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Landau-Zener effect in fission

M. Mirea
Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Bucharest, Romania

L. Tassan-Got, C. Stephan, and C. O. Bacri
Institute de Physique Nucleaire, F-91406 Orsay Cedex, France

R. C. Bobulescu
Faculty of Physics, P.O. Box MG-11, Bucharest, Romania

(Received 10 August 2007; revised manuscript received 15 October 2007; published 21 December 2007)

A model that takes into account the Landau-Zener promotion mechanism during fission was developed
recently. The structures observed in the subthreshold neutron-induced fission of 232Th are investigated employing
this model. Theoretical single-particle excitations of a phenomenological two-humped barrier are determined by
solving a system of coupled differential equations for the motion along the optimal fission path. A rather good
agreement with experimental data is obtained using a small number of independent parameters. It is predicted that
the structure at 1.4 and 1.6 MeV is mainly dominated by a spin 3/2 partial cross section with a small admixture
of spin 1/2, while the structure at 1.7 MeV is given by a large partial cross section of spin 5/2.
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I. INTRODUCTION

It is well known that the fission barrier in the actinide
region exhibits a double humped shape. This double barrier,
postulated in the frame of the microscopic-macroscopic
model, provided a unified explanation of a great number of
experimental results. At excitation energies below or close
to the fission barrier top, the properties associated with the
double hump shape are more pronounced than in other energy
domains. A large number of intermediate resonances appear
in the subthreshold and threshold regions. The energies fall
exactly in the region of interest of the nuclear reactors, that is,
thermal neutrons up to several MeV. These resonant peaks
cannot be evaluated correctly in terms of actual models.
Actually, for evaluation purposes, two ingredients are of major
importance: the penetrability of a double barrier parameterized
from experimental data and a good model for the nuclear level
density. The cross section is proportional with the number of
states calculated in the transient point or saddle point configu-
ration following a hypothesis dating from 1939 [1]. Moreover,
to reproduce the resonant structure of the cross section, many
transition states are introduced by hand. The population of
these transition states is considered to be unity. An imaginary
potential is also introduced in a phenomenological way in
the second well region to simulate better the widths of these
resonances. The single-particle effects and the dynamics of
the process are neglected, despite the fact that it has been
believed for a long time that these quantities affect drastically
all observations. Recently, we proposed a new formalism [2] to
treat the resonant structure of the cross section, providing the
possibility to follow each single-particle level from the initial
state of the compound nucleus up to scission, to determine the
barriers associated with each specialization energy to calculate
dynamically the probability of penetrating each barrier or
the population of each transition state. By using a similar
treatment, the best agreement between theory and experiment

[3] that can be found in the literature was obtained for the
fine structure of cluster decay treated as superasymmetric
fission.

The measured neutron-induced fission cross-section behav-
ior of nuclei in the thorium region represented a challenge for
nuclear physicists concerning the shape of the potential energy
surface. The experimental data suggested the existence of a
triple-humped barrier. The neutron-induced cross-sections of
230,232Th exhibit multiple fine structures [4–6] superimposed
on a gross structure of the threshold cross-section. If the
fine structure is interpreted as a series of rotational states
constructed on a β-vibrational state produced in some well
of the deformation energy, it is straightforward to postulate
the existence of a triple-humped barrier. The spacing between
the members of the band is so small that it is consistent only
with a prolate deformation that reaches the vicinity of the
second-barrier top. The analysis of Ref. [4] indicates that
an intermediate state nucleus must exist at a deformation
considerably larger than that of the normal value. A ternary
minimum obtained theoretically in the potential energy surface
of 210Po [7] made this hypothesis credible. Therefore, a shallow
minimum was assumed at this deformation to create a new β-
vibrational state. Angular distribution analysis [8,9] confirmed
the existence of the triple well. Up to now, the assumption of a
triple-humped barrier seems to be the best interpretation for the
fine structure of intermediate cross-section resonances [10].

On the other hand, our analysis explores a different way
to consider the cross-section resonant structure phenomenon
by quantifying the dynamical single-particle effects associated
with vibrational resonances produced in the second well [2].
Our exploratory investigation showed that the 230Th neutron-
induced fission threshold resonant structure can be explained
[11] by rearrangements of single-particle orbitals on the way
from the initial configuration of the compound nucleus up to
scission. This resonant structure depends also on the dynamics
of the process.
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Section II provides a general description of the formalism
intended for the evaluation of single-particle excitations, and
results concerning the intermediate structure of the fission
cross-section are extensively presented in Sec. III. Comments
are made in Sec. IV.

II. SINGLE-PARTICLE EXCITATIONS

In most usual theoretical treatments of nuclear fission, the
whole nuclear system is characterized by some collective
coordinates associated with some degrees of freedom that
determine approximately the behavior of many other intrinsic
variables. The basic ingredient in such an analysis is a shape
parametrization that depends on several macroscopic degrees
of freedom. The generalized coordinates associated with these
degrees of freedom vary in time leading to a split of the
nuclear system in two separated fragments. A microscopic
potential must be constructed to be consistent with this nuclear
shape parametrization. It is known that a nuclear shape can
be well characterized for fission processes if the following
conditions are satisfied [12]: (i) The three most important
degrees of freedom, that is, elongation, necking, and mass
asymmetry, must be taken into account. (ii) A single sphere
and two fragments should be allowed configurations. (iii) The
flatness of the neck must be an independent variable. All
these conditions are fulfilled in the following. By solving the
Schrödinger equation for a reasonable mean field potential
associated with the nuclear shape parametrization, the single-
particle energies are determined. In the case of odd-nucleon
systems, the potential barrier must be increased with an
excitation associated with the unpaired nucleon. The amount
by which the barrier is increased can be estimated within the
specialization energy [13]. This quantity can be interpreted as
the excess of the energy of the unpaired nucleon with a given
spin over the energy of the same spin nucleon state of lowest
energy.

In the present work, an axial-symmetric nuclear
parametrization is obtained by smoothly joining two inter-
sected spheres of different radii R1 and R2 with a neck surface
generated by the rotation of a circle of radius R3 around the
symmetry axis, as displayed in Fig. 1. The surface equation is
given in cylindrical coordinates:

ρs(z) =




√
R2

1 − (z − z1)2, z � zc1

ρ3 − s

√
R2

3 − (z − z3)2, zc1 < z < zc2√
R2

2 − (z − z2)2, zc2 � z,

(1)

where zc1 and zc2 define the region of the necking. The
meaning of the geometrical symbols that depends on the shape
parametrization can be understood by inspecting Fig. 1. This
parametrization allows us to characterize a single nucleus or
two separated nuclei. Throughout the paper, the subscripts 0,
1, and 2 indicate the parent, the heavy, and the light fragment,
respectively. If S = 1, the shapes are necked in the median
surface characterizing scission shapes and if S = −1 the

FIG. 1. Nuclear shape parametrization. z1, z2, and z3 are the
positions of the centers of circles of radii R1, R2 characterizing the
two nascent fragments and of R3 determining the neck, respectively.
If s = 1, the shape is necked, otherwise the shape is swollen in the
median surface. The distance between the two centers z1 and z2

determines the elongation R.

shapes are swollen characterizing the ground state and saddle
points. The macroscopic parameters used in the following are
denoted R = z2 − z1 (elongation), C = S/R3 (necking), and
η = R1/R2 (mass asymmetry). For large distances between
the two nascent fragments, the configuration given by two
separated spheres is reached.

A way to obtain the sequence of nuclear shapes available
for fission is to use the least action principle [14]. It is very
difficult to treat the three independent generalized coordinates
in the same time to minimize the action integral. Some
simplifying assumptions must be introduced. As mentioned
also in Ref. [15], microscopic approaches to fission [16,17]
established that the second saddle point is asymmetrical with
a value compatible with the observed mass ratio. In the same
time, in the region of the second barrier, the mass-asymmetry
component of the inertia tensor is very large [18]. So, the
variations of the mass-asymmetry generalized coordinate are
hindered in this region. Also, for elongations smaller than
that of the outer barrier, the mass-asymmetry component of
the inertia is much lower. Therefore, up to the second-barrier
top, the mass-asymmetry coordinate can be modified without
enhancing too much the value of the action integral. Moreover,
even the deformation energy is less sensitive to variations of the
mass-asymmetry coordinate in the region of compact shapes.
As in Ref. [18], this observation allows us to reduce the number
of parameters and to rend our problem tractable. Therefore, the
evolution of the mass asymmetry generalized coordinate will
be a priori fixed in the following. It is assumed that the ratio
R1/R2 varies linearly from unity (first-barrier top) to the value
associated with the final mass partition (second-barrier top).
The mass asymmetry in the outer barrier region is deduced by
considering that the volume occupied by the light fragment
equals the final one.
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FIG. 2. Deformation energy in MeV for the partition 233Th →
98Sr + 135Te. C represents the curvature of the neck and R the distance
between the centers of the fragments. Positive values of C characterize
necked-in shapes. The mass asymmetry is varied linearly with R from
a value η(R ≈ 5 fm) = 0 (close to the ground state of the compound
nucleus) to the final value η = A1/A2 (in the vicinity of the top of the
second barrier). The step between two equipotential lines is 1 MeV.
Several values of the deformation energy are marked on the plot.
The dynamic trajectory is represented with a thick line that starts in
the first well, penetrates the first barrier, attains the second well, and
finally tunnels the second barrier toward scission.

The deformation energy of the nuclear system is the sum
between the liquid drop energy and the shell effects, including
pairing corrections. The macroscopic energy is obtained in the
framework of the Yukawa-plus-exponential model extended
for binary systems with different charge densities [19]. The
Strutinsky prescriptions [20] were computed on the basis of the
Superasymmetric Two Center Shell Model (STCSM) [21,22].
For one of the most probable partitions 233Th → 98Sr + 135Te,
the deformation energy as a function of C and R is plotted in
Fig. 2. The heavy fragment issued in this reaction is spherical,
while the light one is little deformed, allowing a description in
terms of our nuclear shape parametrization.

The theoretical study of binary disintegration processes is
limited by the difficulties encountered in the calculation of
single-particle levels for very deformed one-center potentials.
On one hand, central oscillator potentials are not able to
describe in a correct manner the shapes for the passage of
one nucleus to two separated nuclei without including a large
number of multipole deformation parameters, and, on the
other hand, for very large prolate deformations the sum of
single-particle energies reaches an infinite value, as evidenced
within the deformed oscillator model. These difficulties are
surpassed by considering that the mean field is generated by
nucleons moving in a double center potential. This kind of
model allows us to describe scission configurations within a
small number of degrees of freedom. A more realistic version
of the two-center shell model was realized recently [22] and
it is used to generate the single-particle energy evolutions
from the ground state up to the formation of two separated
fragments.

The shape of the fission barrier can be obtained if the
trajectory of the nuclear system in our three-dimensional
configuration space is known. This trajectory emerges by
minimizing numerically the action functional that gives the

quantum penetrability

P = exp

{
−2

h̄

∫ Rf

Ri

×
√

2V (R,C, η)M

(
R,C, η,

∂C

∂R
,

∂η

∂R

)
dR

}
(2)

in the semiclassical Wentzel-Kramers-Brillouin approxima-
tion [20]. The two turning points Ri and Rf denote the
elongations that characterize the first well and the exit point of
the barrier, respectively. Here V (R,C, η) is the deformation
energy and M(R,C, η, ∂C

∂R
,

∂η

∂R
) is the effective mass along

the trajectory. The inertia is computed in the frame of the
Werner-Wheeler approximation [23], that means the flow
of the fluid is idealized as nonrotational, nonviscous, and
hydrodynamic. Using the minimal action principle, in general,
the nuclear system does not follow a path characterized by
minimal values of the deformation energy, so that the trajectory
does not interpolate barrier saddle point values.

Having in mind the assumption imposed for the variation of
the mass asymmetry, the action integral must be minimized in
a two-dimensional space spanned by C and R. The first turning
point Ri is fixed but the second Rf lies on the equipotential line
that characterizes the exit from the outer barrier; that is, Rf is
a function of C. A simple numerical method is used to find the
paths characterized by different values of Rf , associated with
local minimums. For that purpose, the function C = f (R)
is approximated with a spline function of n variables Cj

(j = 1, n) in fixed mesh points Rj located in the interval
[Ri, Rf ] along the elongation axis. A numerical expression for
the WKB functional (2) that depends only on the parameters
Cj is obtained. This expression is minimized numerically. For
every value of Rf a local minimum is obtained. The best
values are retained. The trajectory is displayed on Fig. 2. This
dynamical trajectory starts from the ground state, reaches the
region of the second well, and the slope changes suddenly to
penetrate the outer barrier. Between the first and second well,
the macroscopic coordinate C is less than 0; that is, the shapes
are swollen in the median region. Penetrating the second well,
the shapes become necked. The theoretical potential barrier
obtained along the minimal action path is plotted in Fig. 3.
The height of the outer barrier is very large; therefore, some
corrections are required to obtain realistic values of the fission
cross-section. This is the main reason that leads to use a
phenomenological barrier in calculating the cross-section. The

FIG. 3. Theoretical dynamical barrier calculated along the mini-
mal action trajectory as function of the elongation R.
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FIG. 4. The shapes obtained along the minimal action trajectory.
(a) The ground state with elongation R = 5.8 fm and necking
coordinate C = −0.053 fm−1. (b) The region of the first barrier with
R = 10.57 fm and C = −0.04 fm−1. (c) The region of the second
well with R = 13.69 fm and C = −0.0508 fm−1. (d) The region
of the second barrier with R = 15.139 fm and C = −0.008 fm−1.
(e) The region of the exit from the barrier with R = 17 fm and C =
0.085 fm−1.

first well is located at approximately R = 5.5 fm and identifies
the fundamental state. In Fig. 4, the nuclear shapes of the
extreme values of the barrier are displayed. Concerning the
parameters of the double barrier, a recent contribution devoted
to this subject [24] showed that actual models cannot approach
yet the experimental determined values to reproduce at least
qualitatively the cross-section. This motivated us in the use
of a phenomenological barrier to have decent values of the
cross-section.

At this point, some discussions are imposed. In Ref. [17]
five degrees of liberty were used to characterize the shape.
The minimization was realized in a static way, the inertia
being neglected. It is possible that the results change if a
minimization of the action integral will be performed. In
the frame of the referenced calculations, a small dent was
obtained in the median region of the shape for the saddle point
configuration of the outer barrier. From a theoretical point of
view, such a dent will lead to only a single channel in the
final distribution of fission products. This aspect contradicts
the random neck rupture theory [12]. On another hand, our
model can be criticized because the dynamical minimization
was done only in a two-dimensional space. But, the works
published up to now concerning action integral minimization
are realized also in a two-dimensional configuration space,
while the potential is minimized statically at each point
for other coordinates as in Ref. [25], for example. The
procedure used in Ref. [25], in conjunction with the zig-zag
linear path implied by their minimization recipe, represents
a peculiar behavior because the dependence of the inertia as
a function of the coordinates is unclear. Another aspect that
can be criticized in our work is the use of a macroscopic
model for the effective mass. The cranking model supplies
mass parameters six or seven times larger. However, if the
hydrodynamical mass parameters are multiplied by a factor
of 6 or 7, the minimization procedure will give the same
least action path. The single difference is that the value of
the action integral, which is obsolete in our context, will
be changed. Without entering in details, the Werner-Wheeler
approximation gives the main trends for the variations of the
effective mass parameters as the microscopic models. As a

FIG. 5. (Color online) Neutron level scheme as a function of the
elongation. At elongation zero, the shape parametrization gives a
spherical nucleus and the spectroscopic notations are available. For
low values of the deformations, the system behaves as a Nilsson
level scheme. Asymptotically (R → ∞) the two diagrams of the two
formed fragments are superimposed. In the adiabatic representation,
the Fermi level is displayed with a thick dashed line (red). The eight
selected levels with � = 1/2 are represented with a full thick line
(green), the five levels with � = 3/2 are plotted with dot-dashed
thick lines (blue), the four times � = 5/2 and three times 7/2 levels
are marked with dotted lines (violet, smaller distance between points
for � = 5/2). The ground state of the compound nucleus is indicated
with an arrow.

result of the minimization, the dynamical trajectory deviates
from the adiabatic one in such a way that abrupt variations of
the generalized coordinates are not allowed. Abrupt variations
produce large values of the generalized coordinate derivatives
that enter in the formula of the effective mass along the
trajectory and the inertia increases. The main effect is that
the trajectory becomes smoother and the barrier increases.
Surprisingly or not, our trajectory resembles with that given in
Ref. [26] where cranking parameters were used.

Using the STCSM the neutron diagram is computed along
the minimal action trajectory, as displayed in Fig. 5. Up
to R ≈ 5.5 fm the nuclear system is considered reflection
symmetric. From the first well up to scission, the system
loses the reflection symmetry to reach the final partition
233Th → 98Sr + 135Te. In these circumstances, the parity is no
longer a good quantum number. So, the levels are characterized
only by the spin projection � as good quantum numbers. The
Nilsson coefficients [27] of the orbital momentum operators
(κ = 0.063 and η = 0.8) were determined to reproduce as best
as possible the experimental sequence of the first excited levels
in 233Th. The first single-particle excited states are retrieved:
an 1

2
+

state (fundamental level) emerging from 2g9/2 followed

by a 5
2

+
one.

To determine the cross-section, several single-particle lev-
els are selected that lie as close as possible to the Fermi energy
region. These levels give the major contribution in the strength
of the fission channel due to their low excitation energy and
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FIG. 6. (a) The eight selected levels with
� = 1/2. The Fermi level in the adiabatic rep-
resentation is denoted EF and is represented
with a dashed line. The avoided level crossing
regions are numbered and the diabatic levels εi

identified. In the ground state configuration, the
ε1 level (emerging from E1) is superimposed on
EF . At R ≈ 20 fm, EF is located between ε6 and
ε5, while the adiabatic level emerging from E1

dropped to ε3. (b) As in plot (a) for the five levels
with � = 3/2. With thin dot-dashed lines the four
� = 5/2 adiabatic levels are also displayed.

the large amount of macroscopic kinetic energy available
for disintegration. Concerning the � = 1/2 workspace, eight
selected levels, E1 up E8, are extracted separately in the left
panel of Fig. 6 as an example. The Fermi level is denoted EF .
The diabatic levels of the subspace � = 3/2 are displayed
in the right panel of the same figure. In the following, for
simplicity, the discussion is restricted only for the subspace
� = 1

2 . For � = 3
2 , 5

2 , 7
2 , the same procedure as in the case of

� = 1
2 is used.

A first behavior can be noticed. The nucleon located on the
adiabatic level emerging from E1 reaches a very unfavorable
energy configuration after the scission. In the fundamental
state, this unpaired nucleon is located on the fundamental level
but arrives, in the adiabatic representation, at several MeV
under the Fermi level (the ε3 diabatic level). So, if the nucleon
is initially on the ground state, it must follow a diabatic energy
path to arrive in a more favorable energy configuration, that
is, close to the last occupied level (in one of the diabatic
states ε6, ε5, ε7, or ε2). So, adiabatically, the fission strength
for states with spin 1/2 is not favored. This effect is a direct
consequence of the rearrangement of low spin orbitals during
the disintegration. The number of levels with � = 1

2 in the
two nascent fragments that are under the energy of the last
occupied level is always larger than the same number in the
compound nucleus. So, � = 1/2 orbitals of the parent must
decrease in energy to fill the levels located under the Fermi
energy of the two fragments. This aspect somewhat hinders the
possibility to fission through � = 1

2 channels. The next step is
to study the energy paths followed by the unpaired nucleon in
the single-particle diagram.

The realistic two-center diagram presented before provides
an instrument to study the role of individual orbitals during
the disintegration process in a way similar to the study of
nucleus-nucleus collisions [28–31] or the α and cluster decays
[32,33]. Levels with the same quantum numbers associated
with some symmetries of the system cannot cross during the
disintegration process and exhibit avoided level crossing. In
our case, due to the axial symmetry of the system, the good
quantum numbers are the projection of the spin �. The point
of nearest approach between two levels of the same � defines
an avoided level crossing region. If the internuclear distance
varies, the transition probability of a nucleon between two

adiabatic levels is strongly enhanced in the avoided level
crossing region. This promotion mechanism is generically
called the Landau-Zener effect.

Concerning the eight single-particle adiabatic levels
(E1, . . . , E8) belonging to the � = 1/2 workspace, the first
step is to find the avoided level crossing regions. The avoided
crossing regions can be obtained by plotting the energy
differences between these adiabatic levels as in Fig. 7. Each
pertinent avoided crossing is identified and numbered. The
avoided crossings that have a chance to be located along
the diabatic single-particle energy paths emerging from the

FIG. 7. Differences between the selected adiabatic levels. The
avoided level crossing regions that appear between the adiabatic
energies emerging from the initial states E1, . . . E4 are numbered
as in Fig. 6.
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lower levels E1, E2, and E3 are considered pertinent. Due
to their low initial excitation energy, the transitions through
these levels carry the major part of the fission strength. That
property allows us to restrict our calculations only for an initial
condition in which the occupation probability of one of these
levels is one. The next step is to determine the probability of
realization of each diabatic energy path emerging from these
three levels. Concerning the � = 3/2 subspace, the analysis
is realized in the same manner for initial conditions restricted
to the first three low energy levels.

Assuming an n-state approximation, the wave function of
the unpaired nucleon can be formally expanded [34] in a basis
of n diabatic wave functions φi(r, R) as


(r, R, t) =
n∑
i

ci(t)φi(r, R) exp

(
− i

h̄

∫ t

0
εiidt

)
, (3)

where the matrix elements with the diabatic states φ are
abbreviated as

εij = 〈φi |H |φj 〉, (4)

where H is the STCSM Hamiltonian and ci are amplitudes.
Inserting 
 in the time-dependent Schrödinger equation

〈φi |H − ih̄
∂

∂t
|
〉 = 0, (5)

the following system of coupled equations is obtained:

ċi = 1

ih̄

n∑
j �=i

cj εij exp

(
− i

h̄

∫ t

0
(εjj − εii)dt

)
. (6)

To solve this system, the internuclear velocity Ṙ, the diabatic
energies, and the interaction matrix elements must be known.
Excepting the relative velocity, the other ingredients are
supplied by the STCSM. The diabatic states are constructed
by using spline interpolations in the level crossing regions.
The interaction matrix elements εij between the diabatic states
are a measure of the difference between adiabatic and diabatic
energies. The occupation probability of each adiabatic level
as function of R is now obtained by pεi

= |ci |2. For the
unpaired neutron initially located in the fundamental state
E1, the system (6) is solved within the boundary condition
c1 = 1 and ci = 0 for i �= 1. The occupation probabilities of
each diabatic level plotted in Fig. 6 are represented in Fig. 8.
Within the selected levels and avoided level crossings, 40
different energy paths of the unpaired neutron can be obtained
as indicated in Table I. Here, an approximation is made by
considering that the points of the avoided level crossings
1 and 2 form a single avoided level region. Otherwise,
the number of paths gets doubled. Each path represents an
excitation of the nuclear system. The probability of each
path can be estimated. For example, it can be deduced
from Fig. 8 that the path ε1 − 2 − ε1 − 3 − ε4 carries about
0.5 of the probability. The line between letters and digits
connects diabatic levels and avoided level crossing regions.
A strong mixing is produced in the region 4, which leads
us to conclude that the paths ε1 − 2 − ε1 − 3 − ε4 − 4 − ε3

(No. 1 in Table I) and ε1 − 2 − ε1 − 3 − ε4 − 4 − ε4 − 7 each
carry about 0.25 probability. Finally, it can be considered
that the path ε1 − 2 − ε1 − 3 − ε4 − 4 − ε4 − 7 − ε1 (No. 2)

TABLE I. Energy paths open for the first E1� = 1/2 level.

No. Energy path

1 ε1 − 2 − ε1 − 3 − ε4 − 4 − ε3

2 ε1 − 2 − ε1 − 3 − ε4 − 4 − ε4 − 7 − ε1

3 ε1 − 2 − ε1 − 3 − ε4 − 4 − ε4 − 7 − ε4

4 ε1 − 2 − ε1 − 3 − ε1 − 6 − ε3 − 4 − ε3

5 ε1 − 2 − ε1 − 3 − ε1 − 6 − ε3 − 4 − ε4 − 7 − ε1

6 ε1 − 2 − ε1 − 3 − ε1 − 6 − ε3 − 4 − ε4 − 7 − ε4

7 ε1 − 2 − ε1 − 3 − ε1 − 6 − ε1 − 7 − ε1

8 ε1 − 2 − ε1 − 3 − ε1 − 6 − ε1 − 7 − ε4

9 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε3 − 6 − ε3 − 4 − ε3

10 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε3 − 6 − ε3 − 4 − ε4 − 8 − ε1

11 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε3 − 6 − ε3 − 4 − ε4 − 8 − ε4

12 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε3 − 6 − ε1 − 8 − ε1

13 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε3 − 6 − ε1 − 8 − ε4

14 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε4 − 4 − ε3

15 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε4 − 4 − ε4 − 8 − ε1

16 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε4 − 4 − ε4 − 8 − ε4

17 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε1 − 6 − ε3 − 4 − ε3

18 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε1 − 6 − ε3 − 4 − ε4 − 8 − ε1

19 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε1 − 6 − ε3 − 4 − ε4 − 8 − ε4

20 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε1 − 6 − ε1 − 7 − ε1

21 ε1 − 2 − ε2 − 5 − ε4 − 3 − ε1 − 6 − ε1 − 7 − ε4

22 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε5 − 11 − ε6 − 12 − ε8

23 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε5 − 11 − ε6 − 12 − ε6

24 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε5 − 11 − ε5 − 14 −
ε8 − 12 − ε8

25 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε5 − 11 − ε5 − 14 −
ε8 − 12 − ε6

26 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε5 − 11 − ε5 − 14 − ε5

27 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε6 − 11 −
ε6 − 12 − ε8

28 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε6 − 11 −
ε6 − 12 − ε6

29 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε6 − 11 −
ε5 − 14 − ε8 − 12 − ε8

30 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε6 − 11 −
ε5 − 14 − ε8 − 12 − ε6

31 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε6 − 11 −
ε5 − 14 − ε5

32 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε7 − 16 − ε8 − 14 − ε8 − 12 − ε8

33 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε7 − 16 − ε8 − 14 − ε8 − 12 − ε6

34 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε7 − 16 − ε8 − 14 − ε5

35 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε7 − 16 − ε7

36 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε2 − 17 − ε8 − 16 − ε8 − 14 − ε8 − 12 − ε8

37 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε2 − 17 − ε8 − 16 − ε8 − 14 − ε8 − 12 − ε6

38 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε2 − 17 − ε8 − 16 − ε8 − 14 − ε5

39 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε2 − 17 − ε8 − 16 − ε7

40 ε1 − 2 − ε2 − 5 − ε2 − 9 − ε2 − 10 − ε2 − 13 − ε2 − 15 −
ε2 − 17 − ε2

064608-6



LANDAU-ZENER EFFECT IN FISSION PHYSICAL REVIEW C 76, 064608 (2007)

FIG. 8. The occupation probabilities of the diabatic levels
ε1, . . . ε8 as a function of the distance between the centers of the
fragments. The same numbers as in Fig. 7 are used to identify the
avoided level crossing regions. The internuclear velocity is 3.5 ×
104 m/s, which leads to a reasonable reaction time (time to penetrate
the barrier) of approximately 5 × 10−19 s. This example is constructed
for an initial condition pε1 = 1, while pεi

= 0(i �= 1). The occupation
probabilities vary in the avoided level crossing regions.

has about 0.05 probability of realization while ε1 − 2 − ε1 −
3 − ε4 − 4 − ε4 − 7 − ε4 (No. 3) remains with 0.2. The other
probabilities are estimated in the same manner. The same
procedure is repeated for the case where the unpaired nucleon
is initially located on the other selected levels.

The excitations of the barriers due to one diabatic path
k is given by the specialization energy. Considering that the
fundamental barrier corresponds to the nucleon at the Fermi
energy, the excitation Exk as function of R is

Exk(R) =
√

(εk(R) − λ(R))2 + �2(R) − �(R) (7)

in the frame of the superfluid model. Here, εk is the single-
particle energy of the path k, λ is the Fermi energy, and �

is the gap. These excitations are added to the fundamental
barrier. These quantities have the same meaning as the so-
called transition bandheads found in the literature.

It is implicitly assumed that the excitations of the potential
barrier are given only by the specialization energy and that
the fundamental barrier is the same for all channels. The
validity of the model can be checked by calculating also the
dissipation during the tunneling of the barrier in the case of
different channels. Variations of single-particle densities ρi can
be evaluated by solving the next system of coupled equations

as in Ref [18]:

ih̄ρ̇i = κi�
∗ − κ∗

i �
(8)

ih̄κ̇i = (2ρi − 1)� − 2κi(εi − λ),

where ρi = |vi |2 and κi = u∗
i vi ,� = G

∑
i κi . ui and vi

are the complex BCS occupation and vacancy amplitudes.
Equations (8) are generically known as the time-dependent
Hartree-Fock-Bogoliubov (TDHFB) equations [35,36]. As
mentioned in Ref. [36], a connection with the Landau-Zener
effect is included in these equations. Levels undergo Landau-
Zener transitions on virtual levels with coupling strengths
given by the gap �. The difference between the total energy
value E obtained within the TDHFB equations and E0 given
by the static BCS equations represents an approximation for
the dissipation ED:

ED = E − E0. (9)

E is expressed simply in terms of ρi and κi ,

E = 2
∑

i

εiρi − G

∣∣∣∣∣
∑

i

κi

∣∣∣∣∣
2

− G
∑

i

ρ2
i . (10)

E0 corresponds to ρ0
i and κ0

i associated with the lower energy
state.

III. CROSS-SECTION

The partial fission cross section σf for a spin J of the
compound nucleus and excitation energy E∗ is obtained within
a statistical principle:

σf (J,E∗)

= σc(J,E∗)
�f (J,E∗)

�n(J,E∗) + �γ (J,E∗) + �f T (J,E∗)
, (11)

where the ratio on the right-hand side is the probability that
the system decays through fission. It is given by a ratio
between energy widths for fission (subscript f ), neutron
emission (subscript n), and γ deexcitation (subscript γ ). The
subscript T addresses the total transmission in the fission
channel including absorption in the second well. The neutron
transmission was computed for a squared complex potential
[37] to evaluate the compound nucleus cross section. To
determine the participation of different � excitations in the
fission channel for a given spin J of the compound nucleus, an
unfolding procedure in terms of Clebsh-Gordon coefficients is
used,

�f (J,E∗) = 1

2πρ(J,E∗, A)

LM∑
L=0

∑
�

〈JL�0|J�〉2

C

×
∫ E∗−EL

0
2Tf (E,L,�)ρ(�,E∗ −E −EL)dE,

(12)

where a normalization coefficient is used,

C =
LM∑
L=0

∑
�

〈JL�0|J�〉2, (13)
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and the condition J = L + � is imposed. Here ρ represents
the density of states, EL is the the rotation energy in the
fundamental state of the compound nucleus with an angular
momentum L, and LM is the maximum orbital momentum
taken into consideration. This formula can be obtained easily
by simplifying the model underlined in Ref. [2], that is,
neglecting the additional collective excitations as γ , sloshing,
or bending vibrations. Analog formulas can be obtained for
the γ and neutron energy widths as detailed in Ref. [2].

In the fission channel, the spin � density of states can be
shared as a function of the excitation energy between a discrete
component and a continuum one:

ρ(J,E) =
{∑

i δ(E − ε�,i), E < E0

ρGC(�,E), E � E0
, (14)

where ρCG is the statistical Gilbert and Cameron approxima-
tion and ε�,i (i = 1, n) are the set of diabatic single particle
energies that are taken into consideration for a spin projection
�. So that, the transmission in the fission channel can be
decomposed as follows:∫ E∗−EL

0
Tf (E,L,�)ρ(�,E∗ − E − EL)dE

=
∑

i

Tf (E∗ − EL − ε�,i) +
∫ E∗−EL−E0

0

× Tf (E,L,�)ρ(�,E∗ − E − EL)dE. (15)

The sum over i takes into account all the transmissions for
diabatic levels with spin J = � + L located in the energy
interval [0, E0]. The transmission Tf (E∗ − EL − ε�,i) means
a weighted sum of the transmissions of all available diabatic
energy paths emerging from the level ε�,i .

The microscopic model used to compute the theoretical
barrier is subject to some limitations as described in Ref. [22].
It is not possible to obtain pertinent values of the heights
of the barriers. In these circumstances, it is necessary to use
a phenomenological barrier. A phenomenological barrier is
conventionally simulated as a function of a dimensionless
parameter β, which characterizes a deformation, within three
smoothed joined parabolas [38]. In our work, an imaginary
component of the potential is added between the turning points
of the second well, to simulate the damping due to γ and
neutron emission. The values of this imaginary component
are evaluated theoretically [2]. The additional excitations are
considered as specialization energies and are added to the
phenomenological barrier. This operation is achieved in the
simplest possible way, by realizing a linear interpolation based
on a correspondence between the elongation R and the dimen-
sionless parameter β in some points. The correspondence was
chosen for the two minimums, the two heights, and the exit
point. The hybrid model emerges. New barriers are constructed
as displayed in Fig. 9. When only the collective rotations are
taken into account, the heights of the barriers and that of the
second well are modified with the quantity

�EL = L(L + 2� + 1)h̄2

2Ij

− EL, (16)

FIG. 9. The � = 1/2 phenomenological Vph barriers with exci-
tations obtained in the frame of the hybrid model emerging from the
fundamental level E1.

where Ij is the moment of inertia and j labels one of the
two heights or the second well. The decoupling parameter is
neglected. The moment of inertia is computed simply with the
formula Ij = µR2

j , where µ is the reduced mass and Rj is
the theoretical elongation obtained at the extreme point j . The
quantity

EL = L(L + 2� + 1)h̄2

2I0
(17)

addresses the fundamental state of the compound nucleus. The
previous formulas represent an improvement of the formalism
found in Ref. [2].

A large number of excited states are obtained that are char-
acterized by the projection � and the angular momentum L.
The transmission is calculated numerically by approximating
the shape of the excited barrier within 500 constant potential
steps using the numerical recipe found in Ref. [39]. A search of
the heights and of the widths of the phenomenological barrier
is realized to reproduce as well as possible the experimental
fission cross-section threshold structure. A behavior that
agrees satisfactorily with the experimental data is obtained.
The heights of the inner phenomenological barrier, the second
well, and the outer barrier are 6.81, 4.83, and 6.61 MeV,
respectively. In the same order, the widths are 1.2, 0.4,
and 1.1 MeV. The theoretical cross-section is represented in
Fig. 10 and compared with experimental data and evaluations.

The evaluations succeed in better reproducing the ex-
perimental data. In general many parameters are taken into
account to evaluate a cross-section in terms of Bohr channels.
For example, in evaluations phenomenological level density
functions appropriately matched to the available experimental
structure data at low excitation energies are used. Multi-
plication factors are also applied to level density functions
to account for enhancements in the fission transition state
densities at each fission barrier. It is a common practice to
describe the cross-section as the sum of excitations for discrete
levels constructed to fit the resonance. In other words, the
evaluation takes into account many other parameters to fit the
experimental data apart from the heights and the widths of
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FIG. 10. The thick full line represents neutron-induced cross
section for 232Th as a function of the neutron incident energy En

calculated within the hybrid model. Points are experimental data.
The thick dashed line represents the ENDF/B-IV evaluation while the
thick dot-dashed line is the JENDL-3.3 one [40]. Experimental data
are from Refs. [5,6,41]. A thin full line gives the partial cross-section
of spin 1/2, a dashed line is for the spin 3/2, the dot-dashed line is for
5/2, and the dotted line is for 7/2.

the phenomenological barrier. In the work presented in this
article, no adjustments are made to improve the agreement,
the simulations being based only on the phenomenological
barrier parameters and the internuclear velocity.

Our simulations evidence an oscillatory behavior of the
cross-section close to 1.4 MeV. This aspect is in agreement
with the experimental data given in Ref. [42]. The experimental
data combined with theoretical arguments estimate a ratio
2:1 between the partial cross-section of spin 3/2 and 1/2,
respectively. The model shows that the partial cross-section
for the spin 3/2 is responsible for the oscillations of the
cross-section at these energies. Experimentally, the peak at
1.6 MeV is explained entirely by a partial cross-section of
spin 3/2 with a small 5/2 component. In our plot a strong
3/2 component is present with small admixture of 1/2 and
5/2 partial cross-sections. A discrepancy is obtained for the
1.7 MeV structure. The experiment evidences the existence of
a mixing between 3/2 and 5/2 components while our model
predicts a large 5/2 partial cross-section followed by the 3/2
and 1/2 components.

In Fig. 11 the cross-section is plotted on an extended
scale. It can be observed that the theoretical results exhibit
an oscillatory behavior in the low energy region, up to
1.2 MeV, around the smooth variation of the experimental data.
In Fig. 11(b), the transmissions computed for the barriers with
different calculated excitations are displayed. The oscillatory
behavior is due to the large number of resonances associated
with the different excited barriers.

IV. SUMMARY AND DISCUSSION

The scope of the present work is to investigate the
mechanism for the formation of the fission cross-section
structure and to understand the formation of a huge number

FIG. 11. (a) Same as Fig. 10 in an extended logarithmic scale
along the y axis. (b) L = 0 fission transmissions for different barriers
as a function of the neutron energy En. The transmissions for � = 1/2
excitations are plotted with full lines, those for 3/2 with a dashed line,
those for 5/2 with a dot-dashed line, and those for 5/2 with a dotted
line.

of resonances by appealing essentially to dynamical single-
particle effects associated with β vibration in the second well.
The number of free parameters is kept as minimal as possible
(six parameters that characterize the phenomenological barrier
and one parameter for the internuclear velocity) to show
evidence of the physics of the problem.

Theoretical excitations and their associated probabilities
were determined for a given partition in the isotopic dis-
tribution of fragments. These excitations were added to a
phenomenological barrier in the framework of the hybrid
model. After a suitable search of the parameters of the
double-humped phenomenological barrier, the cross-section
was computed. The results give a rather good qualitative
agreement with experimental data. It is evidenced that the
structure at 1.4 and 1.6 MeV is mainly dominated by spin 3/2
partial cross-section with a small admixture of spin 1/2, while
the structure at 1.7 MeV is given by a large partial cross-section
of spin 5/2.

In this exploratory analysis, only one partition for the fission
fragments is taken into consideration. For other partitions in
the same mass region, it is expected that the level scheme
changes slightly leading to a small shift in the energy of the
resonances. By taking into account several partitions in the
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same mass region and folding their yields it it possible to
obtain broader resonances as experimentally observed.

In this context, it will be interesting to explore experi-
mentally if the isotopic fragment distribution in the fission
process changes in the energy region covered by a resonance,
showing a preference for only several mass partitions. If such
a phenomenon can be experimentally evidenced, that will
represent a strong experimental support for our model because
the statistical theories don’t include ingredients related to this
aspect.

The model can be further improved. Up to now, only the
radial coupling was used to explain the intermediate structure
of the cross-section. It is possible to have better results by
taking into account the Coriolis mixing and the residual
interactions by using evolved forms for the system of coupled
equations that describes the microscopic motion [33,43].

Other models succeed in better reproducing the experimen-
tal data [44] using an extensive number of free parameters:
10 variables for the heights and widths of the triple-humped
phenomenological barrier plus 5 times 16 variables for the
transition bandheads constructed on different intrinsic excita-
tions (with a significance of excitations given by single-particle
energies). Despite the overall excellent agreement on a very
large neutron energy region, this treatment, generally used
in evaluations, takes into account a peculiar behavior for the
single-particle excitation energies. The levels that characterize
the transition bandheads never intersect. The first 1

2
+

level
have practically the same value (having as reference the
fundamental state) during the penetration of the barrier. This
behavior, as remarked previously, cannot be expected. These
transition levels are introduced to fit resonances. Moreover,
the statistical models consider that the population of each
fundamental transition band is essentially one. The formalism
presented in the Sec. II indicates that such a behavior is
physically not reasonable.

The possibility to jump from one level to another was
predicted by Hill and Wheeler in Ref. [45]. Dissipation in
terms of Landau-Zener crossings during fission was first
proposed in Ref. [46] where excitations were considered
only for time-reversed pairs, neglecting the possible existence
of unpaired nucleons. Since then, many studies have been
performed, but it was the first time that the Landau-Zener
effect was used to investigate the resonant structure of the
fission cross-section.

The dissipation energy during the fission process was
computed using Rel. (9) keeping the same internuclear velocity
as in the case of single-particle occupation probabilities. The
results are plotted in Fig. 12 for three different channels, that is,
paths 1, 7, and 22 given in Table I. For each diabatic path, due
to the blocking effect, the system (8) is solved without the level
occupied by the unpaired nucleon. Up to the second barrier,
the nucleus is cold, the dissipated energy being very low.
Penetrating the second barrier, the dissipated energy increases.
In the region of the second well, the dissipated energies for

FIG. 12. Dissipated energies during the fission process for three
energy paths: full line for trajectory No. 1, dashed line for trajectory
No. 7, and dot-dashed line for trajectory No. 20 of Table I.

the three channels fall in a 0.3 MeV interval. The height of the
second minimum has a crucial influence on the position of the
resonances. Therefore, if the dissipated energy is taken into
account, some shifts of the positions of the resonances can be
expected. This problem was neglected in all analyses of fission
cross-section resonant structure.

The present investigation shows that the resonant structure
of the fission cross-section can be explained by the existence
of many barriers associated with single-particle excitations.
So, it is possible that the complex structure in the fission
cross-section is due to rearrangement of orbitals and the
dynamic of the process, beginning from the initial state of
the compound nucleus and terminating at the scission. A
large number of different excited barriers are formed leading
to a large number of vibrational resonances in the second
well. These resonances carry information about the structure
of the nucleus at hyperdeformations and the dynamics. The
model presented in this work represents an alternative to
the actual statistical models and may determine a competitive
way to consider the fission process. New information on
the basic mechanisms of nuclear fission can be obtained by
mixing accurate experimental data with new theories that
take into account the nuclear structure of the nuclear system
during the whole disintegration process. The new experimental
values concerning the 234U(n,f) cross-section [47], obtained
in the n-TOF program, displayed a structure of suprabarrier
resonances that are not of statistical nature. Phenomenological
and statistical models based on the saddle density of states
cannot explain this rich resonant structure up to 20 MeV
energies. However, new methods are required.
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