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Hard pion bremsstrahlung in the Coulomb region
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Hard high-energy pion-nucleus bremsstrahlung, π− + A → π− + γ + A, is studied in the Coulomb region,
i.e., the small-angle region where the nuclear scattering is dominated by the Coulomb interaction. Special attention
is focussed on the possibility of measuring the pion polarizability in such reactions. We study the sensitivity to
the structure of the underlying pion-Compton amplitude through a model with σ, ρ, and a1 exchanges. It is found
that the effective energy in the virtual pion-Compton scattering is often so large that the threshold approximation
does not apply.
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I. INTRODUCTION

High-energy pionic bremsstrahlung, i.e., the coherent nu-
clear reaction

π− + A → π− + γ + A

can proceed through a one-photon exchange. In fact, at
small momentum transfers to the nucleus A, the reaction is
dominated by the virtual pion-Compton reaction γ + π− →
γ + π−. A long time ago it was suggested [1,2], that by
studying pionic bremsstrahlung important information on the
pion-Compton amplitude could be extracted. Of particular
interest is the pion electric and magnetic polarizabilities,
which are low-energy parameters that have been calculated
in chiral-Lagrangian theory [3]. A bremsstrahlung experiment
aiming at measuring the polarizabilities has been performed
[4], and reasonable values of these parameters were extracted.
The pion polarizabilities can also be determined in other
reactions, such as pion photoproduction [5].

At low energies the pion-Compton amplitude can be re-
garded as a sum of two contributions, a structure-independent
Born term, and a structure-dependent term fixed by the
pion polarizabilities. At higher energies the situation is more
complex. Therefore, we have chosen to model the pion-
Compton amplitude as a sum of the Born amplitudes, and
the amplitudes generated by the σ, ρ, and a1 exchanges. This
model should be fairly reliable also in the early GeV region.

In a previous paper [6] we developed a Glauber model
for pion-nucleus bremsstrahlung. Such a model includes
nuclear scattering and is also valid for momentum transfers
outside the Coulomb region of small momentum transfers.
For the pion-Compton amplitude only the Born terms and the
polarizabilities were retained. However, it was pointed out
that in applications one quickly comes into a region of high
energies in the virtual pion-Compton scattering. In the present
paper we direct our interest at exactly this energy dependence.
The meson-exchange model is then the reasonable starting
point. Furthermore, we consider only the small-angle region
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where it is sufficient to retain the Coulomb interaction alone,
and neglect all nuclear interactions.

II. PION-COMPTON SCATTERING

The primary mechanism responsible for pion-nucleus
bremsstrahlung in the Coulomb region is pion-Compton
scattering, involving a virtual photon exchange between the
pion and the nucleus. In our previous investigation [6] we
used the low-energy approximation of the pion-Compton
amplitude, as parametrized by the pion polarizabilities. Now,
we want to go beyond this approximation, and investigate, in
a model, the limits of the low-energy approximation in actual
applications. We shall assume that, in addition to the Born
terms, the pion-Compton amplitude receives contributions also
from the σ, ρ and a1 exchange diagrams.

The Compton amplitude is written as

M(γ (q1)π−(p1) → γ (q2)π−(p2)) = Mµνε
µ

1 (q1)εν
2 (q2).

Gauge invariance requires that, for real as well as virtual
photons with q2 �= 0, the Compton tensor satisfies

Mµνq
µ

1 = Mµνq
ν
2 = 0.

The Compton tensor Mµν is conveniently decomposed as

Mµν = ie2 [
A(s, t)Aµν + B(s, t)Bµν

]
, (1)

with the gauge-invariant tensors Aµν and Bµν defined as

Aµν = 2gµν − (2p2 + q2)ν(2p1 + q1)µ
s − m2

π

− (2p1 − q2)ν(2p2 − q1)µ
u − m2

π

, (2)

Bµν = q1 · q2gµν − q2µq1ν, (3)

and the Mandelstam kinematic variables by

s = (p2 + q2)2,

t = (p1 − p2)2,

u = (p1 − q2)2.

(4)

For pions there are three Born amplitudes described by the
Feynman diagrams of Fig. 1. In the decomposition of Eq. (1)

0556-2813/2007/76(6)/064607(7) 064607-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.76.064607
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FIG. 1. Born diagrams for pion-Compton scattering.

the invariant functions A(s, t) and B(s, t) are

A(s, t) = 1, (5)

B(s, t) = 0. (6)

In our previous study we went beyond the Born approxi-
mation, adding the threshold contributions represented by the
electric and magnetic polarizabilities, απ and βπ , leading to
the result

A(s, t) = 1 + απ + βπ

4mπα

(
s − m2

π

)(
u − m2

π

)
, (7)

B(s, t) = 2mπβπ

α
, (8)

with α the fine-structure constant. In chiral-Lagrangian the-
ory [3] numerical values are απ + βπ = 0 and απ = 2.7 ×
10−4 fm3.

A model for the energy dependence of the Compton
amplitude can be obtained by invoking, in addition to the
Born terms, the contributions from the σ (0+), ρ(1−), and
a1(1+) exchanges graphed in Fig. 2. Such models have been
investigated in connection with studies of the reaction γ γ →
ππ , and its t-channel counterpart γπ → γπ . Numerical
values of the model parameters have been extracted from
experimental data by Fil’kov and Kashevarov [7].

The evaluation of the diagrams of Fig. 2 is straightforward.
We parametrize the Compton amplitude through dimension-
less functions λ1(s, t) and λ2(s, t) rather than απ + βπ and
βπ . Thus we introduce for the invariant functions A(s, t) and
B(s, t) of Eq. (1) the decompositions

A(s, t) = 1 +
(
s − m2

π

)(
u − m2

π

)
4m4

π

λ1(s, t), (9)

B(s, t) = 2

m2
π

λ2(s, t), (10)

with the generalized polarizability functions as

λ1(s, t) = −m4
π

2

{
g2

ρ→πγ

(
1

s − m2
ρ

+ 1

u − m2
ρ

)

+ g2
a1→πγ

(
1

s − m2
a1

+ 1

u − m2
a1

)}
, (11)

FIG. 2. Feynman diagrams for the σ, ρ, and a1 contributions to
pion-Compton scattering.

λ2(s, t) = m2
π

{
gσ→ππgσ→γ γ

1

t − m2
σ

− 1

4
g2

ρ→πγ

(
s + m2

π

s − m2
ρ

+ u + m2
π

u − m2
ρ

)

+ 1

4
g2

a1→πγ

(
s − m2

π

s − m2
a1

+ u − m2
π

u − m2
a1

)}
. (12)

At the pion-Compton threshold s = u = m2
π and t = 0.

In chiral-Lagrangian theory the threshold values of the
polarizability functions are λ1(m2

π , 0) = 0 and λ2(m2
π , 0) =

−0.013. In the exchange model the threshold functions are
dominated by σ exchange. However, the parameters of the
σ are rather uncertain and we choose to fix them so that
the σ contribution to the polarizability functions is twice
as large as the chiral-Lagrangian prediction, and more in
agreement with experiment [4,5]. This is further discussed in
the Appendix. Thus, the σ -, ρ-, and a1-exchange contributions
to our threshold polarizability functions are

λ1(s, t) = 0 + 0.0003 + 0.0003, (13)

λ2(s, t) = −0.0261 + 0.0004 + 0. (14)

III. NUCLEAR CROSS SECTIONS

We are interested in a kinematic region where the trans-
verse momentum components of particles can be neglected
compared with their longitudinal momentum components.
Details of the kinematics are given in [6]. The cross-section
distribution in the pion-nucleus laboratory system is

dσ = 1

4p1MA

|M|2 dLips, (15)

where p1 is the incident pion laboratory momentum. The
Lorentz-invariant phase space can be parametrized as

dLips = 1

16πMA

d2p2⊥
(2π )2

d2q2⊥
(2π )2

dq2z

p2zq2z

. (16)

The nuclear Born approximation is represented by the
one-photon exchange graph as pictured in Fig. 3. The small
blob in the graph represents the full pion-Compton amplitude;
the large blob the photon-nucleus electromagnetic vertex.
The pion charge is −e, the nuclear charge Ze, and the
nucleus is treated as a spin-zero particle. With q1 the virtual
photon four-momentum, these assumptions lead to a Coulomb

FIG. 3. Born diagram for pionic bremsstrahlung.
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production amplitude

MB = −i

q2
1

Mµν(p2, q2; p1, q1)(−iZe)(p + p′)µεν
2 . (17)

Since the Compton tensorMµν is gauge invariant we may also
make the replacement p + p′ = 2p + q1 → 2p.

The reduction of MB is much simplified if we first
introduce the parameter

x = q2z

p1
= ω2

E1
. (18)

Inserting in Eq. (17) the expansion of the pion-Compton
amplitude from Eq. (1) and exploiting the techniques of [6]
we get

MB = −8πiZMAeα

q2
1

[
4E2A(s, t)

{
q2⊥

q2
2⊥ + x2m2

π

− q2⊥ − xq1⊥
(q2⊥ − xq1⊥)2 + x2m2

π

}

+ω2B(s, t)q1⊥

]
· ε2. (19)

The subscript ⊥ indicates a vector component in the impact
plane, i.e., the plane orthogonal to the incident momentum p1,
which is along the z-direction. Note that the polarization vector
ε2 is orthogonal to q2, and therefore has both transverse and
longitudinal components, the dominant one being transverse.
Since p1⊥ = 0 the transverse vector components are related
by

q1⊥ = p2⊥ + q2⊥. (20)

The second term on the right hand side of Eq. (19) has been
slightly rewritten as compared with the corresponding term
in Eq. (49) of [6]. As a consequence we see directly that the
matrix element is proportional to q1⊥, as it should be.

We are interested in hard photons. Therefore, the parameter
x of Eq. (18) is sizable, but still in the region 0 < x < 1. We
are also limiting ourselves to the Coulomb region, where q1⊥
is of the same size as q1z, which is equal to

qmin = m2
πω2

2E1E2
= xmπ (mπ/2E2), (21)

so that q1⊥ � xmπ . The momentum components p2⊥ and q2⊥,
on the other hand, may both be in the GeV region but only in
such a way that their sum q1⊥ remains the size of qmin. It
follows that

|xq2⊥ · q1⊥| � (
q2

2⊥ + x2m2
π

)
. (22)

Application of this inequality simplifies the Born amplitude
into

MB = −8πiZMAeα

q2
1

4xE2

q2
2⊥ + x2m2

π

[
Ã

(
x, q2

2⊥
) {

q1⊥

− 2q2⊥
q2⊥ · q1⊥

q2
2⊥ + x2m2

π

}
+ B̃

(
x, q2

2⊥
)

q1⊥

]
· ε2, (23)

with

Ã
(
x, q2

2⊥
) = A(s, t), (24)

B̃
(
x, q2

2⊥
) = 1

4(1 − x)

(
q2

2⊥ + x2m2
π

)
B(s, t). (25)

Here, we have replaced the variables s and t by the variables
x and q2

2⊥. That this is possible follows from a study of the
kinematic variables s, t , and u of the virtual pion-Compton
scattering, defined in Eq. (4). Evaluating them with the on-shell
four-momenta p1, p2, and q2, and making use of the inequality
(22) leads to the simple expressions

s − m2
π = 1

x(1 − x)

[
q2

2⊥ + x2m2
π

]
,

t = −1

1 − x

[
q2

2⊥ + x2m2
π

]
,

u − m2
π = −1

x

[
q2

2⊥ + x2m2
π

]
.

(26)

We stress that these expressions are valid only for hard
bremsstrahlung in the Coulomb region. Furthermore, we may
on the right hand sides replace q2

2⊥ by p2
2⊥ without any

numerical consequences.
Up to now we have been concerned with the Born approx-

imation, i.e., the one-photon exchange. Including multiple-
photon exchanges to all orders induces some changes. The
sole effect of photon exchanges that occur either all before
or all after the hard-photon radiation is to dress the Born
approximation with a Coulomb phase factor. Contributions
where some photon exchanges occur before and some after the
hard-photon radiation do not exhibit any peak structure, and
are small in the Coulomb-peak region. This is also the case for
radiation contributions involving hadronic interactions, which
lead to a smooth background distribution much below the
Coulomb peak, at least in the applications we have in mind.
Adopting these caveats we put

|M|2 = ∣∣M2
B

∣∣ . (27)

The summation over the photon polarization vectors is
trivial. It replaces scalar products like |q2⊥ · ε2|2 by |q2⊥|2.
In view of the relation (20) we may also replace the phase-
space volume d2q2⊥d2p2⊥ by d2q1⊥d2q2⊥. The cross-section
distribution in the pion-nucleus laboratory system, as defined
in Eq. (15), then takes the form

dσ

d2q1⊥d2q2⊥dx
= 4Z2α3

π2m4
π

[
q2

1⊥(
q2

1⊥ + q2
min

)2

][
1 − x

x3

]

×
[ (

x2m2
π

q2
2⊥ + x2m2

π

)2
]

·
∣∣∣∣Ã (

x, q2
2⊥

)

×
(

q̂1⊥ − 2q2⊥
q2⊥ · q̂1⊥

q2
2⊥ + x2m2

π

)

+B̃
(
x, q2

2⊥
)

q̂1⊥

∣∣∣∣
2

. (28)

The scalar functions Ã(x, q2
2⊥) and B̃(x, q2

2⊥) are defined in
Eqs. (24) and (25). Introducing the functions λ1(x, q2

2⊥) and
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λ2(x, q2
2⊥) of Eqs. (11) and (12) that describe the non-Born

contributions we get

Ã
(
x, q2

2⊥
) = 1 − x2

4(1 − x)

(
q2

2⊥ + x2m2
π

x2m2
π

)2

λ1
(
x, q2

2⊥
)
,

(29)

B̃
(
x, q2

2⊥
) = x2

2(1 − x)

(
q2

2⊥ + x2m2
π

x2m2
π

)
λ2

(
x, q2

2⊥
)
. (30)

The approximations leading to the cross-section distribu-
tions described by Eqs. (28)–(30) demand that the pionic
radiation is hard, that the transverse components of the vectors
q2 and p2 are much smaller than their longitudinal components,
and that we are in the Coulomb dominated region where the
length of the vector q1⊥ = p2⊥ + q2⊥ is of a size similar to
that of q1z = qmin.

It is important to realise that although the cross-section
distribution in general depends on the angle

µ = q̂1⊥ · q̂2⊥ = cos ϕ12, (31)

the arguments of the polarizability functions λ1 and λ2 do not.
We end by reemphasizing that s, t , and u are variables of

the virtual pion-Compton scattering. The momentum transfer
squared to the nucleus is

− tA = q2
1⊥ + q2

min. (32)

IV. UNDER THE COULOMB PEAK: I

Results concerning the pion polarizabilities are most easily
discussed for the phase-space region where the transverse
momentum q2⊥ is small, to be more precise,

q2
2⊥ � x2m2

π . (33)

The same restriction then applies to p2
2⊥, since in the Coulomb

region the size of their vector sum q1⊥ = |q2⊥ + p2⊥| must
be of the order of qmin, and since we deduce from Eq. (21)
that the ratio qmin/xmπ = mπ/2E2 must be utterly small. In
this kinematical situation the variables s, t , and u of the pion-
Compton amplitude, Eq. (26), become simple functions of x

s = m2
π

/
(1 − x),

t = −x2m2
π

/
(1 − x),

u = (1 − x)m2
π .

(34)

The cross section can be written as
dσ

d2q1⊥d2q2⊥dx

= 4Z2α3

π2m4
π

[
q2

1⊥(
q2

1⊥ + q2
min

)2

] [
1 − x

x3

]
·

×
∣∣∣∣1 + x2

1 − x

(
−1

4
λ1(x) + 1

2
λ2(x)

)∣∣∣∣
2

, (35)

with x = ω2/E1 from Eq. (18). We conclude that in general
the contributions from the pion structure terms are small. Only

if x is very near unity do we get a substantial contribution. This
means bremsstrahlung photons of energies very near those of
the incident pion. We also observe that when x ≈ 1 the energy
in the pion-Compton scattering may become so large that the
threshold approximation to the polarizability functions breaks
down.

Our model expression for the combination of polarizability
functions encountered in Eq. (35) is

−1

4
λ1(x) + 1

2
λ2(x)

= −1

2
gσ→ππgσ→γ γ

1 − x

x2 + m̂2
σ (1 − x)

− 1

8
m2

πg2
ρ→πγ

×
[

1

1 − (
m̂2

ρ − im̂ρ�̂ρ(x)
)
(1 − x)

+ 1

1 − m̂2
ρ

/
(1 − x)

]

+ 1

8
m2

πg2
a1→πγ

[
1

1 − (
m̂2

a1
− im̂a1 �̂a1 (x)

)
(1 − x)

+ 1

1 − m̂2
a1

/
(1 − x)

]
, (36)

with masses and widths normalized to the pion mass, m̂ =
m/mπ and �̂ = �/mπ . Remember that resonance widths are
non-vanishing only if the pion-Compton c.m. energy s(x) is
above the threshold energy for resonance decay.

We illustrate the sensitivity to the polarizability functions
and their energy dependence by plotting in Fig. 4 the
proportionality function

R(x, λ(x)) =
∣∣∣∣1 + x2

1 − x

(
−1

4
λ1(x) + 1

2
λ2(x)

)∣∣∣∣
2

, (37)

together with R(x, λ(0)). The curves are plotted for x in the
interval (0.6, 0.97) and the input parameters are those of the
exchange model of Sec. II. It is feasible to extract information
about the polarizability functions only if R(x, λ(x)) deviates
appreciably from unity, which occurs when x approaches one.
When this happens the curves for R(x, λ(x)) and R(x, λ(0))
start to diverge from each other. Thus, when the polarizability

0.6 0.7 0.8 0.9 1

0.4

0.6

0.8

1

x

R
(x

)

FIG. 4. Proportionality function R(x) in the Coulomb region, at
momentum transfers q2

2⊥, p2
2⊥ � x2m2

π . The solid line obtains in the
full calculation, the dash-dotted line in the threshold approximation.
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contributions become appreciable the threshold approximation
deteriorates. The structure in the solid curve at x ≈ 0.96, corre-
sponding to

√
s ≈ mρ , is caused by the ρ-meson contribution

to the pion-Compton amplitude.

V. UNDER THE COULOMB PEAK: II

Our investigation presumes two conditions; the transverse
components of the vectors p2 and q2 must be much smaller than
their longitudinal components, and their sum p2⊥ + q2⊥ =
q1⊥ must be in the Coulomb region, i.e., in the region where
the length of q1⊥ is of a size similar to qmin. If these conditions
are not met, we are outside the Coulomb peak and nuclear
contributions play a role. Even though the sum of the two
vector components p2⊥ and q2⊥ must be very small, this need
not be so for the two vector components individually. We shall
now consider the case where they are large, meaning large in
comparison with mπ .

The general expression for the cross-section distribution,
Eq. (28), can be rewritten as

dσ

d2q1⊥d2q2⊥dx

= 4Z2α3

π2m4
π

[
q2

1⊥(
q2

1⊥ + q2
min

)2

] [
1 − x

x3

]

×
[ (

x2m2
π

q2
2⊥ + x2m2

π

)2
]

·
[ ∣∣Ã(

x, q2
2⊥

)∣∣2 {
1 − µ2

× (
1 − κ2)

} + 2� (
Ã

(
x, q2

2⊥
)
B̃∗(x, q2

2⊥
)) {

1 − µ2

× (1 − κ)} + ∣∣B̃(
x, q2

2⊥
)∣∣2

]
, (38)

with κ defined as

κ
(
x, q2

2⊥
) = x2m2

π − q2
2⊥

x2m2
π + q2

2⊥
. (39)

A simple angular dependence enters through the variable µ =
q̂1⊥ · q̂2⊥ and an average over angles replaces µ2 by its average
of one half.

In Sec. IV we studied the small momentum transfer
region where q2

2⊥ � x2m2
π . As this implies κ ≈ 1 the angular

dependent terms in Eq. (38) drop out. Also, the right hand side
of this equation was found to be independent of q2

2⊥, leaving
only a dependence on x, and the characteristic Coulomb-peak
prefactor depending on q2

1⊥.
Now, we turn to the region of large transverse momenta,

i.e., momenta such that

q2
2⊥ 
 x2m2

π . (40)

As explained at the beginning of this section, this implies
that, under the Coulomb peak, p2

2⊥ 
 x2m2
π as well. The

expressions for the kinematic variables in the Compton process

then simplify somewhat, replacing Eq. (26) by

s = m2
π + q2

2⊥
x(1 − x)

,

t = − q2
2⊥

1 − x
,

u = m2
π − q2

2⊥
x

.

(41)

At large tranverse momenta, it follows from the definition
of κ , Eq. (39), that κ ≈ −1. As a consequence, in the cross-
section distribution of Eq. (38), the angular dependence in the
term proportional to |Ã|2 drops out, and after integration over
angles the cross term proportional to �(ÃB̃∗) vanishes. Since
the term proportional to |B̃|2 carries no angular dependence
an average over angles leads to the cross-section distribution

dσ

dq2
1⊥dq2

2⊥dx
= 4Z2α3

q4
2⊥

[
q2

1⊥(
q2

1⊥ + q2
min

)2

]
x(1 − x)

·[ ∣∣Ã(
x, q2

2⊥
)∣∣2 + ∣∣B̃(

x, q2
2⊥

)∣∣2 ]
. (42)

The invariant functions entering this equation are defined in
Eqs. (24) and (25) and Eqs. (7) and (8), and read

Ã
(
x, q2

2⊥
) = 1 − 1

4x2(1 − x)

(
q2

2⊥
m2

π

)2

λ1
(
x, q2

2⊥
)
, (43)

B̃
(
x, q2

2⊥
) = 1

2(1 − x)

(
q2

2⊥
m2

π

)
λ2

(
x, q2

2⊥
)
. (44)

We notice that the polarizability contributions to the functions
Ã and B̃ are enhanced by powers of the factor q2

2⊥/m2
π .

Finally, in the phase-space element of the cross-section
distribution (42) we may introduce the momentum transfer to
the nucleus tA via the identity

dq2
1⊥ = −dtA. (45)

We illustrate the sensitivity of the cross-section distribu-
tions to the polarizability functions and their energy depen-
dence in the same way as we did for small transverse momenta
in Sec. IV. Thus, introduce the proportionality function

R
(
x, q2

2⊥; λ
(
x, q2

2⊥
)) = ∣∣Ã(

x, q2
2⊥

)∣∣2 + ∣∣B̃(
x, q2

2⊥
)∣∣2

(46)

which now depends on both x and q2
2⊥. Putting λ1 and λ2 equal

to zero leads to R = 1, the value for a point-like pion.
In Fig. 5 we graph the proportionality function

R(x, q2
2⊥; λ(x, q2

2⊥)) and the function R(x, q2
2⊥; λ(0)), which

is the same function but evaluated with the threshold values
of the polarizabilities. For the illustration we have chosen
q2⊥ = 3.5mπ . From Eq. (41) it then follows that s � 50m2

π and
far from its threshold value s = m2

π . The curves are plotted
for x in the region 0.2 � x � 0.8, corresponding to

√
s in

the region 990 �
√

s � 1230, in units of MeV. In view of the
large energies it is not astonishing to note that the threshold
approximation is unrealistic. The solid curve which represents
the full calculation is not symmetric around x = 0.5 even
though the energy s is. The reason is that neither t nor u

is symmetric. Therefore, the cross sections at x = 0.4 and
x = 0.6, e.g., measure pion-Compton cross-sections at the
same energy but at completely different scattering angles.
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GÖRAN FÄLDT AND ULLA TENGBLAD PHYSICAL REVIEW C 76, 064607 (2007)

0.2 0.4 0.6 0.8

0.4

0.8

1.2

x

R
(x

)

FIG. 5. Proportionality function R(x, q2
2⊥; λ(x, q2

2⊥)) for q2⊥ =
p2⊥ = 3.5mπ in the Coulomb region. The solid line obtains in the
full calculation, the dash-dotted line in the threshold approximation.

However, since the cross-section distribution displayed in
Fig. 5 is markedly different from the corresponding distribu-
tion for point-like pions, R = 1, hard pionic bremsstrahlung
should be a good place for probing models for pion-Compton
scattering.

VI. SUMMARY

Hard bremsstrahlung in high-energy pion-nucleus scat-
tering in the Coloumb region has been investigated. The
kinematics of the reaction can be read off from

π−(p1) + A(p) → γ (q2) + π−(p2) + A(p′).

The restriction to the Coulomb region means that the mo-
mentum transfer to the nucleus is of the order of qmin =
m2

πω2/(2E1E2). As a consequence, the production amplitude
is dominated by the one-photon exchange diagram and the
cross-section distribution exhibits the well-known Coloumb-
production peak structure. In the Coloumb region the sum of
the transverse momenta

p2⊥ + q2⊥ = q1⊥,

is tiny, although the transverse momenta themselves need not
be that small.

We have derived an expression for the cross-section
distribution, Eq. (38), valid when the transverse momenta of
the emerging photon and pion are much smaller than their
longitudinal momenta. The arguments of this expression are
x = ω2/E1 and q2

2⊥, which for all practical purposes is the
same as p2

2⊥. The nuclear production amplitude involves the
on-shell pion-Compton amplitude at energies and angles that
depend on the values of x and q2

2⊥, Eq. (26). The pion-Compton
amplitude is modelled as a sum of the point-like Born terms
and the polarizability terms, represented by σ, ρ, and a1

exchange-diagram terms.
We have illustrated our model by considering two limits; in

the first one, the limit of small transverse momenta, the sizes
of both |q2⊥| and |p2⊥| are much smaller than mπ , whereas
in the second one, the limit of large transverse momenta, their

sizes are both much larger than mπ , but in such a way that their
vector sum remains tiny.

In the region of small transverse momenta the pion-
Compton amplitude depends only on x. When x is small the
influence of the polarizability functions on the bremsstrahlung
cross section is weak. In order to be noticed we must
go to x-values near unity. Then, the energy at which the
pion-Compton amplitude is evaluated becomes so large that
the threshold approximation of the polarizability functions
becomes questionable. To extract reliable values for the famous
coefficients απ and βπ requires accurate experiments.

In the region of large transverse momenta the effective
energies in the pion-Compton amplitudes are several times
larger than the pion mass and the threshold approximation
to the polarizability functions not applicable. Moreover, the
polarizability functions develop imaginary parts that are
important. We have also stressed that the nuclear cross-section
distribution is not related in a simple way to a pion-Compton
cross section at a fixed energy, since the energy s and
momentum transfer t in the pion-Compton scattering are
functions of x and q2

2⊥. However, the bremsstrahlung cross
section strongly depends on the pion-Compton amlitude and
thus offers a good opportunity to check models for this
amplitude.

A bremsstrahlung experiment with pions of 40 GeV/c was
undertaken some years ago [4]. The cross-section distribution
was measured in the Coulomb region and the pion polarizabil-
ities were extracted in the equivalent photon approximation.
The sum απ + βπ was found to be consistent with zero,
in accordance with predictions of chiral-Lagrangian theory.
Furthermore, it was found that απ = (6.8 ± 1.4) × 10−4 fm3,
about twice as large as predicted. A new, similar, experiment
has been performed by the COMPASS collaboration at CERN.
Their results are at the moment being analyzed.
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APPENDIX

In this appendix the parameters of the pion-Compton model
are discussed.

The radiative decay of the sigma meson has width and
coupling constant related by

�(σ → γ γ ) = πα2g2
σ→γ γ m3

σ . (A1)

For the strong decay of the sigma meson the corresponding
relation is

�(σ → π+π−) = 1

16πmσ

g2
σ→ππ

√
1 − 4m2

π

m2
σ

. (A2)

Numerical values for the coupling constants have been
extracted by Fil’kov and Kashevarov [7] from a study of data
for the reaction γ γ → π0π0. Their results are �(σ → γ γ ) =
0.62 keV, �(σ → π+π−) = 803 MeV, and mσ = 547 MeV.

064607-6



HARD PION BREMSSTRAHLUNG IN THE COULOMB REGION PHYSICAL REVIEW C 76, 064607 (2007)

For the product of coupling constants these numbers give
gσ→γ γ gσ→ππ = 0.762, which results in a value for βπ+ almost
four times as large as the chiral-Lagrangian prediction. In view
of the uncertainty of the σ parameters we shall choose

gσ→γ γ gσ→ππ = 0.400, (A3)

giving a value more in line with experimental prejudices [4,5].
The s-channel propagators of the ρ and a1 mesons are given

Breit-Wigner shapes

BL(s) = m2
0(

m2
0 − s

) − im0�L(s)
, (A4)

�L(s) = �0

(
k

k0

)2L+1
m0√

s
θ
(√

s − m1 − m2
)
, (A5)

where �0 and m0 are nominal values and k0 the decay
momentum at mass m0. The momentum is

k(s) = 1

2m0
[(s − (m1 + m2)2)(s − (m1 − m2)2)]1/2. (A6)

Furthermore, L = 1 for ρ → ππ whereas L = 0 for a1 →
ρπ . The total nominal widths are �ρ = 150 MeV, �a1 =
450 MeV, and the masses are mπ = 139.6 MeV, mρ =
775 MeV, ma1 = 1230 MeV.

The relations between width and coupling constant for the
ρ meson is

�(ρ+ → π+γ ) = 1
3αg2

ρ→πγ

[
m2

ρ − m2
π

2mρ

]3

. (A7)

With a numerical value for the width �(ρ+ → π+γ ) =
68 keV the coupling constant becomes

mρgρ→πγ = 0.5644. (A8)

The relations between width and coupling constant for the
a1 meson is

�(a+
1 → π+γ ) = 1

3αg2
a1→πγ

[
m2

a1
− m2

π

2ma1

]3

. (A9)

This relation is exactly the same as the one for the ρ meson
even though the parities of the ρ and a1 mesons differ. With a
numerical value for the width �(a+

1 → π+γ ) = 640 keV the
coupling constant becomes

ma1ga1→πγ = 1.334. (A10)
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