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Fission rate and transient time with a quantum master equation
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The induced nuclear fission is considered a transport process over the fission barrier underlying dissipative
forces. Using a quantum master equation for the reduced density matrix, the influence of microscopical diffusion
coefficients on the total fission time and transient time is studied. The influence of transient effects on the
probability of the first-chance fission is estimated. For different temperatures and friction coefficients, the
quasistationary fission rate is compared with the analytical Kramers formula.

DOI: 10.1103/PhysRevC.76.064604 PACS number(s): 24.60.−k, 24.75.+i

The time scale of an induced fission process at moderate
to high excitation energies is of interest at present from
the theoretical and experimental points of view [1–3]. The
experimental data indicate that the number of neutrons, γ rays,
and light particles evaporated prior to fission considerably
exceeds the expectations of the statistical model [4]. The
possible explanation for this observation is based on the
facts that the time-dependent diffusive flux over the fission
barrier (saddle point) strongly depends on the nuclear viscosity
and there exists a time delay (a transient time) between the
beginning of the diffusion fission process and the attainment
of the stationarity of probability flow [5–10]. Indeed, most
of observations listed under Ref. [4] are sensitive to the
whole time up to scission: the transient time plus the saddle-
to-scission time. However, only the transient time affects
on the survival probability of the excited nucleus [1,3]. If
the transient time is of the order or longer of a nucleon
evaporation time, one can expect that the nucleon emission
competes favorably with fission. So, the knowledge of the
total fission and transient times that depend on the nuclear
viscosity is crucial for the interpretation of the experimental
data.

The dissipation of energy from the collective degrees of
freedom into the internal excitation of the system is a crucial
but controversial problem in nuclear theory [11]. With the cal-
culated static potential energy and experimental postscission
data [12], it has been found that only rather weak dissipation
is compatible with existing experimental data for the thermal-
neutron induced fission. This semiempirical method avoids
any assumptions about the dynamics of the nuclear motion
or the dissipation mechanism in fission. In spite of intensive
theoretical and experimental efforts, the conclusions on the
temperature and shape dependence of nuclear friction are not
convinced [1]. The question how fast a highly excited nuclear
system changes its shape is important for the understanding
of various nuclear reactions. The comparison of theoretical
results of Ref. [13] and experimental data shows that the
prescission neutron multiplicities and other observables of
the fission of highly excited nuclei can be reproduced using the
modified one-body mechanism with the reduction coefficients
0.25—0.5.

The experimental data on nuclear dissipation have been
often interpreted by using the stochastic classical Langevin
equation or classical diffusion Fokker-Planck equation, where
mainly a few collective coordinates, elongation, neck, and
mass asymmetry parameters, are used for describing the
possible shapes of the fissioning nucleus from the ground-state
configuration up to the scission configuration of two touching
fragments [1,3,13–22]. Although many nuclear properties
arise from quantum effects, the theory of fission is still
expressed mainly in terms of classical dynamics for the
one-body or two-body dissipation mechanisms. The influence
of relaxation effects on the time dependence of the fission
decay width has been carefully studied in Refs. [1,3,5–10,13]
using the numerical solution of the classical Fokker-Planck
and Langevin equations.

Our objective is to study the fission dynamics within
the microscopical model to reveal the dissipative nuclear
properties. The question raises to what extent the microscopic
effects may play an important role in the fission process
and how these effects change the characteristic fission times.
The evolution of quantum system in the relevant collective
fission coordinate q, which is coupled with internal degrees of
freedom, can be described within a density matrix formalism.
The linear coupling in q between the collective and internal
subsystems is usually considered [23]. Then, the reduced
density matrix ρ for the collective subsystem obeys the
following equation [24–26]:

d

dt
ρ = − i

h̄
[H̃c, ρ] − iλp

2h̄
[q, {p, ρ}+] (1)

−Dpp

h̄2 [q, [q, ρ]] + Dqp

h̄2 ([p, [q, ρ]] + [q, [p, ρ]]),

where
H̃c = 1

2µ
p2 + Ũ (q), (2)

Dpp = T µγ 2λp

γ (γ + λp) + ωm
2

×
[

1 + 2
∞∑

k=1

νkγ λp + ωm
2(γ + νk)

(γ + νk)(νk(νk + λp) + ωm
2)

]
, (3)
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Dqp = T γλp

2[γ (γ + λp) + ωm
2]

×
[

1 + 2γ

∞∑
k=1

ωm
2 − νkγ

(γ + νk)(νk(νk + λp) + ωm
2)

]
(4)

are the renormalized collective Hamiltonian, diffusion co-
efficient in momentum, and mixed diffusion coefficient,
respectively [27]. Here, λp is the reduced dissipation (or
friction) coefficient and νk = 2πT · k/h̄. The expressions (13)
and (14) for the diffusion coefficients contain parameter γ ,
which characterizes the width of the internal excitations and
satisfies the condition γ � ωm, i.e., the relaxation time of
the internal subsystem is much shorter than the characteristic
time of the collective motion [26]. We set h̄γ = 12 MeV in
our calculations. In general case, the friction and diffusion
coefficients depend also on q at given coupling strength of
the collective subsystem with the environment. However, we
found that at moderate to high excitation energies of the heat
bath this dependence is rather weak to be disregarded [27].
Because the friction and diffusion coefficients are derived
with a linear coupling in the coordinate between the collective
subsystem and the environment, we have zero diffusion Dqq =
0 and friction λq = 0 in the coordinate [25,26].

The master equation for ρ in the coordinate representation
[ρ(t, x, y) = 〈x|ρ|y〉] is written as

d

dt
ρ(t, x, y) = L(x, y)ρ(t, x, y),

L(x, y) = −i

[
h̄

2µ
(∂x,x − ∂y,y) + Ũ (x) − Ũ (y)

]

− 1

2
λp(x − y)(∂x − ∂y) − Dpp

h̄2 (x − y)2

− iDqp

h̄
[(∂x + ∂y)(x − y) + (x − y)(∂x + ∂y)].

(5)

Here, we use the following notations: ∂k = ∂/∂k, ∂k,k =
∂2/∂2k. Making the following coordinate transformations
x = q + z/2 and y = q − z/2, and expanding the potential
in z, we obtain the equation for ρ(t, q, z):

d

dt
ρ(t, q, z) = L(q, z)ρ(t, q, z),

L(q, z) = i
h̄

µ
∂q,z − izŨ ′(q) − i

1

24
z3Ũ ′′′(q) (6)

−λpz∂z − Dpp

h̄2 z2 − iDqp

h̄
[z∂q + ∂qz].

Here, Ũ ′(q) = ∂Ũ/∂q and Ũ ′′′(q) = ∂3Ũ/∂q3. Equation (6)
is solved by using an oscillator basis:

ρ(t, q, z) =
n∑

k=0

fk(t, q)Bk(σ, z),

(7)

Bk(σ, z) = ik

k!

(
k

2

)
!e− z2

8σ2 Hk

( z

2σ

)
.

Here, Bk(σ, 0) = 1 and 0 for even and odd k, respectively. We
found that the diffusion coefficient Dpp in the minimum of the

potential, from which the escape is treated, and the optimal
basis parameter σ are related: 4σ 2Dpp = h̄2λp. The proposed
method allows us to obtain ρ for any continuous potential and
any set of friction and diffusion coefficients. Because the used
friction and diffusion coefficients are self-consistently derived
through the fully coupled oscillator model [26,27], they
preserve the positivity of the density matrix at any time and

Trρ̂ =
∑

k=0,2,4,...

∫ ∞

−∞
fk(t, q)dq = 1. (8)

Solving the master equation (6) with the sets of diffusion
coefficients mentioned above and at given λp, we obtain
the time-dependent density matrix ρ(t, q, 0) = 〈q|ρ(t)|q〉 in
coordinate representation and find the probability P (t) of
escape of the Gaussian packet over the barrier at q = qb:

P (t) =
∫ ∞

qb

ρ(t, q, 0)dq =
∑

k=0,2,4,...

∫ ∞

qb

fk(t, q)dq (9)

as well as the time-dependent value of the probability rate

	(t) = 1

1 − P (t)

dP (t)

dt

= ih̄

µ[1 − P (t)]

∫ ∞

qb

dq∂q,zρ(t, q, z)|z=0

= −ih̄

µ[1 − P (t)]

∑
k=1,3,5,...

fk(t, qb)∂zBk(σ, z)|z=0. (10)

The time-dependent fission width 
f (t), related to the escape
rate 	(t), is then defined as 
f (t) = h̄	(t).

Here, we study the escape of the Gaussian packet from a left
well to a deeper right well of an asymmetric bistable potential:

Ũ (q) = −0.838q − 0.118q2 + 0.01q4. (11)

In Fig. 1, qm and q = qb = 0 are the positions of the left
minimum and the barrier, respectively, Bf is the depth of
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FIG. 1. The used asymmetric bistable potential is partly shown.
The schematically shown Gaussian packet in the left well decays into
the right-hand side of the barrier.
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the left well. We identify this barrier with the saddle point,
the minimum with the initial configuration of the fissioning
nucleus, and the much deeper minimum at q > 0 with the
completed fission process. The depth of the second minimum is
116.7 MeV at qR = 12.23 fm to ensure that at the temperature
considered here no backflow into the shallow minimum at qm

is possible. Of course, in reality there is no potential increase
at large positive values of q. This choice of Ũ (q) was dictated
to keep the bound domain of the numerical integration of
Eq. (1) in q. We set the shallow minimum at qm = −3.41 fm
of Bf = 3.7 MeV, which is the height of the fission barrier of
248Cm. We consider the mass parameter µ = Am0/4 (m0 is
the nucleon mass), for which the corresponding frequencies
in the left potential minimum and on the top of the barrier
are h̄ω̃m = 1.2 MeV and h̄ω̃b = 1.06 MeV, respectively, at
A = 248. The chosen parameters, which are related to the
nuclear fission of 248Cm are taken the same as in Ref. [1,6,8].
The coordinate q is related to the deformation coordinate.

With the sets of microscopic diffusion coefficients given
in Eqs. (3) and (4) we consider the escape of the initial
Gaussian packet, which is centered at the left potential
well at q(0) = qm and p(0) = 0, and has the variances
σqp(0) = 0, σqq (0) = T ∗/[µω2

m], and σpp(0) = h̄2/[4σqq (0)],
where T ∗ = (h̄ωm/2) coth[h̄ωm/(2T )] is the quantum effective
temperature. Due to the quantum-mechanical uncertainty
principle, the initial equilibrium probability distribution has
a minimal width. It should be noted that the results are not
sensitive to a reasonable variation of the initial variances at
fixed collective energy.

We apply the initial conditions and the numerical procedure
used for solving the quantum master equation (1) to study
the fission of the nucleus 248Cm. As follows from our
estimations, the viscous dissipation smeares the packet toward
the quasiequilibrium in the left minimum long before it reaches
the saddle point, and the flux over the saddle point slowly
rises toward its quasistationary value. The quasistationary
regime is finally established when the distribution settles
around the position in between the bottom of the left well
and the saddle point. The mean value 〈q(t)〉 and variance
σqq(t) = 〈q2(t)〉 − 〈q(t)〉2 of q increase with time and their
slopes increase with decreasing λp. Here, we treat the values of
h̄λp from 0.66 to 6.6 MeV. We attribute the friction dependence
to the fact that decreasing λp enhances the mobility of the
system. From the calculations we conclude that the spreading
of the probability distribution during the time in which the
quasistationary flux sets in is rather insensitive to the width of
the initial distribution.

The time dependence of the fission rate over the saddle
point is shown in Fig. 2 for several values of nuclear
friction coefficient related to the underdamped (λp < 2ωm) or
overdamped (λp > 2ωm) regime and different temperatures.
One can see that the fission rate or width as a function of time
can be characterized by three main features: a delayed onset, a
rising part, and a stationary value. The transition effects take a
so-called transient time τ , until the fission rate (or decay width)
reaches 90% of its stationary value. The overdamped motion
in q leads to a much later onset of the fission process and to
smaller value of the quasistationary flow over the barrier. The
initial suppression of the fission rate during the transient time τ
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FIG. 2. The fission rate 	(t) defined in Eq. (10) for various values
of the reduced dissipation coefficients and indicated temperatures.
The results obtained for the h̄λp = 0.66, 1.32, 3.3, and 6.6 MeV are
presented by solid, dashed, dotted, and dash-dotted lines, respectively.

may increase the chance of excited nucleus to emit a particle at
the earliest times. As a consequence of the transient behavior of
the fission, the survival probability of highly excited compound
nucleus can be strongly enhanced.

The numerical solutions of classical Langevin and Fokker-
Planck equations show also that the value of 	(t) does not
strongly rise already at very early times [1,3,6,8]. However, in
the quantum case the transient times is larger up to factor of 2
than those in the classical case based on Langevin equation [1].
With quantum treatment the transient time is longer than with
classical one because the negative value of the mixed diffusion
coefficient Dpq keeps the fission rate smaller. At the same time
the asymptotic fission rates in both cases are almost the same,
especially at high temperatures. Therefore, in the quantum
treatment of the time evolution of fission the neutrons have
more chance to be emitted at the beginning of the process than
in the classical treatment.

In Fig. 3 one can see that the transient time firstly decreases
with increasing friction, attains a minimum near λp ≈ ωm,
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FIG. 3. The transient time evaluated at the saddle point as a
function of the reduced dissipation coefficients. The results obtained
for the T = 0.7, 1, 2, 3, 4, and 5 MeV are presented by solid, dashed,
dotted, dash-dotted, dash-dot-dotted, and thin solid lines, respectively.

and then increases again as a consequence of damping. The
quantum results reproduce the trend of the classical ones [8].
The transient time varies from ∼10−21 to ∼10−20 s for the wide
ranges of friction and temperature considered. The value of τ

decreases slowly with increasing temperature. For example,
at λp ≈ ωm we have τ ≈ 10−21 s for T = 5 MeV and τ ≈
4 × 10−21 s for T = 0.7 MeV. Figures 4 and 5 show that the
transient time is about 5–230 times smaller than the fission
time τf ≈ 1/	(∞) [

∫ τf

0 	(t)dt = 1] evaluated at the saddle
point. In Fig. 4 the total lifetime of the fissioning nucleus
increases with the reduced dissipation coefficient from 5.4 ×
10−19 s to 3 × 10−18 s at T = 0.7 MeV (the excitation energy
E∗

CN = 12.2 MeV), from 1.7 × 10−19 s to 8.3 × 10−19 s at T =
1 MeV (E∗

CN = 24.8 MeV), from 3 × 10−20 s to 1.5 × 10−19 s
at T = 2 MeV (E∗

CN = 99.2 MeV), and from 8.5 × 10−21 s
to 4.2 × 10−20 s at T = 5 MeV (E∗

CN = 620 MeV). Thus,
with increasing T from T = 0.7 MeV (T < Bf ) to 5 MeV
(T > Bf ) the fission time decreases faster than the transient
time in the underdamped regime. In the overdamped regime
the transient time contribution to the fission time increases
with T for T � Bf and decreases with T for T > Bf . So, the
contribution of τ in τf is pronounced only for small values of
λp (the underdamped regime) and large values of T .

In Fig. 4 the analytical Kramers quasistationary fission rate

	Kr = ωm

2πωb

([
ω2

b + λ2
p

/
4
]1/2 − λp/2

)
exp[−Bf /T ] (12)

is proven to reproduce rather closely the exact solution in the
underdamped regime as well as in the overdamped regime.
The largest deviations between 	Kr and 	(∞) are about of
71% at h̄λp = 0.66 MeV and 44% at h̄λp = 6.6 MeV for
T = 0.7 MeV. The modification T → T ∗ in Eq. (12) leads to
better agreement at h̄λp = 0.66 MeV: the deviation is about of
37%. This modification permits to overcome the limitations of
Kramers description at low temperatures in the underdamped
regime. Although in literature the validity limit of the Kramers
stationary solution of the Fokker-Planck equation is given
by the condition T/Bf < 1, one can see that the relative
deviation between 	Kr and 	(∞) for temperature T = 5 MeV

FIG. 4. The fission time evaluated at the saddle point as a function
of the reduced dissipation coefficients at indicated temperatures.
The results obtained with the time-dependent fission rate, Kramers
quasistationary fission rate, and modified Kramers quasistationary
fission rate (T → T ∗) are presented by solid, dotted, and dashed
lines, respectively.

(T > Bf ) is about of 16% at h̄λp = 0.66 MeV and about of
11% at h̄λp = 6.6 MeV. The Kramers rate becomes smaller
than 	(∞) for temperatures exceeding the fission barrier.

From Fig. 5 one can see that in a highly excited (E∗
CN �

100 MeV) heavy nucleus the width of neutron emission

n = h̄/τn becomes comparable to or larger than the transient
width h̄/τ . In the contrast to the transient time, the neutron
emission time decreases roughly exponentially with increasing
excitation energy: from 1.5 × 10−17 s at T = 0.7 MeV to
1.5 × 10−22 s at T = 5 MeV. We apply in the calculations
the following analytical expression for the neutron emission
width [28]
n = (T 2A2/3/[20π ]) exp(−Bn/T ), where Bn =
6.2 MeV is the binding energy of neutron in nucleus 248Cm.

The average neutron multiplicity during the transient time
can be estimated by a simple formula: ν ≈ τ/τn (Fig. 5).
The emitted neutron during the transient time carries off
energy, cools the compound nucleus, and thereby terminates
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FIG. 5. The calculated ratios τ/τn and τf /τ as functions of the
reduced dissipation coefficients. The results obtained for the T =
0.7, 1, 2, 3, 4, and 5 MeV are presented by solid, dashed, dotted,
dash-dotted, dash-dot-dotted, and thin solid lines, respectively.

the occurrence of first-chance fission. The emission dur-
ing the saddle-to-scission time is also possible. However,
only the transient time has an influence on the choice of the
system to undergo fission or survival. A significant reduction
of the probability of the first-chance fission

Pf (E∗
CN, λp) = 
n

h̄

∫ ∞

0
dt exp[−
nt/h̄]P (t) (13)

{η(t) = 
n

h̄
exp[−
nt/h̄] is the probability that a neutron is

emitted at time t} due to transient effects can be analytically
shown. Using analytical approximate expression [θ (t) is the
step function]

P (t) = 1 − [θ (τ − t) + exp[−	(∞)t]θ (t − τ )],

Eq. (13) is reduced to [6]

Pf (E∗
CN, λp) = P st

f (E∗
CN, λp) exp[−
nτ/h̄]

= h̄	(∞)

h̄	(∞) + 
n

exp[−
nτ/h̄]. (14)

In the case of τ � τn = h̄/
n the transient behavior of the
fission width effectively reduces the fission probability
Pf with respect to its stationary model value P st

f . The
exact numerical results of Eq. (13) show in Fig. 6 that
the condition 
nτ/h̄ � 1 occurs at ECN � 100 MeV for
underdamped motion as well as for overdamped motion.
The deviation between Pf (E∗

CN, λp) and P st
f (E∗

CN, λp)
increases with the excitation energy and friction:
P st

f (E∗
CN = 99.2 MeV, λp = 0.66h̄−1 MeV)/Pf (E∗

CN =
99.2 MeV, λp = 0.66h̄−1 MeV) = 1.7, P st

f (E∗
CN = 620 MeV,

λp = 0.66h̄−1 MeV)/Pf (E∗
CN = 620 MeV, λp =

FIG. 6. The calculated log[P st
f /Pf ] (upper part) as a function

of the temperature at h̄λp = 0.99 (solid line), 2.1 (dashed line), 3.3
(dotted line), 4.5 (dash-dotted line), and 6.6 (dash-dot-dotted line)
MeV. The calculated effective reduced dissipation coefficient (lower
part) as a function of friction at T = 2 (solid line), 3 (dashed line),
4 (dotted line), and 5 (dash-dotted line) MeV.

0.66h̄−1 MeV) = 11.7, and P st
f (E∗

CN = 99.2 MeV, λp =
6.6h̄−1 MeV)/Pf (E∗

CN = 99.2 MeV, λp = 6.6h̄−1 MeV) =
1.8, P st

f (E∗
CN = 620 MeV, λp = 6.6h̄−1 MeV)/

Pf (E∗
CN = 620 MeV, λp = 6.6h̄−1 MeV) = 128.5. The

sensitivity of the dependence of the fission probability on λp

increases with excitation energy. It should be noted that at
higher excitation energies the transient behavior affects more
steps of the de-excitation cascade.

The requirement Pf (E∗
CN, λp) = P st

f (E∗
CN, λ̃p) can be sat-

isfied with the stationary fission width h̄	(∞) by using the
effective friction coefficient

λ̃p = ω2
b[

ω2
b + λ2

p

/
4
]1/2 − λp/2

P st
f (E∗

CN, λp)

Pf (E∗
CN, λp)

(15)

in the case of λ̃p � ωb, 
f � 
n and af /an=1, where af = a

and an = a are the level-density parameters for fission and
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neutron emission, respectively. At fixed af /an the first-chance
fission probability can be reproduced within the stationary sta-
tistical model (with Kramers modification of the Bohr-Wheeler
statistical model result but without transients) by increas-
ing effectively the reduced dissipation coefficient (λ̃p > λp)
(Fig. 6). At λp ≈ ωm the value of λ̃p is minimal that correlates
with the behavior of the transient time. Note that the coupling
of the main fission coordinate to other degrees of freedom
is approximately equivalent to an extra friction and potential
and mass corrections in the corresponding one-dimensional
problem.

The fission of excited nuclei was considered a consequence
of quantum statistical fluctuations across the saddle point. With
the exact numerical solution of the quantum master equation
for the reduced density matrix we found a influence of the
quantum statistical effects on the time dependence of the fis-
sion process. In the quantum case the transient times are larger
by a factor of about 2 than those in the classical case based
on the Langevin equation. We calculated the fission rate for
the simple potential with one pronounced minimum and one
barrier. For the potentials having an additional structure (for
example, a potential barrier at the scission point), the fission
lifetime can be considerably longer than the calculated one.
It should be noted that the fission rate and the transient
time are not sensitive to the reasonable changes of the initial
Gaussian packet at fixed collective energy. At moderate to high
excitation energies the asymptotic fission rates in classical and
quantum cases are almost the same. The most realistic friction
coefficients in the range of h̄λp ≈ 1–2 MeV were suggested
from the study of deep inelastic collisions [29]. At h̄λp ≈
1 MeV the transient time changes from 10−21 s to 4 × 10−21

s with decreasing temperature from T = 5 MeV to T =

0.7 MeV. At the same time the fission lifetime varies from
10−21 to 5.4 × 10−19 s. The main contribution to the fission
time comes from the time spent by the fissioning nucleus
before the saddle point.

At large excitation energies (E∗
CN � 100 MeV) the average

neutron emission time becomes comparable to or smaller than
the transient time, and the deviation of the fission probability
from the value of the statistical model becomes considerably
large in the first steps of the de-excitation chain. It appears
that in the highly excited nuclei the fission is hindered
by the transient effects. To take the hindrance effectively
into consideration one can increase effectively the friction
coefficient in the stationary statistical model with Kramers
modification to reproduce the fission probability and particle
multiplicities. However, some rather detailed observables (for
example, the distribution of excitation energies at the moment
of fission) could not be correctly reproduced by strongly
increasing the friction coefficient.

The analytical Kramers formula with thermodynamics
temperature or with quantum effective temperature is rather
well suited in the under- and overdamped regimes. Kramers
rate is capable for reproducing the fission rate with sufficient
accuracy for a range of h̄λp values of main physical interest,
0.66 MeV � h̄λp � 6.6 MeV and 0.7 MeV � T � 5 MeV. We
verified the existence of a quasistationary regime of the
probability flow over the barrier at temperatures T > Bf .
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