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Mass and width of strange baryon resonances using QCD sum rules
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The mass spectra of strange baryons in the octet family are investigated in a finite-energy QCD sum rule
approach based on the Gauss-Weierstrass transform. The phenomenological form of the spectral function is
saturated by the ground state and two of the lowest excited states, considered as having opposite parities. Treating
the ground-state parameters as known quantities, the masses, widths, and couplings to the interpolating fields are
determined and compared with experiment.
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I. INTRODUCTION

An important goal of the study of hadronic physics is to
understand the baryon spectrum from QCD, the underlying
theory of the strong interaction. In quantum mechanics, sta-
tionary states in bound state problems are eigenstates (eigen-
function and eigenenergy) of an appropriate Hamiltonian.
Bound states such as light baryonic systems in QCD, on
the other hand, are far more complicated objects. Here
the excitation energy is sufficient to create several of the
constituents. In hadrons, a typical excitation energy (due to
QCD) is a few hundred MeV. This is sufficient to create one
or more light quark-antiquark pairs. QCD is intrinsically a
strongly interacting many-body theory. Its strong coupling
and confinement nature makes it extremely difficult to solve
at low energies relevant to hadronic binding. One theoretical
tool that has enjoyed success in the low-energy regime is the
QCD sum rule method [1]. It is a nonperturbative approach
to QCD that reveals a direct connection between hadronic
observables and the QCD vacuum structure via a few universal
parameters called vacuum condensates (vacuum expectation
values of QCD local operators). This method is based on
the evaluation of a suitable correlation function in the deep
Euclidean region using operator product expansion (OPE)
on the one hand, and its phenomenological evaluation using
physical hadronic states on the other hand. The method
is analytical and physically transparent and has minimal
model dependence with well-understood limitations inherent
in the OPE. It provides a complementary view of the same
nonperturbative physics to the numerical approach of lattice
QCD. The method was applied to the baryon sector not long
after it was introduced [2–6], and it was later improved and
extended to include some excited states [7–13] and magnetic
moments [14–17]. On the experimental side, the effort is
fueled by data of increasing quality from the Thomas Jefferson
National Accelerator Facility and other accelerator facilities.
In all of the studies, however, the conventional Borel transform
and pole-plus-continuum ansatz has been used in which the
excited states are exponentially suppressed.

To gain access beyond the ground-state pole, one has to seek
alternative ansatz in the phenomenological spectral function.

Such an attempt has been made in Ref. [18], where the first two
excited states of the nucleon are explicitly included, using a
combined framework of Gaussian sum rules and finite energy
sum rules (FESR). As advocated in Refs. [18,19], FESR is
more suitable for studying the spectrum of excited states,
because its spectral function has a polynomial kernel instead of
an exponential one. Furthermore, the widths of the resonances
can be taken into account in addition to the masses, a unique
feature of this procedure. In this work, we will extend the work
in Ref. [18] to the other members of the baryon octet, using an
updated version of the Borel sum rules for the octet baryons
as given in Ref. [12]. In effect, it is an exercise similar to
the calculation of excitation energies of atoms and nuclei, but
it uses fully relativistic quantum field theoretic tools. In our
calculation, we consistently include operators up to dimension
eight with radiative corrections, first-order strange quark mass
corrections, flavor symmetry breaking of the strange quark
condensates, anomalous dimension corrections, and possible
factorization violation of the four-quark condensate.

II. METHOD

Hadron masses can be extracted from the time-ordered two-
point correlation function in the QCD vacuum,

�(p) = i

∫
d4x eip·x 〈0 |T {η(x)η̄(0)} | 0〉. (1)

For the nucleon, we use the interpolating field

ηN = −2 εabc[(uaT Cγ5d
b)uc + t (uaT Cdb)γ5u

c]. (2)

The real parameter t allows the freedom for optimal mixing
of the two operators. The choice usually used in QCD sum
rules studies corresponds to t = −1. We will explore different
values. For the other members of the octet family, we consider
for �

η� = −2 εabc[(uaT Cγ5s
b)uc + t (uaT Csb)γ5u

c], (3)

and for �

η� = −2 εabc[(saT Cγ5u
b)sc + t(saT Cub)γ5s

c]. (4)
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For �, there is the possibility of octet and flavor-singlet
quantum numbers. In this work, we consider only the octet
member whose interpolating field is

η�o = 2

√
1

6
εabc{[2(uaT Cγ5d

b)sc + (uaT Cγ5s
b)dc

− (daT Cγ5s
b)uc] + t[2(uaT Cdb)γ5s

c + (uaT Csb)

× γ5d
c − (daT Csb)γ5u

c]}. (5)

The most general structure of �(p) is

�(p) = p̂F1(p2) + F2(p2), (6)

where p̂ ≡ γ · p. Wilson’s operator product expansion up to
dimension eight gives the result in the following form for the
invariant functions F1 and F2:

−F1(p2)

= [A + B ln(−p2/µ2)][ln(−p2/µ2)]p4

+A4 ln(−p2/µ2)
〈αs

π
G2

〉
+ E4 ln(−p2/µ2)ms〈q̄q〉

+ [A6 + B6 ln(−p2/µ2)](1/p2)κv〈q̄q〉2 + E6(1/p2)

×ms〈q̄gσ · Gq〉 + A8(1/p4)〈q̄q〉〈q̄gsσ · Gq〉 + · · ·
(7)

−F2(p2)

= H1 ln(−p2/µ2)p4ms + C3p
2 ln(−p2/µ2)〈q̄q〉

+ [C5 + D5 ln(−p2/µ2)] ln(−p2/µ2)〈q̄gσ · Gq〉
+H5 ln(−p2/µ2)ms

〈αs

π
G2

〉
+ C7(1/p2)〈q̄q〉

〈αs

π
G2

〉
+H7msκv〈q̄q〉2 + · · · (8)

The ellipses denote higher order terms that are ignored.
Note that F1 contains only dimension-even condensates,
while F2 contains only dimension-odd condensates. The
coefficients in Eqs. (7) and (8) are given in the Appendix.
To derive the finite-energy sum rules (FESR), we employ
the Gauss-Weierstrass (GW) transform of F1 and F2, as
outlined in Refs. [18,19]. We compute the lowest three Hermite
moments for F1 and F2, yielding six equations from which
six sum rules can be constructed. Using the abbreviation
(5 + 2t + 5t2)/[32(2π )4] = β,

1

π

∫ s0

0
ds ImF1(s)

= β

(
1 + 75

12

ᾱs

π

)
L

−4
9

s3
0

3
+ A4L

−4
9

〈αs

π
G2

〉
s0

+E4L
−4
9 ms〈q̄q〉s0 + Ā6κv〈q̄q〉2 + E6L

−26
27 ms

×〈q̄gσ · Gq〉, (9)
1

π

∫ s0

0
ds s ImF1(s)

= β

(
1 + 25

3

ᾱs

π

)
L

−4
9

s4
0

4
+ A4L

−4
9

〈αs

π
G2

〉 s2
0

2

+E4L
−4
9 ms〈q̄q〉 s

2
0

2
+ A8〈q̄q〉〈q̄gσ · Gq〉, (10)

1

π

∫ s0

0
ds s2 ImF1(s)

= β

(
1 + 367

60

ᾱs

π

)
L

−4
9

s5
0

5
+ A4L

−4
9

〈αs

π
G2

〉 s3
0

3

+B6κv〈q̄q〉2 s2
0

2
+ E4L

−4
9 ms〈q̄q〉 s

3
0

3
, (11)

1

π

∫ s0

0
ds ImF2(s)

= H1msL
−8
9

s3
0

3
+ C3〈q̄q〉 s

2
0

2
+ C̄5〈q̄gσ · Gq〉s0

+H5L
−8
9 ms

〈αs

π
G2

〉
s0 + C7〈q̄q〉

〈αs

π
G2

〉
+H7msκv〈q̄q〉2, (12)

1

π

∫ s0

0
ds s ImF2(s)

= H1msL
−8
9

s4
0

4
+ C3〈q̄q〉 s

3
0

3
+ C̄5〈q̄gσ · Gq〉 s

2
0

2

+H5L
−8
9 ms

〈αs

π
G2

〉 s2
0

2
, (13)

1

π

∫ s0

0
ds s2 ImF2(s)

= H1msL
−8
9

s5
0

5
+ C3〈q̄q〉 s

4
0

4
+ C̄5〈q̄gσ · Gq〉 s

3
0

3

+H5L
−8
9 ms

〈αs

π
G2

〉 s3
0

3
. (14)

The above six expressions form the left-hand side (LHS) of
the sum rules. The two redefined coefficients appearing in the
above expressions are given by, for �,

Ā6 = 1

6

[
(6fs + 1)

(
1 − 43

42

ᾱs

π

)
L

248
189 − 2t

(
1 − 1

6

ᾱs

π

)
L

8
27

− (6fs − 1)t2

(
1 − 29

30

ᾱs

π

)
L

184
135

]
, (15)

C̄5 = 3

4(2π )2

[(
1 + 50

9

ᾱs

π

)
− t2

(
1 + 62

9

ᾱs

π

)]
L

−14
27 .

(16)

For �o,

Ā6 = 1

18

[
(10fs + 11)

(
1 − 43

42

ᾱs

π

)
L

248
189 + (2 − 8fs)t

×
(

1 − 1

6

ᾱs

π

)
L

8
27 − (2fs + 13)t2

(
1 − 29

30

ᾱs

π

)
L

184
135

]
,

(17)

C̄5 = 1 + 2fs

4(2π )2

[(
1 + 179

36

ᾱs

π

)
− t2

(
1 + 227

36

ᾱs

π

)]
L

−14
27 .

(18)
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For �,

Ā6 = fs

6

[
(fs + 6)

(
1 − 43

42

ᾱs

π

)
L

248
189 − 2fst

(
1 − 1

6

ᾱs

π

)

×L
8

27 + (fs − 6)t2

(
1 − 29

30

ᾱs

π

)
L

184
135

]
, (19)

C̄5 = 3fs

4(2π )2

[(
1 + 179

36

ᾱs

π

)
− t2

(
1 + 227

36

ᾱs

π

)]
L

−14
27 .

(20)

For the phenomenological side of the spectral function,
following Ref. [18], we take contributions from the lowest
three states: the ground state with positive parity, the first
excited state with positive parity, and the second excited state
with negative parity. We treat the ground state as a pole
described by two parameters: the coupling strength λ2 and
mass m. The two excited states are treated as resonances
with finite widths, each characterized by three parameters
(λ2

1,m1, �1) and (λ2
2,m2, �2). The spectral functions read

1

π
ImF1(s) = λ2δ(s − m2) + 1

π

[
λ2

1m1�1(
s − m2

1

)2 + m2
1�

2
1

+ λ2
2m2�2(

s − m2
2

)2 + m2
2�

2
2

]
θ (s − m2), (21)

1

π
ImF2(s) = λ2Mδ(s − m2) + 1

π

[
λ2

1

(
s + m2

1

)
�1/2(

s − m2
1

)2 + m2
1�

2
1

− λ2
2

(
s + m2

2

)
�2/2(

s − m2
2

)2 + m2
2�

2
2

]
θ (s − m2). (22)

In the limit of zero widths (�i → 0), the excited-state
contributions also reduce to δ functions. The same feature
as in the Borel sum rules that the excited states with opposite
parities add in the chiral-even F1 and cancel in the chiral-odd
F2 is also preserved. The λ’s are the coupling strengths of the
interpolating field to the states, defined by

〈0|η|Bps〉 = λBu(p, s), (23)

where u(p, s) is the spin-1/2 spinor. Applying the same GW
transform, taking the first three Hermite moments of the
spectral functions, and introducing the cutoff s0, one obtains
the following six phenomenological expressions [18] that
match one-to-one to those on the QCD side in Eqs. (9)–(14):

1

π

∫ s0

0
ds ImF1(s) = λ2 + λ2

1

π
f1 + λ2

2

π
f2, (24)

1

π

∫ s0

0
ds s ImF1(s) = λ2m2 + λ2

1

π

[
m1�1

2
r1 + m2

1f1

]

+ λ2
2

π

[
m2�2

2
r2 + m2

2f2

]
, (25)

1

π

∫ s0

0
ds s2 ImF1(s)

= λ2m4 + λ2
1

π
m1�1

×
[
(s0 − m2) + m2

1

(
m2

1 − �2
1

)
m1�1

f1 + m2
1r1

]
+ λ2

2

π
m2

×�2

[
(s0 − m2) + m2

2

(
m2

2 − �2
2

)
m2�2

f2 + m2
2r2

]
, (26)

1

π

∫ s0

0
ds ImF2(s)

= λ2m + λ2
1

π

[
�1

4
r1 + m1f1

]
− λ2

2

π

[
�2

4
r2 + m2f2

]
,

(27)
1

π

∫ s0

0
ds s ImF2(s)

= λ2m3 + λ2
1

π

[
(s0 − m2)

�1

2
+ m1

(
m2

1 − �2
1

/
2
)
f1

+ 3�1m
2
1

4
r1

]
− λ2

2

π

[
(s0 − m2)

�2

2

+m2
(
m2

2 − �2
2

/
2
)
f2 + 3�2m

2
2

4
r2

]
, (28)

1

π

∫ s0

0
ds s2 ImF2(s)

= λ2m5 + λ2
1

π

�1

2

[
s2

0 − m4

2
+ 3m2

1(s0 − m2)

+ 2m6
1 − 4m4

1�
2
1

m1�1
f1 + 5m4

1 − m2
1�

2
1

2
r1

]
− λ2

2

π

�2

2

×
[
s2

0 − m4

2
+ 3m2

2(s0 − m2) + 2m6
2 − 4m4

2�
2
2

m2�2
f2

+ 5m4
2 − m2

2�
2
2

2
r2

]
, (29)

where

fi ≡ tan−1

(
s0 − m2

i

mi�i

)
+ tan−1

(
m2

i − m2

mi�i

)
, (i = 1, 2),

(30)

ri ≡ ln

(
s0 − m2

i

)2 + m2
i �

2
i(

m2
i − m2

)2 + m2
i �

2
i

, (i = 1, 2). (31)

The six expressions in Eqs. (24)–(29) form the right-hand
side (RHS) of the sum rules. Note that the couplings appear
linearly, while the masses and widths highly nonlinearly.

A theoretical issue in the construction of the phenomeno-
logical side of the spectral function is the potential contribution
of the pion nucleon continuum to the time-ordered two-point
correlation. A plausible parametrization of this contribution in
the case of the nucleon may be given as in Ref. [20], that is,

�
πNcont
N (p) = −εγ5�pole(p)γ5, (32)

where �pole(p) is the nucleon and antinucleon pole con-
tributions to the correlator. The quantity ε, which has
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small values on the order of a few percent, is given
as

ε = 3

64π2f 2
π

m2
π ln

m2
π

M2
0

, (33)

where M0 is an arbitrary constant. (Changes in M0 can always
be absorbed into changes in an analytic term proportional to
m2

π as given in Ref. [20].) Thus the inclusion of the pion-
nucleon continuum simply results in a slight modification in
the couplings λ2 → λ2(1 + ε) in Eqs. (24)–(26) and λ2 →
λ2(1 − ε) in Eqs. (27)–(29). That is, it introduces a few percent
error in the couplings λ2’s which can be easily absorbed into
the uncertainties for the parameters at the current level of
accuracy in the solutions. A similar conclusion can be drawn
for other strange baryons.

III. RESULTS AND DISCUSSIONS

By equating the two sides of the moments of the spectral
functions, we get six sum rules. Mathematically, the problem
boils down to finding the solutions to a system of six
simultaneous, nonlinear equations of the form

LHSi(s0, QCD) = RHSi

(
s0, λ2, λ2

1, λ
2
2,m,m1,m2, �1, �2

)
,

(34)

with i = 1, 6. They can be used to solve for six unknowns,
which we take as the two masses (m1,m2), two widths (�1, �2),
and two couplings (λ2

1, λ
2
2) for the two excited states. The

remaining parameters are taken as input: the ground-state pole
(m, λ2) as well as the continuum cutoff s0. The ground-state
pole has been well studied under the Borel sum rules using
generalized interpolating fields [12]. For the cutoff s0, we

take values consistent with the observed spectrum [21] and
vary it to see any sensitivity to this parameter. For the
QCD parameters in the left-hand side, we use the follow-
ing notations: a = −(2π )2 〈ūu〉,m2

0 = 〈q̄gσ · Gq〉/〈q̄q〉, b =
〈g2

cG
2〉, and fs = 〈s̄s〉/〈ūu〉. The four-quark condensate is

parametrized using the factorization approximation: 〈ūuūu〉 =
κv〈ūu〉2, where the parameter κv accounts for its violation. The
anomalous dimension corrections of the various operators are
taken into account via the factors Lγ = [αs(µ2)/αs(s0)]γ =
[ln(s0/�

2
QCD)/ ln(µ2/�2

QCD)]γ , where γ is the appropriate
anomalous dimension, µ = 500 MeV is the renormalization
scale, and �QCD = 0.15 GeV is the QCD scale parameter.
The function r(s0) = ln(s0/µ

2) − γEM with γEM = 0.577,
the Euler-Mascheroni constant. The numerical values we
use are a = 0.52 GeV3, b = 1.2 GeV4,m2

0 = 0.8 GeV2, κv =
2, ᾱs/π = 0.1,ms = 0.15 GeV, and fs = 0.8. In addition,
we rescale the couplings to their more natural values by
c1 = (2π )4λ2

1 and so on. There is also the issue of optimal
mixing parameter t in the interpolating field. We take t = −0.8
to get enhanced contributions of excited states, since t = −1
has been found to not couple strongly to the negative-parity
state in the nucleon channel [10]. Since the couplings in
Ref. [12] were obtained for t = −1, we take the lowest values
of the coupling in the given range. The six equations are solved
simultaneously by the multidimensional secant Broyden’s
method from Numerical Recipes [22]. We also use the globally
convergent Newton-Raphson method for checking purposes.
As a consistency check, we also solved the system of four
equations by eliminating explicitly λ2

1 and λ2
2 using the sum

rules corresponding to Eqs. (24) and (27). All these methods
give consistent results, which are summarized in Table I.

TABLE I. Six calculated parameters (λ2
1,m1, �1) and (λ2

2, m2, �2) for the first two excited states in the baryon octet. The ground-state
pole (λ2,m) is taken as input to the calculation. The c’s are rescaled couplings: c = (2π )4λ2, c1 = (2π )4λ2

1, and c2 = (2π )4λ2
2. The cutoff

threshold s0 is varied in each case to show sensitivity of the results to this parameter. The last two columns display the percentage difference
to which the equations are satisfied and the contribution of the second excited state in the solutions. For comparison purposes, experimental
values taken from the PDG [21] are also displayed.

Baryon s0 c m m1 m2 �1 �2 c1 c2 Difference 2nd
(GeV) (GeV6) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV6) (GeV6) (%) (%)

N 2.4 1.20 0.94 1.47–1.50 1.46–1.60 0.01–0.17 0.01–0.35 0.8–1.2 0.03–0.09 <5.0 >2.0
2.5 1.20 0.94 1.47–1.52 1.44–1.60 0.01–0.21 0.01–0.35 0.9–1.4 0.05–0.09 <4.0 >2.0
2.6 1.20 0.94 1.49–1.55 1.44–1.60 0.01–0.21 0.01–0.35 1.0–1.6 0.03–0.07 <2.5 >1.0

Expt. 0.94 1.44 1.54 0.35 0.15
� 3.1 2.50 1.19 1.73 1.64–1.76 0.01 0.07–0.35 0.75–0.8 0.1–0.2 <6.75 >2.0

3.2 2.50 1.19 1.74–1.76 1.68–1.78 0.01–0.04 0.09–0.35 0.95–1.0 0.2–0.3 <6.0 >3.0
3.3 2.50 1.19 1.75–1.81 1.72–1.82 0.01–0.07 0.01–0.35 1.1–1.5 0.1–0.4 <5.0 >3.0

Expt. 1.19 1.66 1.75 0.10 0.09
�o 3.3 2.66 1.12 1.81 1.72–1.83 0.01–0.02 0.01–0.17 1.3–1.5 0.2–0.6 <5.0 >3.0

3.4 2.66 1.12 1.80–1.84 1.66–1.84 0.01–0.045 0.01–0.35 1.2–1.8 0.2–0.7 <5.0 >3.0
3.5 2.66 1.12 1.81–1.86 1.66–1.88 0.01–0.05 0.01–0.35 1.4–2.0 0.3–1.0 <4.5 >3.0

Expt. 1.12 1.60 1.67 0.15 0.035
� 3.9 3.56 1.32 1.97 1.56–1.72 0.01 0.01–0.35 1.8 0.6–1.0 <3.5 >2.0

4.0 3.56 1.32 1.98–1.99 1.68–1.96 0.01–0.03 0.01–0.35 1.7–2.3 0.6–1.2 <3.0 >2.0
4.15 3.56 1.32 1.99–2.01 1.7–2.02 0.01–0.04 0.01–0.35 2.0–2.4 0.7–1.7 <2.5 >1.0

Expt. 1.32 1.95 0.06
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TABLE II. Similar to Table I, but with the constraint �1 relatively large and m2 � m1 if possible for the first two excited states in the
baryon octet.

Baryon s0 c m m1 m2 �1 �2 c1 c2 Accuracy 2nd
(GeV) (GeV6) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV6) (GeV6) (%) (%)

N 2.5 1.20 0.94 1.44–1.48 1.49–1.57 0.23 0.15–0.17 1.4 0.04–0.08 <4.75 >2.0
2.5 1.30 0.94 1.50–1.53 1.53–1.59 0.25–0.27 0.15–0.17 1.5–1.6 0.04–0.08 <4.75 >2.0

Expt. 0.94 1.44 1.54 0.35 0.15
� 3.2 2.50 1.19 1.78 1.78–1.79 0.1 0.09 1.6 0.1 <5.5 >3.0

Expt. 1.19 1.66 1.75 0.10 0.09
�o 3.5 2.66 1.12 1.83–1.84 1.84–1.87 0.11 0.035 2.1–2.4 0.3–0.6 <5.5 >3.0

3.5 2.66 1.12 1.84 1.84–1.87 0.12 0.035 2.4 0.3–0.5 <5.5 >3.0

Expt. 1.12 1.60 1.67 0.15 0.035
� 4.1 3.56 1.32 1.99–2.01 1.69–1.96 0.04–0.06 0.02–0.05 2.2–2.8 0.7–0.9 <3.0 >2.0

Expt. 1.32 1.95 0.06

As a first step, we revisited the nucleon channel using
t = −0.8 rather than t = −1 as done in Ref. [18]. We also took
c = 1.2 GeV6, whereas in Ref. [18] c ≈ 0.8 GeV6 was used.
Still, our results come close to those obtained in Ref. [18].
We solved the equations by satisfying them within a global
accuracy of a few percent. We also monitored the average
contribution of the second resonance as a percentage of the
respective right-hand side to make sure it was capable of
making a significant contribution. In this way, each parameter
was allowed to vary in a certain range reflecting the stability
of these parameters. We found it difficult to achieve better
accuracies than the ones listed. Overall, the results for the first
excited state (m1, �1) are better than those for the second
excited state (m2, �2). The m1 is fairly stable. The �1 is
better constrained in the strange channels than in the nucleon
channel. The c1 values, which are a measure of the ability of the
interpolating fields to excite the state from the QCD vacuum,
are first-time information from the perspective of QCD. For
the negative-parity states, whose contribution appears with the
same signs as for positive-parity states in F1 and opposite signs
in F2 sum rules, the scatter in the numerical values obtained
is larger, as noted earlier as well [18]. We restricted the values
of �2 from the upper side in each case to about 0.35 GeV,
while the values of other parameters are as obtained without
any restriction. The results are fairly stable against variations
in the cutoff parameter s0. The s0 in each channel in Table I
for the given ground-state parameters (m, λ2) is the lowest
possible value of s0 in that channel for which one starts getting
solutions of the six simultaneous equations at the considered
accuracy. One can see that the lowest s0 in each channel
corresponds to a mass value (

√
s0) sightly above the value

of m2 obtained in that channel, which is quite reasonable, and
gives the lowest scatter in the values of physical parameters. In
the � and � channels, m1 is overestimated as compared to the
experimental values. In the � channel, two spin-1/2 excited
states are listed in PDG at 1690 and 1950 MeV with three stars
and unassigned spin-parity. Our result favors the 1950 MeV
state as the first excited state with positive parity.

One issue with the results in Table I is that the calculated
width of the first excited state (�1) is too small compared to

those given in the PDG. So we repeated the calculation with
the constraint �1 large and also sought m2 > m1 if possible
(this can be done within a little larger error). The results are
given in Table II. This is a better set of parameters than
those in Table I, with smaller scatter in the parameters. We
could obtain consistent solutions with m2 > m1 for the N,�,
and �o channels. For the � channel, however, m2 comes
out to be smaller than m1, which suggests that the state at
1950 MeV has positive parity, and the state at 1690 MeV
negative parity.

IV. CONCLUSIONS

We have extended the study of nucleon excited states in
Ref. [18] to the strange members of the baryon octet, using
the combination of Gauss-Weierstrass (GW) transform and
finite energy sum rules (FESR). Taking the ground-state pole
as input, the masses and widths of the first two excited
states of opposite parity can be computed in this approach, a
possibility not afforded in the conventional Borel-based QCD
sum rules. Furthermore, by changing the overall sign of the
phenomenological side, the same approach can be used to
study a particle channel that has the reverse parity ordering:
ground state (negative), first excited (negative), second excited
(positive). A case in point in the physical spectrum is the flavor-
singlet, spin-1/2 sector where the ground state �S(1405)1/2−
has negative parity. A calculation is underway to understand
this channel in the present approach. We presented two sets of
solutions with different constraints. Overall, our results show
that the first excited state is well probed by this method. The
mass is stable and consistent with experiment, and the width
has a relatively small uncertainty range. On the other hand,
the second excited state is less well constrained; both the
mass and width have larger scatter than those for the first
excited state. On the other hand, the second excited state
can be well described by a different method: the Borel-based
parity-projected QCD sum rules [10,13]. Taken together, the
QCD sum rule method in its three variants (Borel-based
conventional, Borel-based parity-projected, and GW-based
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FESR) gives access to the lowest three states in a given particle
channel from a nonpertubative perspective of QCD.
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APPENDIX: WILSON COEFFICIENTS

Here we list the coefficients appearing in Eqs. (7) and (8).
Those which are common for all the members in the octet
family are (ignoring flavor breaking in radiative corrections)
[12,18]

A = 1

32(2π )4
(5 + 2t + 5t2)

(
1 + 71

12

αs

π

)
,

(A1)
B = −1

64(2π )4
(5 + 2t + 5t2)

(αs

π

)
,

A4 = 1

64(2π )2
(5 + 2t + 5t2),

(A2)
B6 = 1

18
(62 − 4t − 46t2)

(αs

π

)
.

The other coefficients are member dependent. For the �,

H1 = 1

4(2π )4
(1 − t)2,

C3 = −1

4(2π )2

[
(6 + fs)

(
1 + 15

14

αs

π

)
− 2fst

(
1 + 3

2

αs

π

)

− (6 − fs)t
2

(
1 + 7

10

αs

π

)]
, (A3)

E4 = −1

8(2π )2
[(12 − 5fs) − 2fst − (12 + 5fs)t

2],
(A4)

C5 = 3

4(2π )2

[(
1 + 79

18

αs

π

)
− t2

(
1 + 103

18

αs

π

)]
,

D5 = 3

4(2π )2

(
− 7

12

)
(1 − t2)

(αs

π

)
,

(A5)
H5 = −1

32(2π )2
(1 − t)2,

A6 = 1

6

[
(6fs + 1)

(
1 − 43

42

αs

π

)
− 2t

(
1 − 1

6

αs

π

)

− (6fs − 1)t2

(
1 − 29

30

αs

π

)]
, (A6)

E6 = −1

24(2π )2
[(4fs + 21 + 18r(s0)) + 4fst

+ (4fs − 21 − 18r(s0))t2], (A7)

C7 = −1

288
[(24 − 5fs) + 10fst − (24 + 5fs)t

2],
(A8)

H7 = 1

6
[(5 − 3fs) + 2t + (5 + 3fs)t

2],

A8 = −1

24
[(1 + 12fs) − 2t − (12fs − 1)t2]. (A9)

For the octet �O ,

H1 = 11 + 2t − 13t2

12(2π )4
,

C3 = −1

12(2π )2

[
(10 + 11fs)

(
1 + 15

14

αs

π

)
+ (−8 + 2fs)t

×
(

1 + 3

2

αs

π

)
− (2 + 13fs)t

2

(
1 + 7

10

αs

π

)]
,

(A10)

E4 = −1

24(2π )2
[(20 − 15fs) − (16 + 6fs)t − (4 + 15fs)t

2],
(A11)

C5 = 1 + 2fs

4(2π )2

[(
1 + 79

18

αs

π

)
− t2

(
1 + 103

18

αs

π

)]
,

D5 = 1 + 2fs

4(2π )2

(
− 7

12

)
(1 − t2)

(αs

π

)
,

(A12)
H5 = 1

96(2π )2
(13 − 2t − 11t2),

A6 = 1

18

[
(10fs + 11)

(
1 − 43

42

αs

π

)
− (2 − 8fs)t

×
(

1 − 1

6

αs

π

)
− (2fs + 13)t2

(
1 − 29

30

αs

π

)]
,

(A13)

E6 = 1

24(2π )2
[(4fs − 5 − 6r(s0)) + (4 + 4fs)t

+ (4fs + 1 + 6r(s0))t2], (A14)

C7 = −1

864
[(4 + 53fs) + (40 − 10fs)t − (44 + 33fs)t

2],
(A15)

H7 = 1

18
[(15 − 5fs) + (6 + 4fs)t + (15 + fs)t

2],

A8 = −1

72
[(23 + 16fs) + (2 − 8fs)t − (25 + 8fs)t

2].

(A16)

For the �,

H1 = 3

2(2π )4
(1 − t2),

(A17)

C3 = −1

4(2π )2

[
(6fs + 1)

(
1 + 15

14

αs

π

)
− 2t

(
1 + 3

2

αs

π

)

− (6fs − 1)t2

(
1 + 7

10

αs

π

)]
,

E4 = −3

4(2π )2

[
(2 − fs) − 2fst − (2 + fs)t

2
]
,

(A18)

C5 = 3fs

4(2π )2

[(
1 + 79

18

αs

π

)
− t2

(
1 + 103

18

αs

π

)]
,

D5 = 3fs

4(2π )2

(
− 7

12

)
(1 − t2)

(αs

π

)
,

(A19)
H5 = 3

16(2π )2
(1 − t2),
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A6 = fs

6

[
(fs + 6)

(
1 − 43

42

αs

π

)
− 2fst

(
1 − 1

6

αs

π

)

+ (fs − 6)t2

(
1 − 29

30

αs

π

)]
, (A20)

E6 = −1

24(2π )2
[(15 − fs + 18r(s0)) − 10fst

− (15 + fs + 18r(s0))t2], (A21)

C7 = −1

288
[(24fs − 5) + 10t − (24fs + 5)t2],

(A22)

H7 = fs

2
[(3 − fs) + 2t + (3 + fs)t

2],

A8 = −fs

24
[(fs + 12) − 2fst − (fs − 12)t2]. (A23)
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