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As a first step to analyze the electromagnetic meson production reactions in the nucleon resonance region, the
parameters of the hadronic interactions of a dynamical coupled-channels model, developed in Physics Reports
439, 193 (2007), are determined by fitting the πN -scattering data. The channels included in the calculations
are πN, ηN , and ππN , which has π�, ρN , and σN resonant components. The nonresonant meson-baryon
interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One
or two bare excited nucleon states in each of S, P,D, and F partial waves are included to generate the resonant
amplitudes in the fits. The parameters of the model are first determined by fitting as much as possible the empirical
πN elastic-scattering amplitudes of SAID up to 2 GeV. We then refine and confirm the resulting parameters by
directly comparing the predicted differential cross section and target polarization asymmetry with the original data
of the elastic π±p → π±p and charge-exchange π−p → π 0n processes. The predicted total cross sections of
πN reactions and πN → ηN reactions are also in good agreement with the data. Applications of the constructed
model in analyzing the electromagnetic meson production data as well as the future developments are discussed.
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I. INTRODUCTION

It is now well recognized that a coupled-channels approach
is needed to extract the nucleon resonance (N∗) parameters
from the data of πN and electromagnetic meson production
reactions. With the recent experimental developments [1,2],
such a theoretical effort is needed to analyze the very extensive
data from Jefferson Laboratory (JLab), Mainz, Bonn, GRAAL,
and Spring-8. To cope with this challenge, a dynamical
coupled-channels model (Matsuyama, Sato, and Lee; MSL)
for meson-baryon reactions in the nucleon resonance region
has been developed recently [3]. In this article we report
a first-stage determination of the parameters of this model
by fitting the πN -scattering data up to invariant mass W =
2 GeV.

The details of the MSL model are given in Ref. [3]. Here
we will only briefly recall its essential features. Similar to
the earlier works on meson-exchange models [4–26] of pion-
nucleon scattering, the starting point of the MSL model is a
set of Lagrangians describing the interactions between mesons
(M = γ, π, η, ρ, ω, σ, . . .) and baryons (B = N,�,N∗, . . .).
By applying a unitary transformation method [13,27], an
effective Hamiltonian is then derived from the considered
Lagrangian. It can be cast into the following more transparent
form

Heff = H0 + �V + v22 + hππN, (1)

where H0 = ∑
α

√
m2

α + �p 2
α with mα denoting the mass of

particle α, and

�V =
{∑

N∗

(∑
MB

�N∗→MB

)
+

∑
M∗

hM∗→ππ

}
+ {c.c.}, (2)

v22 =
∑

MB,M ′B ′
vMB,M ′B ′ + vππ , (3)

hππN =
∑
N∗

�N∗→ππN +
∑
MB

[(vMB,ππN ) + (c.c.)]

+ vππN,ππN . (4)

Here c.c. denotes the complex conjugate of the terms
on its left-hand side. In the above equations, MB =
γN, πN, ηN, π�, ρN, σN , represent the considered meson-
baryon states. The resonance associated with the bare baryon
state N∗ is induced by the vertex interactions �N∗→MB

and �N∗→ππN . Similarly, the bare meson states M∗ = ρ, σ

can develop into resonances through the vertex interaction
hM∗→ππ . Note that the masses M0

N∗ and m0
M∗ of the bare states

N∗ and M∗ are the parameters of the model that must be
determined by fitting the πN - and ππ -scattering data. They
differ from the empirically determined resonance positions by
mass shifts that are due to the coupling of the bare states to
the scattering states. The term v22 contains the nonresonant
meson-baryon interaction vMB,M ′B ′ and ππ interaction vππ .
The nonresonant interactions involving ππN states are in
hππN . All of these interactions are energy independent, an
important feature of the MSL formulation.

We note here that the Hamiltonian defined above does not
have a πN ↔ N vertex. By applying the unitary transforma-
tion method, this unphysical process as well as any vertex
interaction A ↔ B + C with a mass relation mA < mB + mC

are eliminated from the considered Hilbert space and their
effects are absorbed in the effective interactions v22 and hππN .
This procedure defines the Hamiltonian in terms of physical
nucleons and greatly simplifies the formulation of a unitary
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reaction model. In particular, the complications due to the
nucleon mass and wave function renormalizations do not
appear in the resulting scattering equations. This makes the
numerical calculations involving the ππN channel much more
tractable in practice. The details of this approach are discussed
in Refs. [13,27] as well as in the earlier works on πNN

interactions [28].
Starting from the above Hamiltonian, the coupled-channels

equations for πN and γN reactions are then derived by
using the standard projection operator technique [29], as given
explicitly in Ref. [3]. The obtained scattering equations satisfy
the two-body (πN, ηN, γN ) and three-body (ππN ) unitarity
conditions. The π�, ρN , and σN resonant components of
the ππN continuum are generated dynamically by the vertex
interaction �V of Eq. (2). Accordingly, the ππN cuts are
treated more rigorously than the commonly used quasi-
particle formulation within which these resonant channels are
treated as simple two-particle states with a phenomenological
parametrization of their widths. The importance of such a
dynamical treatment of unstable particle channels was well
known in earlier studies of πN scattering [4,30] and πNN

reactions [31].
A complete determination of the parameters of the model

Hamiltonian defined by Eqs. (1)–(4) requires good fits to all
of the data of πN and γN reactions up to invariant mass W �
about 2 GeV. Obviously, this is a very complex task and can
be accomplished only step by step. Our strategy is as follows.
We need to first determine the parameters associated with the
hadronic interaction parts of the Hamiltonian. With the fits
to ππ phase shifts in Ref. [32], the ππ interactions hρ,ππ

and hσ,ππ and the corresponding bare masses for ρ and σ

have been determined in an isobar model with vππ = 0. We
next proceed in two stages. The first stage is to determine
the ranges of the parameters of the interactions �N∗→MB and
vMB,M ′B ′ . This will be achieved by fitting the πN -scattering
data from performing coupled-channels calculations which
neglect the more complex three-body interaction term hππN .
This simplification greatly reduces the numerical complexity
and the number of parameters to be determined in the fits.
This first-stage fit will provide the starting parameters to fit
both the data of πN scattering and πN → ππN reactions. In
this second-stage, the parameters associated with �N∗→MB and
vMB,M ′B ′ will be refined and the parameters of hππN are then
determined. The dynamical coupled-channels calculations for
such more extensive fits are numerically more complex, as
explained in Ref. [3].

In this work we report on the results from our first-stage
determination of the parameters of �N∗→MB and vMB,M ′B ′ of
Eqs. (2)–(3) with MB,M ′B ′ = πN, ηN, π�, ρN, σN . We
proceed in two steps. We first locate the range of the model
parameters by fitting as much as possible the empirical πN

elastic-scattering amplitudes up to W = 2 GeV of SAID [33].
We then refine and confirm the resulting parameters by directly
comparing our predictions with the original πN -scattering
data. Our procedures are similar to what have been used in
determining the nucleon-nucleon (NN ) potentials [34] from
fitting NN -scattering data.

The constructed model can describe well almost all of the
empirical πN amplitudes in S, P,D, and F partial waves

of SAID [33]. We then show that the predicted differential
cross sections and target polarization asymmetry are in good
agreement with the original data of elastic π±p → π±p

and charge-exchange π−p → π0n processes. Furthermore
the predicted total cross sections of the πN reactions and
πN → ηN reactions agree well with the data. Thus the
constructed model is at least comparable to, if not better than,
all of the recent πN models [11–13,19,20,22–24,26]. It can
be used to perform a first-stage extraction of the γN → N∗
parameters by analyzing the photo- and electroproduction of
single π meson. It has also provided us with a starting point
for performing the second-stage determination of the model
parameters by also fitting the data of πN → ππN reactions.
Our efforts in these directions are in progress and will be
reported elsewhere.

In Sec. II, we recall the coupled-channels equations
presented in Ref. [3]. The calculations performed in this work
are described in Sec. III. The fitting procedure is described in
Sec. IV and the results are presented in Sec. V. In Sec. VI we
give a summary and discuss future developments.

II. DYNAMICAL COUPLED-CHANNELS EQUATIONS

With the simplification that ππN interaction hππN of
Eq. (4) is set to zero, the meson-baryon (MB) scattering
equations derived in Ref. [3] are illustrated in Fig. 1.
Explicitly, they are defined by the following equations

TMB,M ′B ′(E) = tMB,M ′B ′(E) + tRMB,M ′B ′(E), (5)

where MB = πN, ηN, π�, ρN, σN . The full amplitudes
TπN,πN (E) can be directly used to calculate πN -scattering
observables. The nonresonant amplitude tMB,M ′B ′(E) in
Eq. (5) is defined by the coupled-channels equations,

tMB,M ′B ′ (E) = VMB,M ′B ′(E) +
∑
M ′′B ′′

VMB,M ′′B ′′ (E) GM ′′B ′′ (E)

× tM ′′B ′′,M ′B ′ (E) (6)

FIG. 1. Graphical representation of Eqs. (5)–(21).
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FIG. 2. Mechanisms for vMB,M ′B ′ of Eq. (7): vs direct s channel,
vu crossed u channel, vt one-particle-exchange t channel, vc contact
interactions.

with

VMB,M ′B ′ (E) = vMB,M ′B ′ + Z
(E)
MB,M ′B ′ (E). (7)

Here the interactions vMB,M ′B ′ are derived from the tree-
diagrams illustrated in Fig. 2 by using a unitary transfor-
mation method [13,27]. It is energy independent and free of
singularity. However, Z

(E)
MB,M ′B ′ (E) is induced by the decays

of the unstable particles (�,ρ, σ ) and thus contains moving
singularities due to the ππN cuts, as illustrated in Fig. 3. Here
we note that if the ππN interaction term hππN of Eq. (4) is
included, the driving term Eq. (7) will have an additional term
Z

(I )
MB,M ′B ′(E) that involves a 3–3 ππN amplitude tππN,ππN , as

given in Ref. [3] and hence is much more difficult to calculate.
As explained in Sec. I, we neglect this term in this first-stage
fit to the πN -scattering data.

The second term in the right-hand side of Eq. (5) is the
resonant term defined by

tRMB,M ′B ′ (E) =
∑

N∗
i ,N∗

j

�̄MB→N∗
i
(E)[D(E)]i,j �̄N∗

j →M ′B ′ (E),

(8)

with

[D−1(E)]i,j = (
E − M0

N∗
i

)
δi,j − �̄i,j (E), (9)

where M0
N∗ is the bare mass of the resonant state N∗ and the

self-energies are

�̄i,j (E) =
∑
MB

�N∗
i →MBGMB(E)�̄MB→N∗

j
(E). (10)

The dressed vertex interactions in Eq. (8) and Eq. (10) are
(defining �MB→N∗ = �

†
N∗→MB)

�̄MB→N∗ (E) = �MB→N∗ +
∑
M ′B ′

tMB,M ′B ′(E)

×GM ′B ′(E)�M ′B ′→N∗ , (11)

�̄N∗→MB(E) = �N∗→MB +
∑
M ′B ′

�N∗→M ′B ′

×GM ′B ′(E)tM ′B ′,MB(E). (12)

N

π

∆

ρ,σ∆

π
Z

(E)

MB,M’B’
= +

FIG. 3. One-particle-exchange interactions Z
(E)
π�,π�(E), Z(E)

ρN,π�,

and Z
(E)
σN,π� of Eq. (7).

It is useful to mention here that if there is only one N∗ in the
considered partial wave, the resonant amplitude [Eq. (8)] can
be written as

tRMB,M ′B ′(E) = �̄MB→N∗
1
(E)�̄N∗

1 →M ′B ′ (E)

E − ER(E) + i �R (E)
2

(13)

with

ER(E) = M0
N∗ + Re[�̄(E)], (14)

�R(E) = −2Im[�̄(E)], (15)

where

�̄(E) =
∑
MB

�N∗→MBGMB(E)

{ ∑
M ′B ′

[δMB,M ′B ′

+ tMB,M ′B ′(E)GM ′B ′ (E)]

}
�M ′B ′→N∗ (E). (16)

The form Eq. (13) is similar to the commonly used Breit-
Wigner form, but the resonance position ER(E) and width
�R(E) are determined by the N∗ → MB vertex and the
nonresonant amplitude tMB,M ′B ′ . This is the consequence of
the unitarity condition and is an important and well-known
feature of a dynamical approach. Namely the resonance
amplitude necessarily includes the nonresonant mechanisms.
This feature is consistent with the well-developed formal
reaction theory [29]. Equation (16) indicates that it is essential
to understand the nonresonant mechanisms in extracting the
bare vertex functions �N∗,MB that contain the information
for exploring the N∗ structure. The parametrization used
for �N∗,MB will be explained in Sec. III. We also note here
that the energy dependence of ER(E) and �R(E), defined by
Eqs. (14)–(15), is essential in determining the resonance poles
in the complex E-plane.

The meson-baryon propagators GMB in the above equations
are

GMB(k,E) = 1

E − EM (k) − EB(k) + iε
(17)

for the stable particle channels MB = πN, ηN , and

GMB(k,E) = 1

E − EM (k) − EB(k) − �MB(k,E)
(18)

for the unstable particle channels MB = π�, ρN, σN . The
self-energies [35] in Eq. (18) are

�π�(k,E) = m�

E�(k)

∫
q2dq

MπN (q)[
M2

πN (q) + k2
]1/2

|f�,πN (q)|2
E − Eπ (k) − {[EN (q) + Eπ (q)]2 + k2}1/2 + iε

, (19)

�ρN (k,E) = mρ

Eρ(k)

∫
q2dq

Mππ (q)[
M2

ππ (q) + k2
]1/2

|fρ,ππ (q)|2
E − EN (k) − {[2Eπ (q)]2 + k2}1/2 + iε

, (20)
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�σN (k,E) = mσ

Eσ (k)

∫
q2dq

Mππ (q)[
M2

ππ (q) + k2
]1/2

|fσ,ππ (q)|2
E − EN (k) − {[2Eπ (q)]2 + k2}1/2 + iε

, (21)

where MπN (q) = Eπ (q) + EN (q) and Mππ (q) = 2Eπ (q).
The vertex function f�,πN (q) is taken from Ref. [13], fρ,ππ (q)
and fσ,ππ (q) are from the isobar fits [32] to the ππ phase shifts.
They are also given explicitly in Ref. [3].

Here we note that the driving term Z
(E)
MB,M ′B ′ of Eq. (7)

is also determined by the same vertex functions
f�,πN (q), fρ,ππ (q), and fρ,ππ (q) of Eqs. (19)–(21). This
consistency is essential for the solutions of Eq. (6) to satisfy
the unitarity condition.

III. CALCULATIONS

We solve the coupled-channels equations defined by
Eqs. (5)–(21) in the partial-wave representation. The
input of these equations are the partial-wave matrix
elements of �N∗→MB and vMB,M ′B ′ of Eqs. (2)–(3),
with MB,M ′B ′ = πN, ηN, π�, ρN, σN , and Z

(E)
MB,M ′B ′ of

Eq. (7) with MB,M ′B ′ = π�, ρN, σN . The calculations
of these matrix elements have been given explicitly in the
appendices of Ref. [3]. Here we only mention a few points
that are needed for later discussions.

In deriving the nonresonant interactions vMB,M ′B ′ of Eq. (7)
we consider the tree-diagrams (Fig. 2) generated from a set of
Lagrangians with π, η, σ, ρ, ω,N , and � fields. The higher
mass mesons, such as a0, a1 included in other meson-exchange
πN models, such as the Jülich model [19], are not considered.
The employed Lagrangians are (in the convention of Bjorken
and Drell [36])

LπNN = −fπNN

mπ

ψ̄Nγµγ5 �τψN · ∂µ �φπ, (22)

LπN� = −fπN�

mπ

ψ̄
µ
�

�T ψN · ∂µ
�φπ, (23)

Lπ�� = fπ��

mπ

ψ̄�µγ νγ5 �T�ψ
µ
� · ∂ν

�φπ, (24)

LηNN = −fηNN

mη

ψ̄Nγµγ5ψN∂µφη. (25)

LρNN = gρNNψ̄N

(
γµ − κρ

2mN

σµν∂
ν

)
�ρµ · �τ

2
ψN, (26)

LρN� = −i
fρN�

mρ

ψ̄
µ
�γ νγ5 �T · (∂µ �ρν − ∂ν �ρµ)ψN + (h.c.),

(27)

Lρ�� = gρ��ψ̄�α

(
γ µ − κρ��

2m�

σµν∂ν

)
�ρµ · �T�ψα

�, (28)

Lρππ = gρππ ( �φπ × ∂µ
�φπ ) · �ρµ, (29)

LNNρπ = fπNN

mπ

gρNNψ̄Nγµγ5 �τψN · �ρµ × �φπ, (30)

LNNρρ = −κρg
2
ρNN

8mN

ψ̄Nσµν �τψN · �ρµ × �ρν. (31)

LωNN = gωNNψ̄N

(
γµ − κω

2mN

σµν∂
ν

)
ωµψN, (32)

Lωπρ = −gωπρ

mω

εµαλν∂
α �ρµ · ∂λ �φπων, (33)

LσNN = gσNNψ̄NψNφσ (34)

Lσππ = −gσππ

2mπ

∂µ �ϕπ · ∂µ �ϕπφσ . (35)

To solve the coupled-channels equations, Eq. (6), we need
to regularize the matrix elements of vMB,M ′B ′ , illustrated in
Fig. 2. Here we follow Ref. [13] to use the parameters
determined in the � (1232) region as the starting parameters
in our fits. For the vs and vu terms of Fig. 2, we include at each
meson-baryon-baryon vertex a form factor of the following
form

F (�k,�) = [�k2/[(�k2 + �2)]2 (36)

with �k being the meson momentum. For the meson-meson-
meson vertex of vt of Fig. 2, the form Eq. (36) is also used
with �k being the momentum of the exchanged meson. For the
contact term vc, we regularize it by F (�k,�)F ( �k′,�′).

With the nonresonant amplitudes generated from solving
Eq. (6), the resonant amplitude tRMB,M ′B ′ Eq. (8) then depends
on the bare mass M0

N∗ and the bare N∗ → MB vertex
functions. As discussed in Ref. [3], these bare N∗ parameters
can perhaps be taken from a hadron structure calculation

TABLE I. The orbital angular momentum (L) and total spin
(S) of the partial waves included in solving the coupled-channels
equation [Eq. (6)].

(LS) of the considered partial waves

πN ηN π� σN ρN

S11 (0, 1
2 ) (0, 1

2 ) (2, 3
2 ) (1, 1

2 ) (0, 1
2 ), (2, 3

2 )

S31 (0, 1
2 ) – (2, 3

2 ) – (0, 1
2 ), (2, 3

2 )

P11 (1, 1
2 ) (1, 1

2 ) (1, 3
2 ) (0, 1

2 ) (1, 1
2 ), (1, 3

2 )

P13 (1, 1
2 ) (1, 1

2 ) (1, 3
2 ),(3, 3

2 ) (2, 1
2 ) (1, 1

2 ),(1, 3
2 ), (3, 3

2 )

P31 (1, 1
2 ) – (1, 3

2 ) – (1, 1
2 ), (1, 3

2 )

P33 (1, 1
2 ) – (1, 3

2 ),(3, 3
2 ) – (1, 1

2 ),(1, 3
2 ), (3, 3

2 )

D13 (2, 1
2 ) (2, 1

2 ) (0, 3
2 ),(2, 3

2 ) (1, 1
2 ) (2, 1

2 ), (0, 3
2 ), (4, 3

2 )

D15 (2, 1
2 ) (2, 1

2 ) (2, 3
2 ), (4, 3

2 ) (3, 1
2 ) (2, 1

2 ), (2, 3
2 ), (4, 3

2 )

D33 (2, 1
2 ) – (0, 3

2 ),(2, 3
2 ) – (2, 1

2 ), (0, 3
2 ), (2, 3

2 )

D35 (2, 1
2 ) – (2, 3

2 ), (4, 3
2 ) – (2, 1

2 ), (2, 3
2 ), (4, 3

2 )

F15 (3, 1
2 ) (3, 1

2 ) (1, 3
2 ),(3, 3

2 ) (2, 1
2 ) (3, 1

2 ), (1, 3
2 ), (3, 3

2 )

F17 (3, 1
2 ) (3, 1

2 ) (3, 3
2 ),(5, 3

2 ) (4, 1
2 ) (3, 1

2 ), (3, 3
2 ), (5, 1

2 )

F35 (3, 1
2 ) – (1, 3

2 ),(3, 3
2 ) – (3, 1

2 ), (1, 3
2 ), (3, 3

2 )

F37 (3, 1
2 ) – (3, 3

2 ),(5, 3
2 ) – (3, 1

2 ), (3, 3
2 ), (5, 3

2 )
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that does not include coupling with meson-baryon continuum
states or meson-exchange quark interactions. Unfortunately,
such information is not available to us. We thus use the
following parametrization

�N∗,MB(LS)(k) = 1

(2π )3/2

1√
mN

CN∗,MB(LS)

×
[

�2
N∗,MB(LS)

�2
N∗,MB(LS) + (k − kR)2

](2+L) [
k

mπ

]L

,

(37)

where L and S are the orbital angular momentum and
the total spin of the MB system, respectively. The above
parametrization accounts for the threshold kL dependence and
the right power (2 + L) such that the integration for calculating
the dressed vertex Eq. (11)–(12) is finite. Nevertheless as we
will discuss in Sec. V this parametrization could be too naive.
We mention here that the normalization of the vertex function
defined by Eq. (37) is chosen to give the

partial decay width = 2π

(2JN∗ + 1)
|�N∗,MB(LS)(k)|2

× kEB(k)EM (k)

W
, (38)

with W = EB(k) + EM (k).
The partial-wave quantum numbers for the considered

channels are listed in Table I. The numerical methods for
handling the moving singularities due to the ππN cuts in
Z

(E)
MB,M ′B ′ (Fig. 3) in solving Eq. (6) are explained in detail

in Ref [3]. To get the πN elastic-scattering amplitudes, we
can use either the method of contour rotation by solving the
equations on the complex momentum axis k = ke−iθ with
θ > 0 or the spline-function method developed in Refs. [37,38]
and explained in detail in Ref. [3]. We perform the calculations
using these two very different methods and they agree within
less than 1%. When Z

(E)
MB,M ′B ′ is neglected, Eq. (6) can

be solved by the standard subtraction method because the
resonant propagators, Eqs. (18), for unstable particle channels
π�, ρN , and σN are free of singularity on the real momentum
axis. A code for this simplified case has also been developed
to confirm the results from using the other two methods.

The method of contour rotation becomes difficult at high W

because the required rotation angle θ is very small. The spline
function method has no such limitation and we can perform
calculations at W > 1.9 GeV without any difficulty. Typically,
24 and 32 mesh points are needed to get convergent solutions of
the coupled-channels integral equation (6). Such mesh points
are also needed to get stable integrations in evaluating the
dressed resonance quantities Eqs. (10)–(12).

IV. FITTING PROCEDURE

With the specifications given in Sec. III, the parameters
associated with Z

(E)
MB,M ′B ′ of Eq. (7) are completely determined

from fitting the ππ phase shifts in Refs. [13] and [32]. Thus
the considered model has the following parameters: (a) the
coupling constants associated with the Lagrangians listed in

Eqs. (22)–(34), (b) the cutoff � for each vertex of vMB,M ′B ′

(Fig. 2), (c) the coupling strength CN∗,MB(LS) and range kR and
�N∗,MB(LS) of the bare N∗ → MB vertex Eq. (37), and (d) the
bare mass M0

N∗ of each N∗ state. We determine these by fitting
the πN -scattering data.

Our fitting procedure is as follows. We first perform fits to
the πN -scattering data up to about 1.4 GeV and including only
one bare state, the � (1232) resonance. In these fits, the starting
coupling constant parameters of vMB,M ′B ′ are taken from the
previous studies of πN and NN scattering, which are also
given in Ref. [3]. Except the πNN coupling constant fπNN

all coupling constants and the cutoff parameters are allowed to
vary in the χ2-fit to the πN data. The coupled-channels effects
can shift the coupling constants greatly from their starting
values. We try to minimize these shifts by allowing the cutoff
parameters to vary in a very wide range 500 MeV < � <

2000 MeV. Some signs of coupling constants, which could not
be fixed by the previous works [39], are also allowed to change.
We then use the parameters from these fits at low energies as
the starting ones to fit the amplitudes up to 2 GeV by also
adjusting the resonance parameters, M0

N∗ , CN∗,MB(LS), kR and
�N∗,MB(LS). Here we need to specify the number of bare N∗
states in each partial wave. The simplest approach is to assume
that each of three-star and four-star resonances listed by the
Particle Data Group [40] is generated from a bare N∗ state
of the model Hamiltonian Eq. (1). However, this choice is
perhaps not well justified because the situation of the higher
mass N∗’s is not so clear.

We thus start the fits including only the bare states that
generate the lowest and well-established N∗ resonance in
each partial wave. The second higher mass bare state is then
included when a good fit cannot be achieved. We also impose
the condition that if the resulting M0

N∗ is too high >2.5 GeV,
we remove such a bare state in the fit. This is due to the
consideration that the interactions due to such a heavy bare
N∗ state could be just the separable representation of some
nonresonant mechanisms that should be included in vMB,M ′B ′ .
In some partial waves the quality of the fits is not very sensitive
to the N∗ couplings to π�, ρN , and σN . But the freedom of
varying these coupling parameters is needed to achieve good
fits.

It is rather difficult to fit all partial waves simultaneously
because the number of resonance parameters to be determined
is very large. We proceed as follows. We first fit only three or
four partial waves that have well-established resonant states
and whose amplitudes have an involved energy dependence.
These are the S11, P11, S31, and P33 partial waves. These fits
are aimed at identifying the possible ranges of the parameters
associated with vMB,M ′B ′ . This step is most difficult and time-
consuming. We then gradually extend the fits to include more
partial waves. For some cases, the fits can be reached easily by
simply adjusting the bare N∗ parameters. But it often requires
some adjustments of the nonresonance parameters to obtain
new fits. This procedure has to be repeated many times to
explore the parameter space as much as we can. We carry out
this very involved numerical task by using the fitting code
MINUIT and the parallel computation facilities at NERSC in
the United States and the Barcelona Supercomputing Center
in Spain.
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FIG. 4. Real parts of the calculated πN

partial-wave amplitudes [Eq. (5)] of isospin T =
1/2 are compared with the energy independent
solutions of Ref. [33].

The most uncertain part of the fitting is to handle the large
number of parameters associated with the bare N∗ states. Here
the use of the empirical partial-wave amplitudes from SAID is
an essential step in the fit. It allows us to locate the ranges
of the N∗ parameters partial wave by partial wave for a given
set of the parameters for the nonresonant vMB,M ′B,. Even with
this, the information is far from complete for pinning down the
N∗ parameters. Perhaps the N∗ parameters associated with the
πN state are reasonably well determined in this fit to the πN -
scattering data. The parameters associated with ηN, π�, ρN ,
and σN can only be better determined by also fitting to the
data of πN → ηN and πN → ππN reactions. This will
be pursued in our second-stage calculations, as discussed in
Sec. I.

It is useful to note here that the leading-order effect due to
Z(E) of the meson-baryon interaction Eq. (7) on πN elastic

scattering is

δvπN,πN =
∑

MB,M ′B ′=π�,ρN,σN

vπN,MBGMB(E)Z(E)
MB,M ′B ′

×GM ′B ′(E)vM ′B ′,πN . (39)

We have found by explicit numerical calculations that δvπN,πN

is much weaker than vπN,πN and hence the coupled channel
effects due to Z

(E)
MB,M ′B ′ on πN elastic-scattering amplitude

are weak. One example obtained from our model is shown in
Table II. Thus we first perform the fits without including
Z(E) term to speed up the computation. We then refine the
parameters by including this term in the fits.

TABLE II. The effect of Z
(E)
MB,M ′B ′ on the πN -scattering amplitudes tπN,πN from solving

Eq. (6) at W = 1.7 GeV. The normalization is tπN,πN = (e2iδπN − 1)/(2i), where δπN is the
πN -scattering phase shift that could be complex at energies above the π production threshold.

Re(tπN,πN ) Re[tπN,πN (Z(E) = 0)] Im(tπN,πN ) Im[tπN,πN (Z(E) = 0)]

S11 −0.00481 −0.00557 0.0841 0.0827
P11 0.0937 0.103 0.636 0.640
P13 0.169 0.181 0.275 0.275
D13 0.202 0.194 0.299 0.309
D15 0.117 0.116 0.0179 0.0179
F15 0.290 0.291 0.157 0.155
F17 0.0360 0.0359 0.00293 0.00289
S31 −0.433 −0.437 0.496 0.504
P31 −0.253 −0.230 0.434 0.448
P33 0.0506 0.0306 0.510 0.457
D33 −0.00504 −0.0135 0.106 0.104
D35 0.0551 0.0551 0.0540 0.0537
F35 −0.0214 −0.0229 0.0259 0.0283
F37 0.0625 0.0626 0.00502 0.00512
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FIG. 5. Imaginary parts of the calculated πN

partial wave amplitudes [Eq. (5)] of isospin T =
1/2 are compared with the energy independent
solutions of Ref. [33].

V. RESULTS

As mentioned in Sec. I, we first locate the range of the
parameters by fitting the empirical πN -scattering amplitude
of SAID [33]. We then check and refine the resulting parameters
by directly comparing our predictions with the original πN -
scattering data.

Our fits to the empirical amplitudes of SAID [33] are
given in Figs. 4–5 and Figs. 6–7 for the T = 1/2 and
T = 3/2 partial waves, respectively. The resulting parameters
are presented in Appendix. The parameters associated with
the nonresonant interactions, vMB,M ′B ′ with MB,M ′B ′ =
πN, ηN, π�, ρN, σN , are given in Table III for the coupling
constants of the starting Lagrangian Eqs. (22)–(34) and
Table IV for the cutoffs of the form factors defined by
Eq. (36). The resulting bare N∗ parameters are listed in
Tables V–VII.

From Figs. 4–7, one can see that the empirical πN

amplitudes can be fitted very well. The most significant
discrepancies are in the imaginary part of S31 in Fig. 7. The
agreement is also poor for the F17 in Figs. 4–5 and D35 in
Figs. 6–7, but there are rather large errors in the data. Our
parameters are therefore checked by directly comparing our
predictions with the data of differential cross sections dσ/d�

and target polarization asymmetry P of elastic π±p → π±p

and charge-exchange π−p → π0n processes. Our results
(solid red curves) are shown in Figs. 8–12. Clearly, our model
is rather consistent with the available data and are close to
the results (dashed blue curves) calculated from the SAID’s
amplitudes. Thus our model is justified despite the differences
with the SAID’s amplitudes seen in Figs. 4–7.

It will be important to further refine our parameters by
fitting the data of other πN -scattering observables, such as the
recoil polarization and double polarization. Hopefully, such

FIG. 6. Real parts of the calculated πN

partial-wave amplitudes [Eq. (5)] of isospin T =
3/2 are compared with the energy independent
solutions of Ref. [33].
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FIG. 7. Imaginary parts of the calculated πN

partial-wave amplitudes [Eq. (5)] of isospin T =
3/2 are compared with the energy independent
solutions of Ref. [33].

data can be obtained from the new hadron facilities at JPARC
in Japan.

Our model is further checked by examining our predictions
of the total cross sections σ tot which can be calculated from
the forward elastic-scattering amplitudes by using the optical
theorem. The total elastic-scattering cross sections σ el can be
calculated from the predicted partial-wave amplitudes. With
the normalization 〈�k| �k′〉 = δ(�k − �k′) used in Ref. [3], we have

σ el(W ) =
∑

T =1/2,3/2

σ el
T (W ) (40)

FIG. 8. (Color online) Differential cross section for several
different center-of-mass energies. Solid red curve corresponds to our
model, whereas blue dashed lines correspond to the SP06 solution
of SAID [33]. All data have been obtained through the SAID online
applications. Ref. [33].

with

σ el
T (W ) = (4π )2

k2
ρπN (W )

×
∑
JLS

(2J + 1)

2

∣∣T T J
πN(LS),πN(LS)(k, k,W )

∣∣2
, (41)

where ρπN (W ) = πkEπ (k)EN (k)/W with k determined
by W = Eπ (k) + EN (k) and the amplitude
T T J

L′S ′(πN),LS(πN)(k, k; W ) is the partial-wave solution of
Eq. (5). Similarly, the total πN → ηN cross sections can be

FIG. 9. (Color online) Differential cross section for several
different center-of-mass energies. Similar description as for Fig. 8.
All data have been obtained through the SAID online applications.
Ref. [33].

065201-8



DYNAMICAL COUPLED-CHANNELS MODEL OF πN . . . PHYSICAL REVIEW C 76, 065201 (2007)

FIG. 10. (Color online) Target polarization asymmetry, P , for
several different center-of-mass energies. Similar description as
for Fig. 8. All data have been obtained through the SAID online
applications. Ref. [33].

calculated from

σ tot
πN→ηN = (4π )2

k2
ρ

1/2
πN (W )ρ1/2

ηN (W )

×
∑
JLS

(2J + 1)

2

∣∣T T =1/2,J

ηN(LS),πN(LS)(k
′, k,W )

∣∣2
, (42)

where ρηN (W ) = πk′Eη(k′)EN (k′)/W with k′ determined by
W = Eη(k′) + EN (k′). We can also calculate the contribution
from each of the unstable channels, π�, ρN , and σN , to the
total πN → ππN cross sections. For example, we have for
the πN → π� → ππN contribution in the center-of-mass

FIG. 11. (Color online) Target polarization asymmetry, P , for
several different center-of-mass energies. Description as for Fig. 8.
All data have been obtained through the SAID online applications.
Ref. [33].

FIG. 12. (Color online) Target polarization asymmetry, P , for
several different center-of-mass energies. Description as for Fig. 8.
All data have been obtained through the SAID online applications.
Ref. [33].

frame

σ rec
π�(W ) =

∫ W−mπ

mN +mπ

dMπN

MπN

E�(k)

× �π�(k,E)/(2π )

|W − Eπ (k) − E�(k) − �π�(k,E)|2
× σπN→π�(k,W ), (43)

where k is defined by MπN = Eπ (k) + EN (k), EπN (k) =
[M2

πN + k2]1/2, �π�(k,E) is defined in Eq. (19), �π�(k,E) =
−2Im[�π�(k,E)], and

σπN→π�(k,W ) = 4πρπN (k0)ρπ�(k)

×
∑

L′S ′,LS,J

2J + 1

(2SN + 1)(2Sπ + 1)

× ∣∣T J
π�(L′S ′),πN(LS)(k, k0; W )

∣∣2
, (44)

where k0 is defined by W = Eπ (k0) + EN (k0) and ρab(k) =
πkEa(k)Eb(k)/W . The amplitude T J

L′S ′(π�),LS(πN)(k, k0; W )
is the partial-wave solution of Eq. (5). The corresponding
expressions for the unstable channels ρN and σN can
be obtained from Eqs. (43)–(44) by changing the channel
labels.

The predicted σ tot (solid curves) along with the resulting
total elastic-scattering cross sections σ el compared with the
data of π+p reaction are shown in Fig. 13. Clearly, the model
can account for the data very well within the experimental
errors. Here only the T = 3/2 partial waves are relevant.
Equally good agreement with the data for π−p reaction are
shown in the left side of Fig. 14. In the right side, we show
how the contributions from each channel add up to get the total
cross sections.

Figure 15 shows the comparison of the contribution from
the ηN channel in Fig. 14 with the data. Here we like to
briefly mention how our parameters are refined by also fitting
the cross-section data directly. The dashed curve in Fig. 15
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FIG. 13. The predicted total cross sections of the π+p → X

(solid curve) and π+p → π+p (dashed curve) reactions are com-
pared with the data. Squares and triangles are the corresponding data
from Ref. [40].

corresponds to a preliminary result prior to the inclusion of
the total cross-section data shown in Fig. 15 in the χ2 search.
To obtain the solid curve in Fig. 15, which is in a fairly good
agreement with the data, we incorporated a minimal set of
experimental cross-section data into the fitting procedure. By
varying mainly the coupling parameter of the isospin 1/2
resonances to the ηN channel we could also get agreement
with the data shown in Fig. 15, whereas retaining the very
good reproduction of the πN amplitudes. Some values of such
couplings to ηN channel, which were less constrained before
we include the πN → ηN cross section data into the analysis,
can change by 50% from the χ2 fit. Similar procedures will
be needed in our further refinement of the parameters of the
model by also including the data of πN → ππN in the χ2 fit.
Our progress in this direction will be reported elsewhere.

The contributions from π�, ρN , and σN intermediate
states to the π−p → ππN total cross sections calculated from
our model can be seen in the right side of Fig. 14. These
predictions remain to be verified by the future experiments.
The existing πN → ππN data are not sufficient for extracting

FIG. 14. (Left) The predicted total cross sections of the π−p →
X (solid curve) and π−p → π−p + π 0n (dashed curve) reactions are
compared with the data. Open squares are the data on π−p → X from
Ref. [40], open triangles are obtained by adding the π−p → π−p and
π−p → π 0n data obtained from Ref. [40] and SAID database [41],
respectively. (Right) Show how the predicted contributions from each
channel are added up to the predicted total cross sections of the
π−p → X.
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FIG. 15. The predicted total cross sections of π−p → ηn reac-
tion, see text for details, are compared with the data [42,43].

model independently the contributions from each unstable
channel. The results shown in Figs. 13–15 indicate that our
parameters are consistent with the total cross-section data.

We now discuss the parameters presented in Appendix A.
It is rather difficult to compare the resulting nonresonant
coupling constants listed in Table III with the values from other
works, because the coupling strengths are also determined by
the cutoff parameters listed in Table IV. Perhaps it is possible
to narrow their differences by using a different parametrization
of the form factors. However, the fit is a rather time-consuming
process and hence no attempt is made in this work to try other
forms of form factors.

In Table V, we see that all of the bare masses are higher
than the PDG’s resonance positions. This can be understood
from the expression Eq. (14) for the partial waves with only
one N∗ because one finds in general that Re[�̄(E)] < 0.
For the S11, P11, P33, and D13 partial waves, two bare N∗
states are mixed by their interactions, as can be seen in
Eq. (10). Thus the relation between their bare masses and
the resonance positions identified by PDG is much more
complex.

As we mentioned above, the fit to πN elastic scattering
cannot determine well the bare N∗ → π�, ρN, σN parame-
ters. Thus the results for these unstable particle channels listed
in Tables III–VII must be refined by fitting the πN → ππN

data.

VI. SUMMARY AND FUTURE DEVELOPMENTS

Within the formulation developed in Ref. [3], we have
constructed a dynamical coupled-channels model of πN

scattering by fitting the πN -scattering data. The parameters
of the model are first determined by fitting as much as possible
the empirical πN elastic scattering amplitudes of SAID up to
2 GeV. We then refine and confirm the resulting parameters
by directly comparing the predicted differential cross section
and target polarization asymmetry with the original data of
the elastic π±p → π±p and charge-exchange π−p → π0n

processes. The predicted total cross sections of πN reactions
are also in good agreement with the data. The model thus can
be used as a starting point for analyzing the very extensive
data of electromagnetic π production reactions.
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The predicted total cross sections of πN → ηN reactions
are also in fair agreement with the data. However, the parame-
ters associated with the ηN channel need to be refined to also
fit the differential cross-section data of πN → ηN before the
model can be used to analyze the data of electromagnetic η

production reactions.
The main shortcoming of this work is that the ππN

interaction term hππN of Eq. (4) is not included in the
calculations. As derived in Ref. [3], the effects due to this
interaction can be included by adding a term Z

(I )
MB,M ′B ′(E),

which contains the ππN → ππN scattering amplitude, to the
driving term VMB,M ′B ′ (E) of Eq. (6). Our effort in this direction
is in progress along with the development of a more complete
determination of the parameters of the model by fitting both the
data of πN elastic scattering and πN → ππN reactions. This
is also essential to pin down the parameters of the interactions
associated with the π�, ρN , and σN states. Only when this
second-stage is completed can we then perform dynamical
coupled-channels analysis of the very extensive and complex
data of photo- and electroproduction of two pions. This is an
essential step to probe the W > 1.7 GeV resonance region
where the information on N∗ is very limited and uncertain.

Finally, a necessary next step is to extract the resonance
poles and the associated residues from the predicted πN

amplitudes. This is being pursued and will be published
elsewhere [44].
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APPENDIX: PARAMETERS FROM THE FITS

TABLE IV. Cutoffs of the form factors, Eq. (36),
of the nonresonant interaction vMB,M ′B ′ . The results are
from fitting the empirical πN partial-wave amplitudes
[33] of a given total isospin T = 1/2 or 3/2. The
parameters from the SL model of Ref. [13] are also
listed.

Parameter (MeV) SL model (MeV)

�πNN 809.05 642.18
�πN� 829.17 648.18
�ρNN 1086.7 1229.1
�ρππ 1093.2 1229.1
�ωNN 1523.18 –
�ηNN 623.56 –
�σNN 781.16 –
�ρN� 1200.0 –
�π�� 600.00 –
�σππ 1200.0 –
�ωπρ 600.00 –
�ρ�� 600.00 –

TABLE V. The masses of the nucleon excited states included
in the fits (second and third columns). The first column contains
the masses of the nucleon resonances given by PDG [40].

LT J PDG’s mass (MeV) M1 (MeV) M2 (MeV)

S11 1535; 1655 1800 1880
S31 1630 1850
P11 1440; 1710 1763 2037
P13 1720 1711
P31 1910 1900.3
P33 1232; 1600 1391 1602
D13 1520; 1700 1899.1 1988
D15 1675 1898
D33 1700 1976
D35 1960 –
F15 1685 2187
F35 1890 2162
F37 1930 2137.8

065201-11
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TABLE VI. The coupling constants CN∗,JT LS;MB of Eq. (37) with MB = πN, ηN, π�, σN, ρN for each of the resonances.
When there are more than one value for π� and ρN channels, they correspond to the possible quantum numbers (LS) listed in
Table II.

πN ηN π� σN ρN

S11 (1) 7.0488 9.1000 −1.8526 −2.7945 2.0280 0.02736
S11 (2) 9.8244 0.60000 0.04470 1.1394 −9.5179 −3.0144
S31 5.275002 – −6.17463 – −4.2989 5.63817
P11 (1) 3.91172 2.62103 −9.90545 −7.1617 −5.1570 3.45590
P11 (2) 9.9978 3.6611 −6.9517 8.62949 −2.9550 −0.9448
P13 3.2702 −0.99924 −9.9888 −5.0384 1.0147 −0.00343 1.9999 −0.08142
P31 6.80277 – 2.11764 – 9.91459 0.15340
P33 (1) 1.31883 – 2.03713 9.53769 – −0.3175 1.0358 0.76619
P33 (2) 1.3125 – 1.0783 1.52438 – 2.0118 −1.2490 0.37930
D13 (1) 0.44527 −0.0174 −1.9505 .97755 −0.481855 1.1325 −0.31396 0.17900
D13 (2) 0.46477 0.35700 9.9191 3.8752 −5.4994 0.28916 9.6284 −.14089
D15 0.31191 −0.09594 4.7920 0.01988 −0.45517 −0.17888 1.248 −0.10105
D33 0.9446 – 3.9993 3.9965 – 0.16237 3.948 −.85580
F15 0.06223 0.0000 1.0395 0.00454 1.5269 −1.0353 1.6065 −.0258
F35 0.173934 – −2.96090 −1.09339 – −.07581 8.0339 −.06114
F37 0.25378 – −0.3156 −0.0226 – 0.100 0.100 0.100

TABLE VII. The range parameter �N∗,JT LS;MB (in units of MeV/c) of Eq. (37) with MB = πN, ηN, π�, σN, ρN for each of the
resonances. When there are more than one value for π� and ρN channels, they correspond to the possible quantum numbers (LS) listed in
Table II.

πN ηN π� σN ρN

S11 (1) 1676.4 598.97 554.04 801.03 1999.8 1893.6
S11 (2) 533.48 500.02 1999.1 1849.5 796.83 500.00
S31 2000.00 – 500.00 – 500.031 500.00
P11 (1) 1203.62 1654.85 729.0 1793.0 621.998 1698.90
P11 (2) 646.86 897.84 501.26 1161.20 500.06 922.280
P13 1374.0 500.23 500.00 500.770 640.50 500.00 500.10 1645.2
P31 828.765 – 1999.9 – 1998.8 2000.6
P33 (1) 880.715 – 507.29 501.73 – 606.78 1043.4 528.37
P33 (2) 746.205 – 846.37 780.96 – 584.98 500.240 1369.7
D13 (1) 1658. 1918.2 976.36 1034.5 1315.8 599.79 1615.1 1499.50
D13 (2) 1094.0 678.41 1960.0 660.02 1317.0 550.14 597.57 1408.7
D15 1584.7 1554.0 500.77 820.17 507.07 735.40 749.41 937.53
D33 806.005 – 1359.38 608.090 – 1514.98 1998.99 956.61
F15 1641.6 655.87 1899.5 522.68 500.93 500.76 500.0 1060.9
F35 1035.28 – 1227.999 586.79 – 1514.3 593.84 1506.0
F37 1049.04 – 1180.2 1031.81 – 600.02 600.00 600.02
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