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In this work we study the spectral functions of scalar mesons in one- and two-channel cases by using nonlocal
interaction Lagrangian(s). When the propagators satisfy the Källen-Lehman representation, a normalized spectral
function is obtained, allowing one to take into account finite-width effects in the evaluation of decay rates. In
the one-channel case, suitable to the light σ and k mesons, the spectral function can deviate consistently from
a Breit-Wigner shape. In the two-channel case with one subthreshold channel, the evaluated spectral function
is well approximated by a Flatté distribution; when applying the study to the a0(980) and f0(980) mesons, the
tree-level forbidden KK decay is analyzed.
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I. INTRODUCTION

The scalar mesons below 2 GeV have been a center of
debate for many years [1–4]. More states than expected from
the quark-antiquark assignment are reported in Particle Data
Group (PDG) [5], leading to the introduction of a scalar
glueball [6], tetraquark states [7], and mesonic molecules
[8]. In particular, the scalar resonances below 1 GeV have
appealing characteristics, such as the reversed level ordering
of masses, expected from tetraquark states [3,7,9–11]. In turn,
this scenario implies that quarkonia lie between 1 and 2 GeV. A
complication in the analysis of scalar states is mixing: between
1 and 2 GeV a quarkonia-glueball mixing in the isoscalar
sector is considered, for instance, in Ref. [12]. Mixing among
tetraquark states below 1 GeV and quarkonia above 2 GeV
is studied in Refs. [13–15], where, however, the results do
not coincide: while a large mixing is found in Ref. [14],
a negligible mixing is the outcome of Ref. [15]. It should
be stressed that different interpretations of scalar state are
possible: a nonet of scalar quarkonia is settled below 1 GeV in
Ref. [16] in agreement with the linear σ model and the Nambu
Jona-Lasinio (NJL) model, while in Ref. [17] a broad glueball,
to be identified with f0(600), is proposed. We refer the reader
to Refs. [1–3,10] for a discussion of arguments in favor of and
against the outlined assignments.

Studies on scalar mesons have been extensively performed
by using chiral perturbation theory [18], where a scalar reso-
nance at about 440 MeV is inferred out of pion-pion scattering.
A full nonet of molecularlike scalar states is generated in the
unitarized chiral perturbation theory of Ref. [19]. In particular,
Pelaez [20] studied the large-Nc dependence of the light
scalar resonances, finding that they do not scale as quarkonia
but agree with a molecular or tetraquark composition (see,
however, also the discussions in Ref. [21]).

In the present paper, we concentrate on an important
aspect of light scalar resonances, namely, the form of their
spectral functions, in a simple theoretical context. In this study,
relevant to both quarkonium and tetraquark assignment of light
scalars [22], effects arising from loops of pseudoscalar mesons
are considered: this leads to parametrizations of spectral
functions beyond the (usually employed) Breit-Wigner and

Flatté distributions and allow us to include finite-width effects
in the evaluation of decay rates. In particular, we consider
the following physical scenarios: (i) the case of a broad
scalar resonance, strongly coupled to one decay channel,
such as the σ ≡ f0(600) in the pion-pion decay mode, for
which the spectral function can deviate substantially from the
Breit-Wigner form; (ii) the case of two channels, one of which
is subthreshold for the mass and thus forbidden at the tree level,
as the KK decay mode for the resonances f0(980) and a0(980).
In the latter case, a comparison with the usually employed
Flatté distribution is performed.

A crucial aspect of our study is to consider a nonlocal inter-
action Lagrangian, which implies a ultraviolet regularization
and directly affects the real and imaginary part of the mesonic
loop. In a phenomenological perspective, it is reasonable that
the mesonic states in the loop cannot have indefinitely high
virtual momenta which are naturally limited due to the finite
range of the meson-meson interaction. We also show that
the dependence on the chosen cutoff function, specifying the
delocalized interaction, and on the specific value of the cutoff
is mild. We also compare the use of a nonlocal Lagrangian
with other approaches investigated in the literature.

The key quantity of the discussion is the propagator of scalar
resonances dressed by mesonic loops in one or more channels.
When the Källen-Lehmann representation is satisfied, as
verified at the one-loop level in the case of light scalar mesons
for large ranges of parameters [22], the spectral function
(proportional to the imaginary part of the propagator) is
correctly normalized and is interpreted as a “mass distribution”
for the scalar state. A general definition of the decay of a
scalar state, which involves the obtained mass distribution and
does not require a study of the properties of the propagator
in the complex plane, is then possible. In this way, one takes
into account in a consistent fashion finite-width effects for the
decay, hence allowing one to study deviations from the usually
employed tree-level formula for decay rates. Furthermore,
the fulfillment of the Källen-Lehmann representation offers a
criterion to delimit the validity of our one-loop study: as soon
as violations appear (generally for large coupling constants)
the obtained spectral functions are no longer usable.
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To render the paper easily understandable and self-
contained, we start in Sec. II with the one-channel case by
recalling the basic definitions and properties, then we apply
the study to the scalar sigma σ and kaon k resonances: the
corresponding spectral function shows consistent deviations
from the usual Breit-Wigner one. In Sec. III, we turn to the
two-channel case, with particular attention to the resonances
a0(980) and f0(980), their decay rates and spectral functions in
comparison with the Flatté distribution [23,24]. Implications
of the results in view of a nonet of tetraquark states below
1 GeV is discussed. In Sec. IV, we derive our conclusions,
emphasizing as in Ref. [22] that the use of propagators
fulfilling the Källen-Lehmann representation, which implies
normalized distributions and a correct definition of decay rates,
should be preferable both in theoretical and experimental work.

II. SCALAR SPECTRAL FUNCTION:
ONE-CHANNEL CASE

A. Definitions and properties

We consider the scalar fields S and ϕ described by the
Lagrangian

L1
S = 1

2
(∂µS)2 − 1

2
M2

0 S2 + 1

2
(∂µϕ)2 − 1

2
m2ϕ2 + gSϕ2 . (1)

In the limit g = 0, the propagator of the field S reads

�S(p) = 1

p2 − M2
0 + iε

, g = 0 . (2)

We intend to study the modification to �S(p) when g �= 0,
which arises by considering the loop diagram of Fig. 1, and
how this contribution affects the decay mechanism S → ϕϕ.
We recall that at the tree level, the decay width reads

�t-l
Sϕϕ(M0) = pSϕϕ

8πM2
0

[gSϕϕ]2θ (M0 − 2m),

pSϕϕ =
√

M2
0

4
− m2, gSϕϕ =

√
2g, (3)

where θ (x) is the step function and the factor
√

2 in the
amplitude gS→ϕϕ takes into account that the final state consists
of two identical particles. In general, the symbol pSAB is

/

/

FIG. 1. Mesonic loop.

understood to be the expression

pSAB = 1

2MS

√
M4

S + (
M2

A − M2
B

)2 − 2
(
M2

A + M2
B

)
M2

S , (4)

i.e., the momentum of the outgoing particle(s).
At tree level, the particle S is treated as stable. However,

the very fact that the decay �t-l
Sϕϕ �= 0 for M0 > 2m means that

S is not stable and cannot be considered as an asymptotic state
of the Lagrangian L1

S . The tree-level expression �t-l
Sϕϕ is only

valid in the limit g → 0. The evaluation of the loop of Fig. 1
offers a way to define and interpret the decay S → ϕϕ as we
describe in the following. The modified propagator of S is
obtained by (re)summing the loop diagrams of Fig. 1, that is,

�S(p2) = 1

p2 − M2
0 + g2

Sϕϕ
	(p2) + iε

, (5)

where the self-energy 	(p2) reads

	(p2) = −i

∫
d4q

(2π )4

× 1

[(q+p/2)2 − m2 + iε][(q−p/2)2 − m2 + iε]
.

(6)

The integral defining 	(p2) is, as known, logarithmic diver-
gent. Our intention is to consider the Lagrangian L1

S as an
effective low-energy description of the fields S and ϕ, and
not as a fundamental theory valid up to indefinitely high mass
scales. We do not apply the renormalization scheme to L1

S , but
we introduce a regularization function f
(q) which depends
on a cutoff scale 
 for the large momenta. The self-energy
	(p2) is then modified to

	(p2) = −i

∫
d4q

(2π )4

× f 2

(qo,−→q )

[(q+p/2)2 − m2 + iε][(q−p/2)2 − m2 + iε]
.

(7)

When choosing f
(q) = f
(q2), the covariance of the theory
is preserved, otherwise it is lost. Indeed, in many calculations
related to mesonic loops, a regularization of the kind f
(q) =
f
(−→q 2) is chosen, which leads to simple expressions for the
self-energy contribution but breaks covariance explicitly, and
thus this regularization is strictly valid only in the rest frame
of the decaying particle. In particular, the three-dimensional
cutoff f
(−→q 2) = θ (
2 − −→q 2) is often used. Appendix A
provides a closer analysis of the self-energy 	(p2) and
presents the case of unequal masses circulating in the loop.
The interaction strength among light mesons is suppressed for
distances larger than l ∼ 0.5–1 fm: in this particular physical
example, it is then natural to implement a cutoff 
 ∼ 1/l,
which varies between 1 and 2 GeV.

The cutoff function f
(q) is not present in the Lagrangian
L1

S of Eq. (1). In this sense, the Lagrangian is incomplete
because it does not specify how to cut the high momenta. One
can take into account f
(q) already at the Lagrangian level by
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rendering the interaction term nonlocal:(
L1

S

)
int = gSϕ2 → gS

∫
d4yϕ (x + y/2)

× ϕ (x − y/2)�(y) . (8)

The Feynman rule for the three-leg vertex is modified as

ig → igf


(
q1 − q2

2

)
, f
(q) =

∫
d4y�(y)e−iyq , (9)

where q1 and q2 are the momenta of the two particles ϕ.
The function f
(q) enters directly into the expression of
all amplitudes. In particular, the self-energy contribution of
Eq. (7) is now obtained by application of the (modified)
Feynman rules to the loop diagram of Fig. 1. Indeed, the
delocalization of the interaction term also induces a change
of the tree-level result for the decay, which becomes [for the
case f
(q) = f
(−→q 2)]

�t-l
Sϕϕ(M0) = pSϕϕ

8πM2
0

[
gSϕϕf


(−→q 2 = p2
Sϕϕ

)]2
θ (M0 − 2m),

gSϕϕ =
√

2g, (10)

that is, the function f
(−→q 2) is explicitly present in the
tree-level decay expression and can be interpreted as a
phenomenological form factor.1

If a step function is used, the local tree-level expression of
Eq. (3) is recovered, provided that the cutoff 
 is large enough.
In this work, we use the following cutoff function:

f
(q) = f
(−→q 2) = (1 + −→q 2
/
2)−1 . (11)

With this choice, the Fourier transform �(y), see Eq. (9), takes
the form δ(y0) exp[−|−→y |
]/|−→y |, thus decreasing rapidly for
increasing distance of the two interacting mesons ϕ. The
interaction range l is of the order 
−1, as discussed above,
based on general dimensional grounds. At each step of the
forthcoming study, we employed also different forms of f
(q),
finding that the dependence on the precise form of f
(q)
affects only slightly the results. Notice that in Ref. [25] a
similar equation to Eq. (10) [where s = −→q 2 and f
 = G(s)
in the notation of Ref. [25]] represents the starting point of
the analysis. The function G(s) in the above-cited works is
taken to be a Gaussian, 
 is of the order of 1 GeV. The
present approach shows the link between such a form factor
f
 = G(s) and a nonlocal Lagrangian. However, we do not
concentrate as in Ref. [25] on scattering amplitudes but on
spectral functions and decay widths. At the same time, we do
not relate the imaginary and real parts of the propagator via
the Källen-Lehmann dispersion relation, but we evaluate them
independently, and subsequently we check numerically if it
satisfied, as detailed in the following discussion.

Let us now turn to the self-energy 	(p2). A general property
for 	(p2) follows from the optical theorem

I (x) = g2
SφφIm[	(x =

√
p2)] = x�t-l

Sφφ(x) . (12)

1For a covariant vertex function f
(q) the decay amplitude takes
the form [gSφφf
(q0 = 0, q2 = p2

Sϕϕ)].

0.5 1 1.5 2 2.5 3 3.5
x GeV

0.005

0.01

0.015

0.02

Re

2m

Im

FIG. 2. Real and imaginary parts of the mesonic loop for m =
0.5 GeV and 
 = 1.5 GeV.

The imaginary part of the self-energy diagram is zero
for 0 < x < 2m and nonzero starting at threshold. The real
part

R(x) = g2
SϕϕRe[	(x =

√
p2)] (13)

is nonzero below and above threshold. In Fig. 2 the functions
R(x) and I (x) are plotted using Eq. (11). A particular choice
is made for the parameters m = 0.5 GeV and 
 = 1.5 GeV
(of the order of physical cases studied later). Anyway, the
plotted functions are qualitatively similar for large ranges of
parameters. As noticeable, R(x) is continuous but not derivable
in x = 2m. It has a cusp at x = 2m: the left derivative is +∞,
while the right derivative is finite and negative.

In terms of the two functions R(x) and I (x), the propagator
of Eq. (2) reads

�S(x) = 1

x2 − M2
0 + R(x) + iI (x) + iε

. (14)

We define the (Breit-Wigner) mass M for the scalar field S as
the solution of the equation

M2 − M2
0 + R(M) = 0 . (15)

When the function R(M) is positive, which is usually the
physical case (Fig. 2), the dressed mass M is smaller than the
bare mass M0, showing that the quantum fluctuations tend to
lower it.

We now turn to the spectral function dS(x) of the scalar
field S related to the imaginary part of the propagator as

dS(x) = 2x

π

∣∣∣∣limε→0
Im[�S(x)]

∣∣∣∣ . (16)

In the limit g → 0, we obtain the desired spectral function
dS(x) = δ(x − M0). The normalization of dS(x) holds for each
g, i.e., ∫ ∞

0
dS(x) dx = 1 . (17)

The latter equation is a consequence of the Källen-Lehmann
representation

�S(x) =
∫ ∞

0
dy

2y

π

−Im[�S(y)]

y2 − x2 + iε
(18)

when taking the limit x → ∞. Equations (17) and (18) hold
in general for the full propagator. In our case, we check
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numerically the validity of the normalization condition (17)
at the one-loop level of Fig. 1. We find that it is fulfilled to a
high level of accuracy for large ranges of parameters, see also
the discussion in Ref. [22] and in the next section.

Let us consider dS(x) in the two interesting cases M < 2m

and M > 2m. If M < 2m, Eq. (16) becomes

dS(x) = Zδ(x − M)θ (2m − x)

+ 2x

π

I (x)(
x2 − M2

0 + R(x)
)2 + I (x)2

, (19)

where

Z =
[

1 + 1

2M

(
dR

dx

)
x=M

]−1

. (20)

When M < 2m, the constant Z is usually reabsorbed into
the definition of the wave function renormalization, hence
recovering the free propagator properly normalized as (p2 −
M2 + iε)−1, corresponding to dS(x) = δ(x − M) for x < 2m

as in the free case g = 0. Thus, we still have a stable particle
with dressed mass M instead of M0. Notice that 0 < Z < 1
because R′(M) is a positive number: the quantity (1 − Z)
can be interpreted as the amount of virtual clouds of 2ϕ

contributing to the wave function.
If M > 2m, the spectral function reads

dS(x) = 2x

π

I (x)(
x2 − M2

0 + R(x)
)2 + I (x)2

. (21)

No δ functions are present, but typically a picked distribution
dS(x) is obtained, corresponding to a physical resonance. The
mass M is not the maximum of the dS(x), although in general
it is very close to it. Consistent deviations can appear when M

is close to threshold and for a large coupling constant; see next
subsection for a more detailed discussion of this point. Notice
moreover that dS(x) is zero for x < 2m.

We plot the typical behavior of the spectral function in both
cases M < 2m and M > 2m in Fig. 3. We used the values
M = 0.9 and M = 1.3 GeV corresponding to the the two cases
below and above the threshold, m = 0.5 GeV as before, and
gSφφ = 3 GeV. The value of Z, for the subthreshold case,

1 1.2 1.4 1.6 1.8 2
x GeV

2

4

6

8

dS GeV 1

FIG. 3. Spectral functions in the cases M < 2m (dashed line) and
M > 2m (continuous line). The coupling constant is gSφφ = 3 GeV,
the two mass values chosen are M = 0.9 and M = 1.3 GeV, and
m = 0.5 GeV.

is ∼0.9, and we have numerically verified that the spectral
functions are normalized in both cases.

When M > 2m, the function dS(x) can be interpreted as the
mass distribution of the resonance; see also Appendix B for an
intuitive discussion about this point. We then define the decay
rate for the process S → ϕϕ by implementing the distribution
dS(x), and thus including finite width effects, as

�Sϕϕ =
∫ ∞

0
dx dS(x) �t-l

Sϕϕ(x) . (22)

This formula reduces to the tree-level amplitude �t-l
Sϕϕ(M0) of

Eq. (10) in the limit of small g:

�t-l
Sϕϕ(M0) � �Sϕϕ for g → 0 . (23)

Notice that in this limit, M → M0. However, even for
finite g, when M �= M0, the formula �Sϕϕ � �t-l

Sϕϕ(M) offers
a first approximation to the decay width of the state as long
as the distribution is picked, i.e., the scalar state S is not too
broad. Notice that Eq. (22) does not in general coincide with
the standard width obtained by complex analysis search of
pole positions, see Ref. [26]. In fact, in our study, only the real
valued x variable is considered.

The definition Eq. (22) for the decay S → ϕϕ is thus a
generalization of the tree-level result of Eq. (10) and takes
automatically into account that the state S has a finite width
parametrized by the mass distribution dS(x), which naturally
arises by considering the self-energy of the scalar propagator.
Notice that the real part of the propagator is necessary in
order for Eq. (17) to hold: its neglect would spoil the correct
normalization.

Evaluating the real and imaginary parts at x = M and
neglecting their x dependence, the distribution (21) is approx-
imated by

dbw
S (x) � 2M

π

I (M)

(x2 − M2)2 + (I (M))2
, (24)

which is the relativistic Breit-Wigner distribution for the
resonance S, usually employed in theoretical and experimental
studies. However, the distribution dbw

S (x) neglects the real
part of the loop diagram, and consequently the normalization
of Eq. (17) does not hold, implying that dbw

S (x) has to be
normalized by hand. At the same time, the mass M does
not coincide with the maximum of dS(x). Thus, we insist
on that the usage of automatically normalized distribution
emerging from propagators fulfilling Källen-Lehmann should
be preferable.

B. Application to the light scalar mesons σ and k

An interesting example for the one-channel case is the decay
of the scalar meson σ ≡ f0(600). As reported by the PDG [5],
experimental data are affected by large uncertainties both for
the value of the mass, Mσ = 0.4–1.2 GeV, and the value of the
Breit-Wigner width, �σ = 0.6–1 GeV. The dominant channel,
which we will consider here, is the decay into two pions, for
which M > 2m.

By applying the formulas of Sec. II A, we show in the left
panel of Fig. 4 the spectral functions dσ (x) of the σ resonance
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M 0.4 GeV

M 1.2 GeV

1 1.5 2 2.5
x GeV

1

2

3

4

5

6
dS GeV 1

g 3 GeV

g 6 GeV

FIG. 4. Spectral functions of σ and k. Left panel: 
 = 1.5 GeV, g = 3 GeV, Mσ = 0.4 GeV with a correspondent � = 0.242 GeV,
and Mσ = 1.2 GeV with a correspondent � = 0.113 GeV. Right panel: Mk = 0.8 GeV, 
 = 1.5 GeV, g = 3 GeV with a correspondent
� = 0.112 GeV, and g = 6 GeV with a correspondent � = 0.382 GeV.

for the two boundary cases of PDG, namely, Mσ = 0.4 and
Mσ = 1.2 GeV, for the coupling constant gσππ = 3 GeV.

The spectral function assumes different shapes for different
values of the mass. While for Mσ = 1.2, far from the threshold,
the spectral function has a regular Breit-Wigner-like form, in
the case Mσ = 0.4 GeV, a distorted shape, with a narrow peak
just above threshold, is visible.2 The employed value of the
coupling constant, gσππ = 3 GeV, serves as illustration and
actually corresponds to a somewhat too narrow width. The
increase of gσππ leads, however, outside the range of validity
of the normalization of Eq. (17) at the one-loop level; see
below.

The description of the scalar kaonic resonance k follows
the same line [27]. As shown in the right panel of Fig. 4,
a strong deviation from the Breit-Wigner form is obtained
when gkπK = 6 GeV, corresponding to �k = 0.38 GeV, while
a less distorted shape is found for gkπK = 3 GeV, for which
�k = 0.11 GeV.

At this point, a short discussion on the definition of the
mass of an unstable particle is needed. In the Breit-Wigner
scheme, the mass of the particle is the value corresponding to
the maximum of the spectral function, and it is one parameter
of the distribution (the second one is of course the width).
In our scheme, using the spectral functions coming from the
loop evaluation this is no longer the case: the mass M defined
in Eq. (15) is again a parameter of the distribution (together
with the coupling constant g), but it does not coincide with the
maximum of the distribution. For Mσ = 1.2 GeV (far from
threshold), the maximum of the spectral function occurs at
1.202 GeV, thus only slightly shifted from the mass; however,
when Mσ = 0.4 GeV, the maximum of the spectral function
(apart from the threshold enhancement peak) occurs at sizably
larger values with respect to the mass, here 0.454 GeV.3 (Notice

2In the limit Mσ → 2mπ the spectral function dS(x) ∼
1/I (x) → ∞ for x → 2mπ due to the threshold enhancement.

3Recent theoretical works [18] find a σ mass at around 450 MeV,
thus not far from threshold in the lower side of the PDG data. This is
indeed the case of an irregular form for the spectral function of this
resonance, for which care is needed.

also that in the latter case, the bare mass M0 is 0.614 GeV, thus
implying a strong influence of the pion loop to the σ mass,
see also Appendix A for a comparison of different “masses”.)
Indeed, although the mass M being the zero of the real part of
the inverse propagator, see Eq. (15), is referred to as a Breit-
Wigner mass [25], the best fit to the full spectral function dσ (x)
by using a Breit-Wigner form is obtained for a Breit-Wigner
mass MBW coinciding with the maximum of the distribution. It
is also remarkable that in some cases, the spectral function does
not have a maximum, apart from the threshold enhancement
peak, as we can see for the k meson in the right panel of Fig. 4
for gkπK = 6 GeV.

We now study closer the decay process σ ≡ f0(600) → ππ

using Eq. (22) which implements the spectral function dσ (x).
In Fig. 5, we compare the full and tree-level decay rates for
different values of the cutoff and of the coupling constants (a
mass Mσ = 600 MeV is used).

As expected, there is not a strong dependence on the choice
of the cutoff. Moreover, the results obtained with our formulas
are well in agreement with the tree-level results for small
values of g (since the spectral function tends to a δ function).
Nonnegligible differences instead occur for the larger values
of g. This is due to a different analytic dependence of the two

1.5 2 2.5 3 3.5 4
g GeV

0.1

0.2

0.3

0.4

GeV

FIG. 5. Full (solid) and tree-level (dashed) decay rates σ → ππ

as functions of the coupling constant. The cases 
 = 1 and 
 =
2 GeV correspond to thin and thick lines, respectively.
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corresponding formulas from the coupling constant: while the
tree-level expression depends quadratically on g, in the loop
formula g appears also in the distribution dS(x).

The limit of the validity of the employed one-loop level
analysis is an important aspect which deserves further discus-
sion. Namely, when the coupling constant is too large and the
mass is not far from threshold, the normalization condition
of Eq. (17) is lost; see also the corresponding discussion in
Ref. [22]. This fact means that higher orders must be taken into
account to satisfy the Källen-Lehmann representation and thus
to recover the correct normalization of Eq. (17). At the same
time, the violation of the normalization is a valid criterion to
establish the limit of our study. For this reason in Fig. 5 we stop
the plot at gσππ = 4 GeV (corresponding to �σ ∼ 400 MeV);
in fact, larger values imply

∫ ∞
0 dS(x) dx < 1. At this point,

the full decay width [using Eq. (22)] is already ∼60 MeV
smaller than the tree-level counterpart. A decay width of about
400 MeV is on the low side for the σ (see Ref. [21]). In
Ref. [18], a width 150 MeV larger is obtained. A study beyond
the one-loop level would then be necessary to evaluate the
spectral function for larger coupling (i.e., larger width) and
represents a possible outlook of the present work. Surely the
overestimation of the tree-level formula keeps growing for
increasing interaction strengths. Similar considerations hold
for the k meson.

III. SCALAR SPECTRAL FUNCTION: TWO-CHANNEL
CASE

A. Definitions and properties

We now consider two channels for the scalar resonance S

described by the Lagrangian density (m2 > m1):

L2
S = 1

2
(∂µS)2 − 1

2
M2

0 S2 + 1

2
(∂µϕ1)2 − 1

2
m2

1ϕ
2
1

+ 1

2
(∂µϕ2)2 − 1

2
m2

2ϕ
2
2 + g1Sϕ2

1 + g2Sϕ2
2 . (25)

The processes S → ϕ1ϕ1 and S → ϕ2ϕ2 correspond to the
tree-level decay rates

�t-l
Sϕ1ϕ1

(M0) = pSϕ1ϕ1

8πM2
0

[gSϕ1ϕ1 ]2θ (M0 − 2m1),

gSϕ1ϕ1 =
√

2g1, (26)

�t-l
Sϕ2ϕ2

(M0) = pSϕ2ϕ2

8πM2
0

[gSϕ2ϕ2 ]2θ (M0 − 2m2),

gSϕ2ϕ2 =
√

2g2 . (27)

The propagator is modified by loops of ϕ1 and ϕ2, denoted
as 	1(p2) and 	2(p2) and given by Eq. (7) for m = m1

and m = m2, respectively. A delocalization of the interaction,
via a vertex function �(y) and the corresponding Fourier
transform f
(q) = ∫

d4y�(y)e−iyq , is then introduced as in
Eq. (8) for both channels in order to regularize the self-energy
contributions. As a consequence, the tree-level results are
modified as

�t-l
Sϕ1ϕ1

(M0) = pSϕ1ϕ1

8πM2
0

[
gSϕ1ϕ1f


(−→q 2 = p2
Sϕ1ϕ1

)]2

× θ (M0 − 2m1), (28)

�t-l
Sϕ2ϕ2

(M0) = pSϕ2ϕ2

8πM2
0

[
gSϕ2ϕ2f


(−→q 2 = p2
Sϕ2ϕ2

)]2

× θ (M0 − 2m2), (29)

and the propagator as

�S(x) = 1

x2 − M2
0 + R(x) + iI (x) + iε

. (30)

where

R(x) = g2
Sϕ1ϕ1

Re[	1(x =
√

p2)]

+ g2
Sϕ2ϕ2

Re[	2(x =
√

p2)], (31)

and

I (x) = g2
Sϕ1ϕ1

Im[	1(x =
√

p2)]

+ g2
Sϕ2ϕ2

Im[	2(x =
√

p2)] (32)

= x�t-l
Sϕ1ϕ1

(x) + x�t-l
Sϕ2ϕ2

(x) . (33)

In the last equation, the optical theorem was used. The mass
M of the state S is given by M2 − M2

0 + R(M) = 0. Again,
we have two cases:

(i) M < 2m1: the distribution dS(x) takes the form Zδ(x −
M) for x < 2m1. The discussion is similar to the one-
channel case; Eq. (19) is still valid. At threshold 2m1,
the continuum starts.

(ii) M > 2m1: as in Eq. (21), the distribution is

dS(x) = 2x

π

I (x)(
x2 − M2

0 + R(x)
)2 + I (x)2

. (34)

It vanishes for M < 2m1. At x = 2m2, the second
channel opens.

In case (ii), we have a resonant state. The decay rates into
the two channels S → ϕ1ϕ1 and S → ϕ2ϕ2 are given by the
integrals

�Sϕ1ϕ1 =
∫ ∞

0
dx dS(x) �t-l

Sϕ1ϕ1
(x),

(35)

�Sϕ2ϕ2 =
∫ ∞

0
dx dS(x) �t-l

Sϕ2ϕ2
(x).

A particularly interesting case takes place when 2m1 <

M < 2m2. While the tree-level result for S → ϕ2ϕ2 vanishes,
we find that �Sϕ2ϕ2 is not zero. In this case, the tree-level
approximation is absolutely not applicable: the particle S does
decay in virtue of the high-mass tail of its distribution. A
physical example is well known: the resonances f0(980) and
a0(980) have a nonzero decay rate into KK , although their
masses are below the threshold 2mK . Clearly, a sizable decay
rate �Sϕ2ϕ2 is obtained only when M is close to threshold.
A generalization to the present definitions to N channels is
straightforward [22].

When applying the decay formulas (36) it is, however,
important to verify numerically that the normalization of the
distribution dS(x) holds; in fact, as discussed in Sec. II B, the
formalism is self-consistent in this case.
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FIG. 6. Left panel: spectral function of f0 within our formalism (solid line) and using the Flatté distribution (dashed line). Parameters are:

 = 1.5 GeV, gf0KK = 3 GeV with a correspondent total decay rate � = 0.058 GeV. Right panel: same as left panel, but for spectral function
of a0, and � = 0.048 GeV.

B. Application to a0(980) and f0(980)

In this section, we study the spectral functions of the
scalar mesons a0 ≡ a0(980) and f0 ≡ f0(980), whose masses
are Ma0 = 984.7 ± 1.2 MeV and Mf0 = 980 ± 10 MeV [5].
For both resonances, two decays have been observed: a0 →
πη, a0 → KK and f0 → ππ, f0 → KK . Notice that both
masses are below the threshold of kaon-antikaon production,
Ma0,f0 < 2MK = 987.3 MeV, thus the decay of both reso-
nances in KK vanishes at tree-level, while experimentally it
was seen for both a0 and f0 states.

For definiteness, we use the ratios obtained in the experi-
mental analysis [4], i.e.,

g2
f0KK

g2
f0ππ

= 4.21 ± 0.46,
g2

f0KK

g2
a0KK

= 2.15 ± 0.40,

g2
a0πη

g2
a0KK

= 0.75 ± 0.11, (36)

thereby leaving us with only one free parameter, chosen to
be gf0KK . Although experimental uncertainties are still large,
the results of Eq. (36) are qualitatively similar to those of

various studies, see Ref. [24] and references therein, pointing
to a large KK coupling for both resonances with a particular
enhancement for f0 (see Refs. [4,10,11,15] and references
therein for spectroscopic interpretations).

For the typical value gf0KK = 3 GeV, we report in Fig. 6
the spectral functions of a0 and f0. There is a large probability,
∼50%, in both cases, that these two mesons have a mass
larger than the threshold of production 2mK , and therefore
the tree-level forbidden decay occurs. In the same figure, we
compare our distribution with the Flatté one [23,24], which is
usually employed for the a0 and f0 mesons. At variance from
our distribution, the Flatté distribution must be normalized
by hand. The two distributions are quite similar, except that
for f0 the values of the mass corresponding to the maximum
of the distributions are slightly different. This is due to the
strong coupling of f0 to kaons, and, as already argued by
Achasov [22], the meson loop distributions coincide with the
Flatté ones only in the limit of weak coupling.

In Fig. 7, we show the decay rates f0 → ππ, f0 → KK

and a0 → πη, a0 → KK as function of gf0KK . The dashed
areas in both plots correspond to the total decay rate of
f0 and a0 as indicated by the PDG (notice, however, that
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FIG. 7. Left panel: decay rates of f0 as functions of the coupling constant g. The thin solid line corresponds to the decay into two pions, the
dashed line to the decay into two kaons, and the thick solid line is the sum of the two decay rates. Right panel: decay rates of a0 as functions
of the coupling constant g. The thin solid line corresponds to the decay into pion and η, the dashed line to the decay into two kaons, and the
thick solid line is the sum of the two decay rates.
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PDG specified that the real width could be larger). For our
theoretical total decay rates to agree with the measured ones,
gf0KK has to lie between 3 and 4 GeV. The outcoming
branching ratio �a0KK/�a0πη is ∼0.3–0.4, which is larger than
the PDG average of 0.183 ± 0.024; while the obtained ratio
�f0ππ/(�f0ππ + �f0KK ) is ∼0.48–0.56, which is in qualitative
agreement with the (not bold) results listed by the PDG. Notice
furthermore that the f0 meson typically has a larger width than
the a0 meson, in agreement with Ref. [24].

We finally comment on a possible tetraquark unified
interpretation of the light scalar mesons as presented in
Ref. [11]. A too small decay constant gf0KK would also imply
by far too narrow σ and k mesons (related by Clebsh-Gordon
coefficients [11]), thus against a tetraquark nonet. On the
contrary, gf0KK between 3 and 4 GeV is in agreement with
a tetraquark nonet below 1 GeV, although problems, such as a
too narrow k, persist, see discussions in [11,15]. Such a strong
coupling in the KK channel implies that a virtual cloud of
kaon-antikaon pairs plays an important role, in particular for
the f0 resonance. A heuristic indicator of the mesonic cloud
can be given by the quantity

ZKK =
[

1 + 1

2MS

(
dRSKK

dx

)
x=MS

]−1

,

where RSKK = g2
SKK

Re[	KK (x)] (with S = f0, a0) refers
to the kaonic loop only. As discussed in Sec. II, in the
subthreshold case (which applies to the kaonic channel here)
the quantity (1 − Z) varies between 0 and 1 and measures the
mesonic cloud dressing of the original bare resonance S. In
the f0 case, by using Eq. (36) together with gf0KK = 3 GeV,
one finds (1 − ZKK ) = 0.38, hence implying a 38% of kaonic
cloud. This number increases for increasing coupling strength
gf0KK . This discussion confirms the interpretation put forward
in Ref. [2], where the light scalar mesons possess a tetraquark
core but are dressed by kaonic clouds. We also refer the reader
to Ref. [28] for a related study of the a0 and f0 mesons that
employs the so-called compositeness condition introduced by
Weinberg in Ref. [29].

IV. SUMMARY AND CONCLUSIONS

In this work we studied the spectral functions of scalar
mesons in one- and two-channel cases suitable for the
description of light scalar mesons below 1 GeV. We have
computed, by using nonlocal interaction Lagrangians with
nonderivative couplings, the propagators of scalar mesons at
the one-loop level. They satisfy for large ranges of param-
eters the Källen-Lehmann representation, therefore implying
normalized spectral functions. In this way a correct definition
of decay amplitudes, weighted over the spectral function, is

formulated: the finite-width effects are automatically taken
into account. The resulting decay rates are smaller than
the tree-level ones with increasing mismatch for increasing
interaction strength. On the other hand, a subthreshold tree-
level forbidden decay, such as the KK mode for a0(980) and
f0(980), becomes large.

The resulting spectral functions for the σ and k mesons
may deviate consistently from the Breit-Wigner form. The
Flatté distribution, although it approximates to a good level of
accuracy the a0(980) and f0(980) spectral functions, emerges
as a small-coupling limit of our more general spectral function.

As stressed by Achasov [22], it is important to use
distributions satisfying Källen-Lehmann representations in
experimental and theoretical studies. We thus believe that the
use of distributions obtained from quantum field theoretical
models fulfilling the correct normalization requirements can
be helpful in correctly disentangling the nature of the scalar
states. Future studies with derivative couplings, mixing effects,
such as in the recent work of Ref. [30], and φ decays represent
a possible interesting outlook.
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APPENDIX A: LOOP CONTRIBUTIONS

Here we report basic formulas for the loop diagram of
Eq. (7) drawn in Fig. 1 for the vertex function f
(q) =
f
(−→q 2). By evaluating the residua, one obtains the one-
dimensional integral

	(x2 = p2) = 1

2π2

∫ ∞

0
dw

w2f 2

(w)√

w2 + m2(4(w2 + m2) − x2)
,

(A1)

which can be easily evaluated numerically for each well-
behaved f
(w). We recall that within our conventions f
(0) =
1 and that w = |−→k |; Eq. (A1) refers to a three-dimensional
vertex function. In Ref. [22], the form f
(w) = θ (
 − w) is
used and the limit 
 → ∞ is taken. As described in the text,
we did not follow this procedure; instead, we used a definite
form(s) for the vertex function f
(w). As remarked in the
text, we performed the calculations also with different forms
for f
(w) (different power form and exponential functions):
the precise form of the cutoff function does not affect the
physical picture.

When the scalar state S couples to two particles of masses
m1 and m2, the loop contribution is modified as

	(x) = 1

4π2

∫ ∞

0
dw

w2
(√

w2 + m2
1 +

√
w2 + m2

2

)
f 2


(w)√
w2 + m2

1

√
w2 + m2

2

[(√
w2 + m2

1 +
√

w2 + m2
2

)2 − x2
] . (A2)
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TABLE I. Comparison of masses.

M M0 Mmax 〈M〉
0.4 0.61 0.45 0.54
0.6 0.71 0.62 0.65
0.8 0.86 0.81 0.82
1 1.03 1.00 1.01

The choice f
(w) = (1 + w2/
2)−1 with 
 = 1–2 GeV has
been used in this work.

In relation to the mass definition of Sec. II B, we report and
compare in Table I the mass M defined in Eq. (15), the bare
mass M0, the maximum Mmax of the distribution dS≡σ (x),
and the average mass 〈M〉 = ∫ ∞

0 dx x dS(x). We use m =
mπ, gσππ = 3 GeV, and 
 = 1.5 GeV.

As expected, the larger the mass, the smaller the differences
among the various masslike quantities.

APPENDIX B: SPECTRAL FUNCTION AS MASS
DISTRIBUTION: AN INTUITIVE DISCUSSION

We present an intuitive argument for the correctness of
interpretation of the spectral function dS(x) as the “mass
distribution” of the state S. To this end, we introduce two
scalar fields A and B, the first massless and the second with
MB > MS , and write down the interaction Lagrangian

L = cBAS + gSϕ2. (B1)

[for the following discussion, the “delocalization” of Eq. (8)
is not important]. We suppose that the interaction strength c

is small enough to allow a tree-level analysis for the decay
of the state B. The term cBAS generates the decay process
B → AS, which reads (at tree-level)

�t-l
BAS(MB) = pBAS

8πM2
B

[c]2. (B2)

However, when g �= 0 the state S decays into ϕϕ; that is, the
state S is not an asymptotic state. Physically, we observe a
tree-body decay B → Aϕϕ, whose decay-rate reads

�t-l
BAϕϕ(MB) =

∫ MB

0
�t-l

BAS(MB) dS(x) dx. (B3)

The tree-body decay is decomposed into two steps: B →
AS and S → ϕϕ. The quantity �t-l

BAS(MB) represents the
probability for B → AS (at a given mass x for the state S)
and dS(x) dx is the corresponding weight, i.e., the probability
that the resonance S has a mass between x and x + dx. In
this example, dS(x) emerges naturally as a mass distribution,
correctly normalized, for the scalar state S. Furthermore, notice
that in virtue of the limit dS(x) = δ(M − MS) for g → 0, one
has

�t-l
BAϕϕ(MB) = �t-l

BAS(MB) for g → 0. (B4)

In fact, if g is very small, the state S is long lived and Eq. (B2)
is recovered. The present analysis also shows that studies on
the tree-body decay of the φ meson can be consistent only if
propagators satisfying the Källen-Lehmann representation are
used.
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[23] S. M. Flatté, Phys. Lett. B63, 228 (1976).
[24] V. Baru, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, and U. G.

Meissner, Eur. Phys. J. A 23, 523 (2005).
[25] N. A. Tornqvist, Z. Phys. C 68, 647 (1995); M. Boglione and

M. R. Pennington, Phys. Rev. D 65, 114010 (2002).
[26] R. Escribano, A. Gallegos, J. L. Lucio, M. G. Moreno, and

J. Pestieau, Eur. Phys. J. C 28, 107 (2003); T. Bhattacharya and
S. Willenbrock, Phys. Rev. D 47, 4022 (1993).

[27] The resonance k(800) is now listed in the compilation of the
Particle Data Group [5] but it still needs confirmation and is

omitted from the summary table. The resonance is also found in
many recent theoretical and experimental works (Refs. [4,19],
E. Van Beveren, T. A. Rijken, K. Metzger, C. Dullemond,
G. Rupp, and J. E. Ribeiro, Z. Phys. C 30, 615 (1986); S. Ishida,
M. Ishida, T. Ishida, K. Takamatsu, and T. Tsuru, Prog. Theor.
Phys. 98, 621 (1997); D. Black, A. H. Fariborz, F. Sannino, and
J. Schechter, Phys. Rev. D 58, 054012 (1998) and references
therein.)

[28] V. Baru, J. Haidenbauer, C. Hanhart, Yu. Kalashnikova, and
A. E. Kudryavtsev, Phys. Lett. B586, 53 (2004); B. Kerbikov,
ibid. B596, 200 (2004) .

[29] S. Weinberg, Phys. Rev. 130, 776 (1963).
[30] C. Hanhart, B. Kubis, and J. R. Pelaez, Phys. Rev. D 76, 074028

(2007).

065204-10


