
PHYSICAL REVIEW C 76, 065203 (2007)

Simple parameterization of nuclear attenuation data
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Based on the semi-inclusive deep inelastic scattering data obtained by the HERMES experiment on deuterium,
nitrogen and krypton nuclei, it is shown that a ratio of multiplicities on nucleus and deuterium (per nucleon) for
given hadron Rh

M can be parametrized in a form of a linear polynomial a11 + τa12, where τ is the formation time,
which depends on the energy of the virtual photon ν and fraction of that energy z carried by the final hadron.
Three widely known parametrizations for τ were used for the performed fit. The fit parameters a11 and a12 do
not depend on ν and z.
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I. INTRODUCTION

Semi-inclusive deep inelastic scattering (DIS) of leptons
on nuclear targets is a process widely used for studies
of hadronization [1–4]. It is most effective to observe at
moderate energies of the virtual photon, when the forma-
tion time of the hadron is comparable with the nuclear
radius.

Hadronization is the process through which partons, created
in an elementary interaction, turn into hadrons which are
observed experimentally. According to theoretical estimates
the hadronization process occurs over length scales that vary
from less than a femtometer to several tens of femtometers.
Hadronization in a nuclear environment is particularly inter-
esting due to the following reasons. First of all, it allows us
to study the parameters governing this process at an early
stage; on the other hand, it can provide initial conditions for
the investigation of hadronization in hot nuclear matter, which
arises in high energy ion-ion collisions.

The most convenient observable measured experimentally
for this process is the nuclear attenuation ratio, which is a ratio
of multiplicities on nucleus and deuterium (per nucleon) for a
given hadron. We shall denote it as Rh

M . Next step would to
find a variable which allows to present this observable in the
most simple and convenient form.

For this purpose, the formation time τ is proposed as the
best variable for Rh

M , and we shall show that the data can be
parametrized in the form of a linear polynomial a11 + τa12.
Formation time τ depends on the energy of the photon ν and the
fraction of this energy z = Eh/ν carried by the final hadron
with energy Eh. Three widely known parametrizations for
τ were used for the fit procedure. The parameters a11 and
a12, obtained from the fit, do not depend on ν and z. They
are functions of the prehadron-nucleon and hadron-nucleon
cross sections and the atomic mass number. Experimental data
for pions on nitrogen and for identified hadrons on krypton
nuclei, obtained by the HERMES experiment [3,4], were used
to perform the fit.

This paper is organized as follows. Nuclear attenuation in
an absorption model is presented in the next section. In Sec. III
we discuss the choice of an appropriate form for the variable
τ . Section IV presents results of the fit, and conclusions are
given in Sec. V.

II. NUCLEAR ATTENUATION IN ABSORPTION MODEL

The semi-inclusive DIS of lepton on nucleus of atomic mass
number A is

li + A → lf + h + X, (1)

where li(lf ) are the initial (final) leptons, and h is the hadron
observed in the final state. This process is usually investigated
in terms of Rh

M , which is frequently defined as a function of
two variables, ν and z:1

Rh
M (ν, z) = 2dσA(ν, z)/AdσD(ν, z). (2)

In experiment it is usually investigated at precise values of one
variable and average values of another.

In cases where the ν-dependence is studied,

Rh
M (ν, 〈z〉) = 2dσA(ν, 〈z〉)/AdσD(ν, 〈z〉), (3)

where 〈z〉 are the average values of z for each ν bin. And for
z-dependence

Rh
M (〈ν〉, z) = 2dσA(〈ν〉, z)/AdσD(〈ν〉, z), (4)

where 〈ν〉 are the average values of ν for each z bin.
In this work we adopt a model, according to which the origin

of the nuclear attenuation is the absorption of the prehadron
(string, dipole) and final hadron in the nuclear medium. In that
case Rh

M has the following form:

Rh
M =

∫
d2b

∫ ∞

−∞
ρ(b, x)[W (b, x)](A−1)dx, (5)

where b is the impact parameter and x the longitudinal
coordinate of the DIS point. ρ is the nuclear density function
with a normalization condition:∫

ρ(r)d3r = 1.

W (b, x) is the probability that neither the prehadron nor the
final hadron h are absorbed by a nucleon located anywhere in

1In fact, Rh
M also depends on the photon virtuality Q2 and on the

square of the hadron transverse momentum in respect to the virtual
photon direction, p2

t . However, from the experimental data, it is
known that Rh

M is a much sensitive function of ν and z in comparison
with Q2 and p2

t .
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the nucleus. For W (b, x) we use the one scale model proposed
in Ref. [5]:

W (b, x) = 1 − σq

∫ ∞

x

Pq(x ′ − x)ρ(b, x ′)dx ′

− σh

∫ ∞

x

Ph(x ′ − x)ρ(b, x ′)dx ′, (6)

where σq and σh are the inelastic cross sections for prehadron-
nucleon and hadron-nucleon interactions, respectively. Gener-
ally speaking, σq is a function of the distance x ′ − x, ν and
z.2 However, a comparison of a simple theoretical models
containing σq as a parameter [2,6], with the experimental
data obtained in different kinematical regions (in particular
in different domain of ν), shows that the approximation
σq = const leads to a very acceptable agreement with the data.
Further, taking into account the qualitative character of this
work, we shall use this approximation. In the region of high
energies, σh are approximately constant for all h. Numerical
values of them for different hadrons will be presented in
Sec. IV. Pq(x ′ − x) is the probability that at distance x ′ − x

from the DIS point, the particle is a prehadron and Ph(x ′ − x)
is the probability that the particle is a hadron. The above-
mentioned probabilities are related via a condition

Ph(x ′ − x) = 1 − Pq(x ′ − x). (7)

In an analogy with the survival probability for a particle having
lifetime τ in a system where it travels a distance x ′ − x before
decaying, Pq(x ′ − x) can be expressed in the form

Pq(x ′ − x) = exp[−(x ′ − x)/τ ], (8)

where τ is the formation time. Substituting expressions for
Pq(x ′ − x) and Ph(x ′ − x) in Eq. (6) one obtains

W (b, x) ≈ 1 − σh

∫ ∞

x

ρ(b, x ′)dx ′ + τ (σh − σq)ρ(b, x)

≈ w1(b, x) + τ (ν, z)w2(b, x). (9)

In the framework of our assumptions about σq and σh,W

depends on ν and z only by means of τ (ν, z).
The formation time in string models can be divided in

two parts (see, for instance, the two scale model presented
in Refs. [2,6]). The first part is the constituent formation time
τc, which defines the time elapsed from the moment of the
DIS until the production of the first constituent of the final
hadron. The second time interval begins with the production
of the first constituent until the second one, which coincides
with the yo-yo3 or final hadron production. Comparison with
the experimental data shows that in the second interval,
the prehadron-nucleon cross section has values close to the
hadron-nucleon cross section σh. If the difference between
these cross sections is neglected, the model is reduced to one
scale model with τ = τc. In the case of the improved two scale

2σq is a function of the formation time τ rather than a function of
variables ν and z separately.

3The yo-yo formation means that a colorless system with valence
contents and quantum numbers of the final hadron is formed, but
without its “sea” partons.

model of Ref. [6], the prehadron-nucleon cross section reaches
hadron-nucleon cross section value during a time interval
τ = τc + c�τ , where �τ = zν/κ, κ is the string tension, c is
the free parameter which defines from fit. In Ref. [6] it is shown
that c � 1. The transition to the one scale model takes place
at c = 0 and corresponds to τ = τc. One should note that any
complicated absorption string model, in some approximation,
can be reduced to the one scale model presented in Eqs. (6)
and (9). Substituting W (b, x) in Rh

M we obtain

Rh
M ≈

∫
d2b

∫ ∞

−∞
ρ(b, x)(w1 + τw2)(A−1)dx

≈ ai1 + τai2 + τ 2ai3 + · · ·, (10)

where i is the maximal power of τ with which we are limited.
Although Rh

M is a polynomial of τ with maximal power A − 1,
it is expected that ai1 > ai2 > ai3 > · · ·. The coefficients aij

depend on A, σq, σh and nuclear density. This means, that
aij are different for different nuclei. For each nucleus aij are
the same for hadrons with equal values of σh (for instance
for pions4 and negatively charged kaons). For fit we use three
expressions for Rh

M as first, second and third order polynomials
of τ :

Rh
M [P1] = a11 + τa12, (11)

Rh
M [P2] = a21 + τa22 + τ 2a23, (12)

Rh
M [P3] = a31 + τa32 + τ 2a33 + τ 3a34. (13)

In order to get the information on the influence of highest
order polynomial forms for Rh

M,Rh
M [P4] expression also was

checked (see Sec. IV).

III. FORMATION TIME

Equation (10) shows that within our approximation, Rh
M

depends on ν and z only by means of τ (ν, z). This means, that
in our approach τ plays a role of a “scaling” variable. In this
section we will discuss the physical meaning and possible
expressions of the formation time τ . There are different
definitions for the formation time. We define it as a time scale
which is necessary in order that the prehadron-nucleon cross
section reaches the value of the hadron-nucleon one. In the
literature there are three qualitatively different definitions for
τ . In the first extreme case it is assumed that τ = 0 (Glauber
approach). In the second extreme case τ � rA, where rA is
the nuclear radius (energy loss model [7]). And at last, in
our opinion more realistic definition of the formation time,
as a function of ν and z which can change from zero up to
values larger than rA. Experimental data seem to confirm the
fact that at moderate values of ν (on the order of 10 GeV)
the formation time is comparable with the nuclear size, i.e.,
the hadronization mostly takes place within the nucleus. This
follows from the comparison of the experimental data for Rh

M

obtained in the region of moderate [4] and high [2] energies.

4 We do not mention the electric charge of pions, because cross
sections of differently charged pions with nucleons, which are of
interest to us, are equal.
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At moderate energies Rh
M significantly differs from unity and

is a sensitive function of ν and z, at high energies Rh
M ≈ 1 and

weakly depends on ν and z. For the formation time we shall
use expressions which do not contradict the third definition
mentioned above. The following expressions are used:

(i) Formation time for the leading hadron [8], which follows
from the energy-momentum conservation law

τlead = (1 − z)ν/κ, (14)

where κ is the string tension (string constant) with nu-
merical value κ = 1 GeV/fm. Indeed, Eq. (14) presents
formation time for the hadron produced on the fast end
of the string or, which is the same, for the last hadron
produced from the string. Hadrons can be produced
along the whole length of the string. Among them, the
hadrons produced on the fast end have a better chance
to avoid interactions in the nucleus.

(ii) Formation time for the fast hadron, which is composed
of characteristic formation time of the hadron h in its rest
frame τ0 and Lorentz factor (see, for instance, Ref. [5])

τLor = τ0
Eh

mh

= τ0
zν

mh

, (15)

where Eh and mh are the energy and mass of the
hadron h, respectively. Let us briefly discuss the factor
τ0 following Ref. [9]. Unfortunately, the value of τ0 is
not well known. The existing estimate [10]τ0 ≈ 1 fm
is nothing but an educated guess. The nonperturbative
nature of this number—due to time scales of ∼ 1 fm and
hadronic size scales of 0.5–1 fm—excludes perturbative
evaluation schemes; it is hard to calculate τ0 from first
principles and formation times cannot be addressed in
present lattice QCD simulations. In the opinion of the
authors of Ref. [9] formation times can range from
0.3 to 2 fm, depending on the flavor, momentum, and
energy of the produced hadrons. However in numer-
ical calculations they, for simplicity, assume that the
formation time is a constant in the rest frame of each
hadron and that it does not depend on the particle type.
They use the value τ0 = 0.5 fm. If this assumption is
correct, then τLor for the kaons is approximately 3.5
times shorter than for the pions at the same values of ν

and z. It is well known that σπ ≈ σK− . If kaons have
a considerably shorter formation time, they must be
absorbed in nuclei considerably more than pions, i.e.,
Rπ

M must be larger than RK−
M . The experiment gives

Rπ
M ≈ RK−

M [4]. Therefore the definition τ0 = const
(numerical values of parameters do not play a major role
in our analysis, see explanation in next section) seems
irrelevant in the framework of the absorption model.
A more realistic approach would be to consider that
τ0 is proportional to mh. The reason for this is that in
the string model the meson (baryon) is represented as a
system consisting of a quark-antiquark (diquark) and a
gluonic string between them. The energy of the system
is transferred by the gluonic string from one parton to
another and back. One full cycle lasts a period of mh/κ

which we adopt as τ0. Then τLor is a universal quantity

which does not depend on the hadron type. However
in Sec. IV we will briefly discuss also the case with
τ0 = const.

(iii) The formation time following from the Lund string
model in Ref. [11] is5

τLund =
[

ln(1/z2) − 1 + z2

1 − z2

]
zν

κ
. (16)

One should note that all three types of formation time
have similar behavior with ν, but different behavior with
z. At the values of z typical for the HERMES kinematics
(z ≥ 0.2) the behavior of τ defined as in Eqs. (14) and
(16) with z is similar, i.e., they are decreasing with the
increase of z, while τ defined as in Eq. (15) is increasing
with the increase of z.

IV. RESULTS

Nuclear attenuation data for ν- and z-dependencies of
electroproduction of pions on nitrogen and of pions, kaons,
protons, and antiprotons on krypton nuclei obtained by the
HERMES experiment [3,4] were used to perform the fit. For
each nucleus a combined fit was performed for all hadrons
having equal cross sections and, consequently, identically
absorbed by the nuclear matter (in our approach the prehadron-
nucleon cross section does not depend on the type of the final
hadron). It is worth mentioning that the inelastic cross sections
of corresponding hadrons with nucleons in the moderate
energy range (Eh ∼ 10 GeV) have the following values:
σπ = σK− = 20 mb, σK+ = 14 mb, σp = 32 mb, and σp̄ =
42 mb. As a result, two combined fits were performed
for:

(i) positive and negative pions on nitrogen (26 experimental
points from [3]);

(ii) positive, negative, neutral pions and negative kaons on
krypton (63 experimental points from [4]).

And three separate fits for:

(i) positive kaons on krypton (16 experimental points [4]);
(ii) protons on krypton (16 experimental points [4]);

(iii) antiprotons on krypton (14 experimental points [4]).

As it clearly follows from Eqs. (2)–(4), the experimental
points corresponding to the ν-dependence Rh

M (ν, 〈z〉), and
z-dependence Rh

M (〈ν〉, z) enter in the fit on equal basis, as
values of function Rh

M (ν, z) at (ν, z) equal (ν, 〈z〉) and (〈ν〉, z),
respectively. For the fit, Rh

M has been taken in polynomial
forms Rh

M [P1,2,3] [see Eqs. (11)–(13)], and formation times
(lengths) as in Eqs. (14)–(16). The results for the reduced χ2

denoted as χ2/d.o.f. are presented in Table I. One can see that
for each choice of the formation time and for each nucleus,

5Note that this approximation is used only for the sake of conve-
nience. For numerical calculations we use the precise expression for
τLund following from equation τLund = τy − zν/κ with τy taken from
eq. (4.21) of Ref. [11].
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TABLE I. The χ 2/d.o.f. values obtained from polynomial fit. P1,2,3 denote the expressions Rh
M [P1,2,3] used as fitting

functions. The necessary details concerning the data sets used for the fit is given in the text.

τlead τLor. τLund

Target A Nexp Had. P1 P2 P3 P1 P2 P3 P1 P2 P3

14N 26 π+,− 1.65 1.72 1.73 1.89 1.95 1.81 1.60 1.67 1.71
84Kr 63 π+,−,0, K− 1.67 1.32 1.31 8.71 6.62 5.98 1.41 1.23 1.23
84Kr 16 K+ 1.95 1.62 1.70 3.47 3.30 3.14 2.78 2.34 2.52
84Kr 16 proton 1.25 1.24 1.04 8.50 9.08 9.82 2.48 2.28 1.90
84Kr 14 antipr. 1.33 0.89 0.92 2.43 2.37 2.04 1.50 0.94 1.03

the values of χ2/d.o.f. are close for the polynomial approxi-
mations Rh

M [P1], Rh
M [P2], and Rh

M [P3], which means that the
inclusion in consideration of the higher order polynomials of
τ does not essentially improve the description of the data.

In order to test this, we have also calculated the Rh
M [P4]

polynomial form and obtained the values of χ2/d.o.f. close to
the ones in case of Rh

M [P3]. From Table I one can see that the
fit gives unexpectedly good values for χ2/d.o.f. close to the
unity for τlead and τLund, for τLor. the agreement is much worse.
As it is known from the experiment [3,4], Rh

M (ν, 〈z〉) increases
with increasing ν, and Rh

M (〈ν〉, z) decreases with increasing z

for all nuclei. Our assumption is that these functions indeed
present different representations of the same function, which
depends from only one variable τ . In turn τ is a function of ν

and z.
Now let us discuss the figures and, using Eqs. (14)–

(16), present Rh
M (ν, 〈z〉) and Rh

M (〈ν〉, z) as functions of τ .
Experimental points and results of the fit are presented in
Fig. 1 for nitrogen and in Figs. 2 and 3 for krypton. Solid points
correspond to Rh

M (ν, 〈z〉) obtained from the experimental
data for ν-dependence according to Eq. (3), open points to
Rh

M (〈ν〉, z) from z-dependence according to Eq. (4). From
the figures one can easily note that experimental points for
Rh

M (ν, 〈z〉) and Rh
M (〈ν〉, z) as functions of τ have the same

behavior and approximately coincide when τlead and τLund

serve as the variables. The reason for this is that these variables
are approximately proportional to ν and 1 − z. In contrary, the
variable τLor is proportional to ν and z, and as a consequence
Rh

M (ν, 〈z〉) and Rh
M (〈ν〉, z) have opposite behavior as functions

of τLor.. This means that without any calculations one can state
that τlead and τLund can serve as “scaling” variables, but τLor.

cannot. For the sake of convenience we have renormalized τ

to x = τ/τ (max), where τ (max) are the maximum values of
τ for each set of data and each choice of the τ expression.

The range of variation of τ and the numerical val-
ues for τ (max) in all scenarios for the case of pions
on krypton are 4.1 � τLor. � 10.5 fm, 0.67 � τlead � 14.9 fm,
0.65 � τLund � 8.55 fm. The range for τLor. is smaller than for
the other formation times. The difference will be more signifi-
cant if we consider the ranges for the points corresponding to ν-
and z-dependencies separately. It is also the reason that we see
different slopes in different scenarios. Presentation of Rh

M as a
function of τ/τ (max) allows us to place all data in an interval
(0, 1). This choice does not influence the results of the fit and
the values of Rh

M . On each of the figures the linear polynomial

is presented a11 + xa′
12, with values a11 and a′

12 = a12τ (max)
corresponding to the best fit. Solid, dashed and dotted curves
represent the Rh

M [P1], Rh
M [P2], and Rh

M [P3] polynomial fit,
respectively. One can easily see that the difference between
the curves corresponding to Rh

M [P1], Rh
M [P2], and Rh

M [P3] is
small for combined fits (see Figs. 1, 2). This difference is more
significant for separate fits in τlead and τLund scenarios, in the
region of small τ . We do not discuss the possible reasons for
this difference because experimental data in this region have
large statistical uncertainties. Naturally, it would be very useful
to have precise data in this region.
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FIG. 1. The values Rh
M on nitrogen as a function of τlead (left two

panels), τLor. (central two panels), τLund (right two panels). Normalized
values τ/τ (max) for all τ are used. On upper panels π+, on lower π−

mesons are presented, respectively. The open and closed circles are
obtained based on the published data [3,4] for z and ν dependencies,
respectively. Solid, dashed, and dotted curves are results of linear,
quadratic, and cubic polynomial fits. The numerical results for the
linear fit are presented on the upper panels.
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FIG. 2. The values Rh
M on krypton as a function of τlead (left four

panels), τLor. (central four panels), τLund (right four panels). On panels
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respectively.

The vertical positions of the experimental points are the
same in all scenarios. The experimental points can be closer
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FIG. 3. The values Rh
M on krypton as a function of τlead (left three

panels), τLor. (central three panels), τLund (right three panels). The
results for K+ mesons are presented in the upper, protons in the
middle, and antiprotons in the lower panels.

together (or not) depending on the type of the formation time
definition. When looking at the τ dependencies, the points
corresponding to ν-dependence preserve their order in all
scenarios. In case of z-dependence, the order is the same in the
scenario with τLor., but changes to opposite in other scenarios.

Now let us discuss what would be changed in the results of
the present analysis if one uses τLor. [Eq. (15)] with τ0 = const.
It is quite trivial to see that the results of the combined fit for
pions on nitrogen and separate fits for positive kaons, protons
and antiprotons on krypton do not change at all. The single
difference would be that one cannot now perform a combined
fit for the pions and negatively charged kaons. If one excludes
kaons from the combined fit on krypton, χ2/d.o.f. will not
change significantly, because kaons do not play an essential
role in the fit (statistical uncertainties for kaons are larger than
for pions, and the number of experimental points for kaons is
essentially smaller than for pions). This means that the results
of the fit do not change significantly if Eq. (15) with τ0 = const
is used for τLor..

As a last remark, one should note that results of this analysis
do not depend from the values of the parameters, in particular
from the value of κ (and τ0, if we take τ0 = const).

V. CONCLUSIONS

Nuclear attenuation data for pions on nitrogen and for
identified hadrons on krypton nuclei obtained by the HERMES
experiment [3,4] were used to perform the fit.

Based on the experimentally measured [3,4] function,
Rh

M (ν, 〈z〉) depends on the variable ν only, and Rh
M (〈ν〉, z)

depends on z only, and using the published average val-
ues of ν and z [3,4] the corresponding values for differ-
ent representations of the formation length (time) τ [see
Eqs. (14)–(16)] were used to get the new data sets for Rh

M (τ ).
Our main idea is that these functions indeed present

different representations of the same function, which depends
from only one variable τ , which is, in turn, a function
of ν and z.

Based on the performed fit of the modified HERMES data
(see Table I) we can conclude that the preferable forms used for
τ are τLund [see Eq. (16)] and its approximation for the leading
hadrons τlead [see Eq. (14)]. While the form corresponds to the
τLor. [see Eq. (15)] can be ruled out.

We have demonstrated that Rh
M (τ ) can, with satisfactory

precision, be parametrized in a form of a linear polynomial
a11 + τa12, where the fitting parameters a11 and a12 do not
depend on ν and z.

Sensing possible predictions we can state that the obtained
parametrization could be used to describe the data for other
experiments like the present Jlab and definitely the upgraded
JLab. Also this parametrization could be used to describe
the data at the highest energy, although it is known that
the attenuation effects are sharply decreased with the energy
increasing. In our opinion the HERMES kinematics is the
most optimal to apply the proposed approach because of the
average formation length in scale of a fermi is compatible with
the typical sizes of the nuclei.
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