 150 MeV/c. This assures that the bulk of the
quasi-free contribution for the breakup process of interest
falls inside the investigated region. This feature is expected
for a QF reaction involving deuteron breakup because the
momentum distribution for the n-p system has a maximum at
ps = 0 MeV/c, the relative motion taking place in an s-wave.
The angles corresponding to this condition represent what
are known as QF angles. This also allows for a cross-check
on the method inside and outside the phase-space regions
where the quasi-free contribution is expected. The yield of
the 2H(15N,13C)4He binary reaction as recorded in the PSD
A 2D position-energy spectrum was monitored to perform a
continuous check of the deuteron content of the target.

Energy and position signals of the PSDs were processed
by standard electronics together with the TAC signals for each
coincidence event and sent to the acquisition system for on-line
monitoring and data storage for off-line processing.

IV. DATA ANALYSIS

A. Detector calibrations and selection of the reaction channel

At the initial stage of the measurement, masks with a
number of equally spaced slits were placed in front of each
PSD to perform a position calibration. A correspondence
between position signal from the PSD and detection angle
of the particles was then established by measuring the angle
of each slit by means of an optical system.

Energy calibration was performed by means of a 228Th α

source and by using the α particles from the 2H(15N,α)13C
reaction at 60 MeV, feeding a large number of 13C excited
states. Some additional runs were performed using a 12C beam
at energies of 30 and 72 MeV to measure the elastic and
inelastic scattering on gold and carbon targets. This allowed for
a more accurate calibration of the telescope A, optimized for
12C nuclei detection. The total kinetic energy of the detected
particles was reconstructed off-line, taking into account the
energy loss in the target and in the entrance and exit windows
of the ionization chamber.

After detector calibration, the first step of the analysis
is the identification of the events corresponding to the
2H(15N,α12C)n TH reaction. This is accomplished first through
a selection of the carbon locus in the 
E-E 2D plot as shown
in Fig. 2, where carbon and nitrogen loci are marked. Because
isotopic discrimination of 12C from 13C is not possible, C
events found in EA vs. EB and EA vs. EC correlation plots are
compared to a Monte Carlo simulation for the 2H(15N,α12

0 C)n
and 2H(15N,α12

1 C)n reaction channels. From the comparison,
we can conclude that no additional channels contribute in the
experimental kinematical loci.

The Q-value spectrum for these events is given in Fig. 3.
Two peaks show up corresponding to the ground state and
first excited state of 12C (Q values of 2.74 and −1.70 MeV,
respectively). The good agreement between the experimental
and the theoretical Q values confirms the identification of the
reaction channel as well as the accuracy of the calibration.
Same results are deduced from the A-C and the A-B couple.

The 15N(p, α1)12C reaction is of negligible astrophysical
interest because its cross section is much lower than the
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FIG. 2. (Color online) 
E-E two-dimensional plot for the A
telescope. Data are from the A-C coincidence detectors: the A-B
couple provides similar results. Carbon locus clearly shows up, 12C
and 13C are not resolved because of ionization chamber energy
resolution.

15N(p, α0)12C reaction inside the astrophysical relevant energy
range [60]. Thus, only events corresponding to the Q-value
region 0 � Q3−body � 6 MeV were considered to extract the
15N(p, α0)12C cross section.

B. Experimental evidence and selection of
the quasi-free mechanism

After the selection of the 12C+α0+n exit channel, the
next step in the data analysis was to establish whether
the contribution of the QF process to the overall 12C+α

coincidence yield is evident in the selected experimental
kinematic regions and well separated from other possible
reaction mechanisms (see Fig. 1). As already mentioned,
because the analysis of the experimental results is complicated
by the presence of other reaction mechanisms feeding the

FIG. 3. Q-value plot for the A-C coincidence events. Two dom-
inant peaks corresponding to the 2H(15N,α0

12C)n (Q = 2.74 MeV)
and 2H(15N,α12

1 C)n (Q = −1.7 MeV) reactions are evident (marked
with 0, 12C ground state, and 1, 12C first excited state).

FIG. 4. (Color online) A-C coincidence correlation plots for the
relative energies Eαn vs. E12Cα (a) and E12Cn vs. E12Cα (b).

same particles in the final state, e.g., sequential decay (SD)
and direct breakup (DBU) [10], a thorough study of the
processes feeding the exit channel is a necessary step to
disentangle the QF component from other mechanisms.

To carry out this study, relative energy 2D plots for any
two of the three final particles were reconstructed. Relative
energies Eα n vs. Eα 12C and E12C n vs. Eα 12C are shown in
Figs. 4(a) and 4(b), respectively (A-C coincidence). Clear
vertical loci appear in both the Eα n vs. Eα 12C and E12C n

vs. Eα 12C plots (Fig. 4) corresponding to excited states of
16O at 12.44, 13.09, and 13.26 MeV [32]. An additional
contribution to the TH cross section due to the sequential decay
of 13C excited states at 6.864, 7.492, 7.547, and 7.686 MeV
[61] (where the last three levels are not resolved) is also
apparent, corresponding to the horizontal loci in Fig. 4(b).
Such sequential processes through 13C give a negligible
contribution to the coincidence yield at 12C-α relative energies
around 5 MeV, which corresponds to the astrophysically
relevant energy region in the 15N-p channel [from Eq. (7)
one can deduce that zero energy in the 15N(p, α)12C channel
corresponds to 4.966 MeV in the 12C-α relative energy].
Finally, there is no evidence of levels from 5He sequential
decay. Similar results are obtained from A-B coincidences.

The occurrence of sequential mechanisms in the 12C-α
channel cannot be ruled out by studying the relative energy
correlation plots only, because the same excited states of
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the 12C+α system can be formed through a QF reaction
mechanism as well as a sequential one [via the channel
sketched in Fig. 1(b)]. A way to discriminate between SD and
QF events is through the study of the E12C α relative energy vs.
psx neutron momentum correlation plot. Indeed the range of
the spectator particle momentum spanned in the experiment
is such that a comparison of the coincidence yield for small
psx (less than 40 MeV/c) and larger psx can be performed. A
first test allowing to study the reaction mechanisms involved
in the population of the 16O states free of phase-space effects
is the analysis of angular correlation spectra. This was done to
observe the modulation of the TH cross section by the neutron
momentum distribution inside the deuteron. Figure 5 shows
typical coincidence spectra for the A-C couple projected on
the E12C axis and corrected for the phase space effects for a
fixed θα and for two different θ12C angles. The coincidence
yield is maximum when the neutron momentum approaches
zero. The condition of minimum neutron momentum is marked
with an arrow in the figures. This feature is expected for a QF
reaction because the momentum distribution of the n-p system
in the deuteron nucleus has a maximum for psx = 0 MeV/c.
The (θ12C, θα) angles corresponding to this condition represent
what is referred to as QF angles. Similar results have been
obtained for other QF angular pairs. This represents a first
necessary check for the existence of the QF mechanism in the

FIG. 5. Typical coincidence spectra for the A-C couple projected
on the E12C axis for a fixed θα and two different θ12C, within the angular
ranges of δ12C = ±0.6◦ and δα = ±1◦. The condition corresponding
to the minimum neutron momentum is marked with an arrow.

15N(p, α)12C reaction. In a similar way E12C spectra for A-B
coincidences were obtained for different θα while θ12C was
kept fixed. Phase-space effects are removed as in the previous
case. The enhancement of the cross section close to zero psx

momentum, which is a necessary condition of the occurrence
of the QF mechanism, is also evident.

As a second check to explore the behavior of the coinci-
dence yield for the 16O∗ → 12C-α channel, the E15Np relative
energy spectra were reconstructed for all coincidence events
as a function of neutron momentum psx . The E15N p relative
energy corresponds to the Ec.m. variable defined in Eq. (7):

Ec.m. = E12C α − 4.966 MeV. (27)

These spectra were obtained by selecting different ranges
of the neutron momentum psx and were divided by the
phase-space contribution to remove the pure kinematic effects
due to the phase-space selection. The 12C-α coincidence yield
for psx � 20 MeV/c [Fig. 6(a)] in detectors A-C appears
to be quite high close to the E15N−p resonance energies
corresponding to the 16O state at 12.44 MeV. At higher

(a)

(b)

(c)

FIG. 6. TH cross section for the A-C coincidences and for
different psx ranges: psx < 20 MeV/c (a), 20 MeV/c < ps <

40 MeV/c (b) and 40 MeV/c < ps < 60 MeV/c (c).
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momenta {20 MeV/c � psx � 40 MeV/c [Fig. 6(b)] and
40 MeV/c � psx � 60 MeV/c [Fig. 6(c)]}, the coincidence
yield drastically decreases and becomes barely visible com-
pared to the background. These data provide strong evidence
of a clear correlation between coincidence yield and spectator
momentum psx . The same considerations can be drawn for
A-B coincidence events.

An observable more sensitive to the reaction mechanism is
the shape of the experimental momentum distribution of the
undetected neutrons. To reconstruct the experimental psx dis-
tribution, the energy-sharing method [10,47] is applied to each
pair of coincidence detectors selecting a narrow E15Np relative
energy window, 
E = 80 keV for the A-C coincidence and

E = 200 keV for the A-B coincidence (because of the lower
statistics). Dividing the resulting quasi-free coincidence yield
by the kinematic factor, a quantity that is proportional to the
product of the psx momentum distribution and the differential
15N-p binary cross section [see Eq. (5)] is deduced

|ϕa(psx)|2
(

dσ

d�c.m.

)HOES

E0

∝
[

d3σ

d�αd�12CdEc.m.

]
[KF ]−1,

(28)

where E0 is the mean energy of the relative energy window. In
a restricted E15Np relative energy range selected by choosing
the energy region between the 12.44-MeV and the 13.09-MeV
16O resonance, the differential binary cross section
(dσ/d�c.m.)HOES of the 15N + p reaction can be considered
almost constant. Thus the experimental psx momentum
distribution is given in arbitrary units by the equation

|ϕa(psx)|2 ∝
[

d3σ

d�αd�12CdEc.m.

]
[KF ]−1. (29)

The momentum distributions from A-B and A-C coincidences
were averaged out after being normalized to each other. This
result is compared with the square of a Hulthén wave function
in momentum space [47]

ϕa(psx) = 1

π

√
ab(a + b)

(a − b)2

[
1

a2 + p2
sx

− 1

b2 + p2
sx

]
(30)

with parameters a = 0.2317 fm−1 and b = 1.202 fm−1 [47] for
the deuteron with the normalization constant fixed at the exper-
imental maximum (Fig. 7). The good agreement between the
two, together with the previous tests, makes us confident that
the QF mechanism gives the main contribution to the 15N+d

reaction at an energy of 60 MeV in the selected kinematical
experimental regions; the QF mechanism can be selected with-
out significant contribution from contaminant SD processes;
the analysis in PWIA is sufficient to describe the process.

FIG. 7. Average experimental momentum distribution (full dots)
obtained from the A-B and A-C ones compared with the theoretical
distribution (30) (full line), normalized to the experimental data (see
text for details).

V. FROM THE EXPERIMENTAL TROJAN HORSE
REACTION TO THE INDIRECT

HALF-OFF-ENERGY-SHELL BINARY REACTION
CROSS SECTION

A. Angular distributions

As was noted, the THM provides the HOES binary reaction
cross section, so it is necessary to perform the appropriate
validity tests on the deduced cross section for the adopted IA.

A test involves the comparison between the THM angular
distributions and the direct measurements [6]. The emission
angle for the 12C nucleus in the α-12C center-of-mass system
is calculated according to the relation [37]

θc.m. = arccos
(v15N − vp) · (vα − v12C)

|v15N − vp||vα − v12C| , (31)

where the vectors v15N, vp, vα, v12C are the velocities of
projectile, transferred proton, outgoing α-particle, and 12C,
respectively. These quantities are calculated from their corre-
sponding momenta in the lab system, where the momentum of
the transferred particle is equal and opposite to that of neutron
when the quasi-free assumptions are fulfilled [37].

The center-of-mass angular ranges covered in the present
experiment were θc.m. = 80◦–120◦, θc.m. = 120◦–160◦ for the
A-C and the A-B detector coincidences, respectively. The an-
gular distribution test was performed for five different energies,
within the astrophysically relevant p − 15N relative energy
range in steps of 
Ec.m. = 100 keV (±50 keV energy bin).
To select the region where the QF mechanism is dominant,
coincidence events for neutron momenta ranging between 0
and 40 MeV/c were considered. A Monte Carlo calculation
was then performed to evaluate the KF |ϕa(psx)|2 product.
The momentum distribution in the calculation is that given in
Eq. (29). The geometrical efficiency of the experimental setup
as well as the detection thresholds of the PSD’s were taken into
account. Following the PWIA prescription, the binary cross
section (dσ/d�c.m.)off was derived by dividing the selected
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FIG. 8. Indirect angular distributions for the 15N(p, α)12C reac-
tion (full dots) for different E15Np relative energies compared to the
direct ones from [6] (dashed lines); EAx ≡ E.

three-body coincidence yield by the result of the Monte Carlo
calculation.

The results are given in Fig. 8, where the different relative
energies are marked for each distribution. The error bars
represent both statistical and normalization errors. Normaliza-
tion is performed over the whole angular region. In Fig. 8, for
each Ec.m. energy the angular distributions are compared with
the direct cross section extracted from [6]. Good agreement
between the two trends shows up, providing confidence in the
validity of the IA for the present experimental conditions.

B. Excitation functions

As a second validity test, the behavior of the indirect
excitation function is examined to check whether the off-
energy-shell binary cross section integrated over the full θc.m.

range is consistent with direct data [6,58,59]. Because the
THM angular distributions appear to be in good agreement

FIG. 9. (Color online) Comparison between the indirect excita-
tion function (full dots) for the 15N(p, α)12C reaction and the direct
data from Refs. [6,58,59] (open symbols). (a) Reports data from
the A-B coincidence detectors, whereas (b) shows the binary cross
section from the A-C coincidence.

with the direct ones over the entire energy range explored, their
behavior is extrapolated to the θc.m. range not covered in the ex-
periment, assuming the same trend of the direct measurement.
Then the indirect binary cross section is integrated over the full
θc.m. angular range and multiplied by the Coulomb penetration
function as given in Refs. [10,47]. A dominant l = 0 partial
wave in the entrance channel of the 15N+p binary reaction
and a channel radius given by the sum of the radii of the two
interacting nuclei have been assumed. This is a necessary step
because the investigated 15N+p relative energy region lies
below the Coulomb barrier (about 2 MeV) and the extracted
THM binary cross section is free of Coulomb suppression
as discussed above. Normalization to the direct behavior was
performed in the resonant region between Ec.m. = 200 and
400 keV. To do this, both direct and THM resonances were
fitted by using Breit-Wigner shapes. The normalization factor
was fixed by requiring the same area for the two curves.

The final binary cross section obtained in the present work is
shown in Fig. 9 (red full dots), where direct data are also given
(open symbols). The upper panel in Fig. 9(a) refers to the A-B
coincidence detectors while the lower one [Fig. 9(b)] shows the
binary cross section extracted from A-C coincidence events.
The good agreement between the data sets is a necessary
condition for the further extraction of the astrophysical S(E)
factor by means of the THM [10,47,50,52,62,63].
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VI. RESULTS AND DISCUSSION

We derive the S(E) factor from our data using the definition
in Eq. (1). Moreover, starting from the experimental uncertain-
ties affecting energy and angle of emission of each ejectile,
an error estimate for the relative energies E15Np (the Ec.m.

variable) was performed leading to a value of about 10 keV
for the A-B coincidences and 40 keV for the A-C coincidences.
An overall energy resolution of 1% and angular resolutions of
0.3◦ for PSD A and PSD B and 0.4◦ (PSD C) were considered.
These numbers account for both angular and energy straggling
in the target and in the dead layers. The difference between the
two cited energy uncertainties mainly comes from the different
experimental conditions, detector C being closer to the target
than detector B. In addition, the magnifying glass effect [12]
is less relevant for the A-C coincidence, because of the
different kinematics. Vertical error bars include both statistical
errors and a systematic error coming from the normalization
procedure. The S factor extracted from A-C coincidences
has a much lower uncertainty due to better statistics than
the one derived from A-B coincidences. It also has an 9%
normalization error, which is much lower than the 25%
normalization error for the S factor for the A-B coincidences.

Because finite resolution affects the two S factors extracted
from the A-B and the A-C coincidences in different ways,
to combine the two data sets this effects were removed by
extracting a curve that best represents the “infinite” energy
resolution S factor for our data. The two Sbare(E) data sets
obtained through this procedure were then averaged out and
the result is shown in Fig. 10 and summarized in Table III.
An additional systematic error of ∼16% arising from the
deconvolution procedure was added to the data set in Table III
and included in the determination of S(0). Direct data from
Refs. [6,58,59] are shown as open symbols in Fig. 10. Good
agreement is found in the energy range explored by direct data.

FIG. 10. (Color online) Indirect astrophysical S(E) factor (full
red dots) with EAx ≡ E. The data are obtained by averaging the two
“infinite” resolution data sets from A-B and A-C coincidences as
discussed in the text. The direct data from Refs. [6,58,59] are also
shown as open symbols (circles, squares, and triangles, respectively).
The red line represents a fit to the THM data by means of the curve of
Eq. (32) (the fitting parameters are given in Table IV). For comparison
[6] a Breit-Wigner parametrization is also displayed as the black line.

TABLE III. Astrophysical S factor for the 15N(p, α)12C
reaction, from the average of the two “infinite” resolution A-B
and A-C S factors. Energy, S(E) factor and corresponding
error are reported. See text for detailed discussion.

Ec.m. (MeV) S(E) (MeV b) 
S(E) (MeV b)

19.2 66 12
38.4 86 16
57.6 102 19
76.8 127 23
96.0 149 27

115.2 181 33
134.4 242 43
153.6 339 59
172.8 425 73
192.0 541 92
211.2 745 125
230.4 1102 182
249.6 1520 249
268.8 2103 342
288.0 2814 456
307.2 3430 558
326.4 3124 504
345.6 2416 392
364.8 1982 323
384.0 1556 255
403.2 1151 191
422.4 841 142
441.6 747 127
460.8 659 113
480.0 561 96
499.2 511 88
518.4 504 86
537.6 462 80
556.8 462 79
576.0 439 75

A fit to the data was performed to extrapolate the S factor to
zero relative energy. The functional form used in the fit is given
by the sum of a second-order polynomial and a Breit-Wigner
function

S(E) = a0 + a1E + a2E
2 + W

(E-ER)2 + �2

4

(32)

with parameters ai (i = 0, 1, 2), W , resonance energy ER

and width �; E ≡ E15Np. The best fit parameters are reported
in Table IV. The curve well reproduces the indirect THM
astrophysical S factor as shown by the χ2 (Table IV) and
displayed in Fig. 10 as a full red line. For comparison, the
Breit-Wigner parametrization from Ref. [6] is also shown in
Fig. 10, demonstrating the good agreement between the two
curves within the experimental uncertainties. The zero-energy
S factor for the averaged A-B and A-C coincidences, resulting
from the fit, is in good agreement with previous S(0) estimates
from direct data measured by Refs. [6,58,59], given in Table V:
Sbare(0) = 62 ± 10 MeV b. The quoted uncertainty accounts
for statistical, normalization, and extrapolation errors. In
addition the S(E) factor obtained here is consistent with the
result of the preliminary analysis in Ref. [31] to 20 keV.
The lowest energy point, which is affected by the largest
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TABLE IV. Fitting parameters for S(E), Eq. (32). The centroid of the Breit-Wigner is fixed at the
1− resonance energy of 312 keV. In the last column the χ2 per degree of freedom is also reported.

a0 (MeV b) a1 (MeV b/MeV) a2 (MeV b/MeV2) � (MeV) W (MeV3b) χ 2/N

−55 ± 10 −459 ± 140 1928 ± 260 0.118 ± 0.005 11.7 ± 0.3 0.1

uncertainty, both theoretical and experimental, is neglected
in the present work.

A. Application of the modified HOES R-matrix approach

In this section we describe the analysis of the astrophysical
factor applying the HOES R-matrix approach developed in
Ref. [53] and described in subsection II B. Generally speaking
the reaction under consideration has contributions from the
first three resonances in the 15N + p system at E15N p =
0.312, 0.9624, and 1.0014 MeV, and the subthreshold state
at E15N p = −2.53 MeV. In the HOES R-matrix method
approach, the resonance width in the entry channel, which
appears in the standard R-matrix, is replaced by the form
factor that is the amplitude of the direct transfer reaction
d + 15N → n + 16Oτ , τ = 1, 2, 3 populating the resonance
state of 16O. These form factors were calculated using the
plane-wave approximation, but they were checked by taking
into account the Coulomb interaction in the initial state of the
direct transfer reaction.

The first two resonances, E15N p = 0.312 and 0.9624 MeV
and the subthreshold state have the same quantum numbers,
l = 0, and spin-parity Jπ = 1−. Hence the amplitudes of
the reactions proceeding through these states interfere. The
sign of the interference is determined by fitting to the S

factor extracted from the THM. In direct measurements the
contribution from the resonance at E15N p = 1.0014 MeV is
suppressed at E15N p < 500 keV due to the high centrifugal
barrier from to the l = 2 orbital momentum of this resonance.
In the THM the centrifugal barrier is absent and, consequently,
the contribution of this resonance may not be negligible, but
both the experimental data and theoretical analysis show that
it is negligible.

The THM allows us to investigate the impact of the
subthreshold state on the astrophysical factor at low energies,

TABLE V. Astrophysical S(0) factors
(and the corresponding errors) for the
15N(p, α)12C reaction extrapolated by dif-
ferent authors [6,58,59], compared with the
ones deduced in the present work: (1) poly-
nomial fit and [(2), (3), and (4)] modified
R-matrix calculation (4.5-, 5.0-, and 5.5-fm
channel radius, respectively).

S(0) (MeV b) 
S(0) (MeV b) Ref.

64 – [58]
78 6 [59]
65 4 [6]
62 10 (1)
63 10 (2)
65 10 (3)
68 11 (4)

E15N p < 70 keV, which are not available to direct measure-
ments. The 15N + p → 12C + α reaction can proceed through
the subthreshold state E15N p = −2.54 MeV as follows: the
proton is captured to the intermediate bound state of 16O,
which is 2.54 MeV below the 15N + p threshold but 2.42 MeV
above the threshold of the 12C + α channel. However, we find
that the inclusion of the subthreshold state does not affect the
both OES and HOES astrophysical factors at low energies
and its effect can be neglected. Thus in what follows we
consider only the first two 1− resonances E15N p = 0.312 and
0.9624 MeV. Then the HOES astrophysical factor normalized
at the first resonance peak to the OES S factor obtained from
direct measurements [6] is given by Eq. (12). We rewrite this
equation here, showing explicitly all the kinematical factors
including the spins of the nuclei, as

STH(EAx) = π λ2
N

1

2

(2 J + 1)

(2 Jx + 1)(2 JA + 1)

1

µAx

e2 π ηAx 10−2

×�Ax(1)(EAx)

∣∣∣∣∣
√

�Cc(1) (ECc)

EAx − EAx(R1) + i
�(1)

2

+
√

�Cc(2) (ECc) M0
21

EAx − EAx(R2) + i
�(2)

2

∣∣∣∣∣
2

. (33)

Here, λN = 0.2118 fm is the nucleon Compton wave length,
J is the resonance spin, Ji is the spin of nucleus i, and µAx is
the reduced mass of A and x expressed in atomic mass units. If
energies and resonance widths are expressed in MeV, the TH
astrophysical factor STH(EAx) is given in MeV b. In the case
under consideration, x = p,A = 15N, c = α,C = 12C. In the
plane-wave approximation, the ratio M21 = M0

21 is given by
Eq. (21).

The TH HOES astrophysical factor is to be compared with
the OES one

S(EAx) = π λ2
N

1

2

(2 J + 1)

(2 Jx + 1)(2 JA + 1)

mx + mA

mx mA

e2 π ηAx 10−2

×�Ax(1)(EAx)

∣∣∣∣∣
√

�Cc(1) (ECc)

EAx − EAx(R1) + i
�(1)

2

+
√

�Cc(2) (ECc) γAx(21)

EAx − EAx(R2) + i
�(2)

2

∣∣∣∣∣
2

. (34)

Here

γAx(21) =
√

�Ax(2) (EAx)

�Ax(1) (EAx)
= γAx(2)

γAx(1)
(35)

is the ratio of the reduced widths of the levels 2 and
1. In Eq. (35) we took into account that �Ax(i)(E) =
2 Pli (kAx r0) γ 2

Ax(i), where Pli (kAx r0) is the penetrability factor
for the system A + x with relative orbital angular momentum
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li , r0 is the channel radius, kAx = √
2 µAx EAx . Hence γAx(21)

is the ratio of the reduced widths and does not depend
on energy. To find M0

21 we used Eq. (17) in which we

approximated the overlap function I
F(i)

Ax by a single-particle
15N-p wave function in the Woods-Saxon potential calculated
in the internal region by a procedure similar to that used in
the R-matrix method to calculate the level eigenfunctions. For
the resonances at Ex = 13.09 MeV and Ex = 12.44 MeV in
16O, the experimental ratio γAx(21) = 1.1 ± 0.1 MeV, while the
calculated M0

21 ≈ 1.13 in the energy interval EAx � 312 keV.
The coincidence of M0

21 and γAx(21) explains why the HOES
astrophysical factor STH(EAx) extracted from the TH reaction
agrees with the OES astrophysical factor at low energies.

The results of the calculation of STH(EAx) are shown in
Fig. 11, where they are compared with THM data. When calcu-
lating STH(EAx) we assumed destructive interference between
the 12.44 MeV and the 13.09 MeV Jπ = 1− 16O resonances
at energies EAx < 312 keV. The same interference occurs be-
tween these resonances when fitting the direct measurements.
According to Eq. (33) we need to know, in addition to M0

21,
the proton and α partial widths and energies of the first two
1− resonances to calculate the astrophysical factor STH(EAx).
These parameters have been determined by fitting direct
measurements [6,58,59]. The best fit has been achieved for
ER1 = 312 keV, �Ax(1) ≡ �p(1) = 1.1 keV, �Cc(1) ≡ �α(1) =
93.4 keV, ER2 = 962.4 keV, �Ax(2) ≡ �p(2) = 95.31 keV, and
�Cc(2) ≡ �α(2) = 45 keV. In Fig. 11 three calculations are
given for the channel radius: r0 = 4.5 fm (black line), r0 =
5.0 fm (blue line), and r0 = 5.5 fm (red line). The shape of
the deduced resonant astrophysical S factor is in very good
agreement with the direct data as well as the THM data (e.g.,
in the case of the r0 = 5.0 fm calculation, a χ2 = 1.9 per
degree of freedom is retrieved). The calculated values of the
astrophysical factor S(0) are 63.0 MeV b for r0 = 4.5 fm,
65.0 MeV b for r0 = 5.0 fm, and 68.0 MeV b for r0 =
5.5 fm, agree with the result of direct data extrapolation (see for
comparison Table V). Thus we have shown using the HOES R

FIG. 11. (Color online) Comparison of the modified HOES R-
matrix calculations of the STH(ExA) ≡ S(E) astrophysical factor (full
lines) with THM data (red dots), for a number of interaction radii:
4.5 fm (black), 5.0 fm (blue), and 5.5 fm (light blue). See text for
details.

matrix and confirmed by calculations that the THM is a reliable
way to determine the resonant astrophysical factor down
to zero energy for the binary reaction 15N + p → 12C + α

between bare nuclei.
An estimate of the effect of the d-15N scattering in the initial

state on the energy dependence of the binary cross section can
be obtained by taking into account only the Coulomb d-15N
interaction. We disregarded the n-16O∗ interaction because
the effect of the interaction of the spectator with the 15N +
p system is significantly diminished in QF kinematics. To
simplify calculations we assumed zero-range potential VAx . In
this case if we take into account d − 15N Coulomb scattering
in the initial state, the factor |ϕa(psx)|2 in Eq. (28) should be
replaced by |J |2, where

J (ks , ka) = 〈
ϕa(ks − (ms/ma) k′

a)
∣∣ψ (C)(+)

ka
(k′

a)
〉
. (36)

Here the integration is performed over k′
a and ψ

(C)(+)
ka

(k′
a) is

the Fourier component of the a − A Coulomb scattering wave
function. Equation (36) is written in the center-of-mass of the
TH reaction, so kaA ≡ ka and ksF ≡ ks . We find that including
Coulomb scattering in the initial state changes the energy
dependence of the binary cross section in the energy interval
0 � EAx � 320 keV by 3.5%. Because we are interested only in
the behavior of the binary 15N(p, α)12C reaction cross section
as a function of energy, we use the plane-wave approximation
in the initial and final states below. Note that the plane wave in
the final state describes the relative motion of the neutron and
the center-of-mass of the system F = 15N + p = 12C + α.

VII. CONCLUSIONS

In the present article we have reported on an improved de-
termination of the astrophysical S factor for the 15N(p, α)12C
reaction, as regards both previous indirect (THM) and direct
measurements. Concerning the previous THM measurement,
owing to a larger data sample (two couples of coincidence
detectors) and an accurate investigation of all the sources
of systematic uncertainties (including normalization to direct
data and adopted theoretical framework in the S-factor
extraction), both statistical and systematic errors are reduced
with respect to the analysis discussed in Ref. [31]. Concerning
direct data, the present knowledge of the 15N(p, α)12CS(E)
factor has been extended down to 20 keV (to be compared to
73 keV in direct measurements), thus covering for the first time
the whole Gamow window (94 ± 66 keV for a temperature of
108 K). Moreover the S(E) factor obtained via the THM is
free of electron screening because the TH cross section is
evaluated at energies much higher than the Coulomb barrier,
thus this systematic uncertainty is not introduced in further
astrophysical considerations. However, no electron screening
potential has been deduced from the comparison with direct
data owing to the experimental errors affecting both data sets,
which are larger (∼20%) than the expected enhancement
of the S factor due to electron screening (about 10% at
∼70 keV). Indeed under these conditions the deduced Ue

would be affected by a large systematic error that would make it
worthless. Therefore more accurate low-energy measurements
extending below about 70 keV are required to allow for the
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extraction of Ue. The actual result confirms the Breit-Wigner
extrapolation by Ref. [6], which is used to derive the reaction
rate for astrophysical applications [4]. Here for the first time
we took into account the Coulomb interaction between the
colliding nuclei in the initial state of the TH reaction and
off-energy-shell effects in the reaction. It was shown that
the initial Coulomb scattering does not affect the extracted
astrophysical factor. To take into account off-shell effects, we
applied the HOES R-matrix approach. We have shown that
the off-shell effects do not affect the energy dependence of
the THM astrophysical factor for this system. The calculated
astrophysical factor, within the framework of the HOES
R-matrix approach, is in excellent agreement with direct

data and THM results, as seen in Fig. 11. This justifies the
application of the THM in extracting the low-energy S factor
of astrophysically relevant resonant nuclear reactions.

The present results do not change the conclusions drawn
from direct measurement but put them on more solid footing.
Other relevant reaction rates which play an important role in
determining 19F abundance in AGB stars, such as 18O(p, α)15N
and 19F(α, p)22Ne, are being studied with the same procedure.
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