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Three-body description of direct nuclear reactions: Comparison with the
continuum discretized coupled channels method
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The continuum discretized coupled channels (CDCC) method is compared with the exact solution of the
three-body Faddeev equations in momentum space. We present results for (i) elastic and breakup observables
of d + 12C at Ed = 56 MeV, (ii) elastic scattering of d + 58Ni at Ed = 80 MeV, and (iii) elastic, breakup, and
transfer observables for 11Be + p at E11Be/A = 38.4 MeV. Our comparative studies show that in the first two
cases, the CDCC method is a good approximation of the full three-body Faddeev solution, but for the 11Be exotic
nucleus, depending on the observable or the kinematic regime, it may miss some of the dynamic three-body
effects that appear through the explicit coupling to the transfer channel.
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I. INTRODUCTION

The strong coupling between elastic and breakup channels
in direct nuclear reactions involving deuterons led to the
development of the continuum discretized coupled channels
(CDCC) method with which an effective three-body problem
is solved approximately via the expansion of the full wave
function in a selected set of continuum wave functions of a
given pair subsystem Hamiltonian. Initial work by Johnson and
Soper [1] showed that deuteron breakup was very important to
understanding reactions involving the deuteron. In that work,
a two channel problem was solved in which the deuteron
continuum was represented by a single discrete s state. Later
developments by Rawitscher [2] and Austern [3] helped to
introduce a more realistic representation of the continuum;
further numerical implementations of the method proved its
feasibility [4]. Originally applied to reactions with the deuteron
(e.g., Ref. [5]), it has since been extended to describe reactions
with radioactive nuclear beams (e.g., Refs. [6–10]), namely, to
study elastic, transfer, and breakup cross sections that result
from the collision of a halo nucleus with a proton or a stable
heavier target such as 12C or 208Pb.

In a recent paper [11], CDCC results obtained with two
different basis sets, namely, the basis set using the continuum
of the projectile in the entrance channel and the one using
the continuum of the composite system in the final transfer
channel, led to substantially different breakup cross sections
for p(11Be, 10Be)pn. These findings raise concern about the
accuracy of the CDCC method, not only as a means to describe
reaction dynamics but also as an accurate tool for extracting
structure information on halo nuclei.

An alternative approach to the solution of effective three-
body problems is the solution of the Faddeev equations
[12] for the wave function components or the equivalent
Alt, Grassberger, and Sandhas (AGS) equations [13] for the
transition operators. The application of exact Faddeev/AGS
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equations to the study of direct nuclear reactions has been
overshadowed in the past by the difficulty in dealing with
the long-range Coulomb force between charged particles
[14]. In recent calculations for the reaction d + 12C [15],
separable potentials were used and the Coulomb was taken
into account only approximately. Given the progress achieved
recently [16] for p-d elastic scattering and breakup, we can
now address the solution of effective three-body systems
in which two of the particles have charge. This was done
first for d-α elastic scattering and breakup [17] and later
for p-11Be elastic scattering and breakup [18], where 11Be
is a halo nucleus made up of a neutron and an inert 10Be
core. More recently, the same system was used to study
the convergence of the Faddeev/AGS multiple scattering
series [19] at intermediate energy as a means of testing the
Glauber method. In all these works [16–19], we solve the
AGS equations without resorting to a separable representation
of the underlying interactions. Therefore, the corresponding
two-vector-variable integral equations are numerically solved
without any approximations beyond the usual partial-wave
decomposition and discretization of momentum meshes.

Although CDCC was initially introduced as a practical
way of solving a complicated three-body scattering problem
through a set of coupled Schrödinger-like equations, later
works [20,21] tried to obtain a more formal justification
of the method by relating it to a truncation of an orderly
set of Faddeev equations. Furthermore, it is argued that the
CDCC solution approaches the exact (Faddeev) solution as
the model space is increased. Although qualitative arguments
are provided in those works to support the conclusions, they
lack a numerical comparison between the CDCC and Faddeev
methods in specific cases. The possibility of performing this
comparison, thanks to recent developments in the numerical
implementation of the AGS equations, is another motivation
for the present work.

Given these important new developments, we propose here
to benchmark, in a few test cases, CDCC results with exact
solutions of the AGS equations. For this comparison, we have
selected the reactions d + 12C, d + 58Ni, and 11Be + p. The
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first two reactions correspond to classic cases for which data
are available [22–24]. The third reaction involves the scattering
of a halo nucleus on a very light target, for which elastic,
breakup, and transfer have been measured before [8,25,26].

In Sec. II we present the AGS formalism, and in Sec. III we
outline the different CDCC methodologies we use. In Sec. IV
we describe the details of the calculations, and in Sec. V the
results are presented. Conclusions are given in Sec. VI.

II. THREE-BODY EQUATIONS

This section provides the theoretical framework on which
we base our calculations. Our treatment of the Coulomb
interaction [16] relies on the screening and renormalization
techniques proposed in Ref. [27] for two-charged-particle
scattering and extended in Ref. [28] to three-particle scattering.
The Coulomb potential is screened, standard scattering theory
for short-range potentials is used, and the renormalization
procedure is applied to obtain the results for the unscreened
limit.

In the traditional odd-man-out notation of the three-body
problem where pair (β, γ ) is denoted by α (α, β, γ ≡ 1, 2, 3),
the Coulomb potential wαR is screened around the separation
r = R between two charged baryons β and γ . We choose wαR

in configuration space as

wαR(r) = wα(r) e−(r/R)n , (1)

where wα(r) = αeZβZγ /r represents the true Coulomb po-
tential, with Zβ (Zγ ) being the atomic number of particle
β (γ ) and αe ≈ 1/137 the fine structure constant, and n

controlling the smoothness of the screening. We prefer to work
with a sharper screening than the Yukawa screening (n = 1)
of Ref. [14]. We want to ensure that the screened Coulomb
potential wαR approximates well the true Coulomb potential
wα for distances r < R and simultaneously vanishes rapidly
for r > R, providing a comparatively fast convergence of the
partial-wave expansion. The screening functions for different
n values are compared in Fig. 1, showing that the choice
n = 4 includes much more of the exact Coulomb potential
at short distances than the Yukawa screening. In contrast,
the sharp cutoff (n → ∞) yields an unpleasant oscillatory
behavior in the momentum-space representation, leading to
convergence problems. In Ref. [16] we found that the values
3 � n � 6 provide a sufficiently smooth, but at the same time a
sufficiently rapid, screening around r = R; n = 4 is our choice
in the present paper.

We solve the AGS three-particle scattering equations [13]
in momentum space

U
(R)
βα (Z) = δ̄βαG−1

0 (Z) +
∑

σ

δ̄βσ T (R)
σ (Z)G0(Z)U (R)

σα (Z),

(2a)

U
(R)
0α (Z) = G−1

0 (Z) +
∑

σ

T (R)
σ (Z)G0(Z)U (R)

σα (Z), (2b)

where δ̄βα = 1 − δβα,G0(Z) is the free resolvent, and T (R)
σ (Z)

is the two-particle transition matrix derived from nuclear plus
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FIG. 1. Screening function wR(r)/w(r) as function of the dis-
tance between the two charged particles r for characteristic values of
the parameter n in Eq. (1): n = 1 (dashed-dotted curve) corresponds
to Yukawa screening, n = 4 (solid curve) is the choice of this paper,
and n → ∞ (dotted curve) corresponds to a sharp cutoff.

screened Coulomb potentials

T (R)
α (Z) = (vα + wαR) + (vα + wαR)G0(Z)T (R)

α (Z), (3)

embedded in three-body space. The operators U
(R)
βα (Z) and

U
(R)
0α (Z) are the three-particle transition operators for elas-

tic/rearrangement and breakup scattering, respectively; their
dependence on the screening radius R is notationally indicated.
On-shell matrix elements of the operators (2) between two-
and three-body channel states |φα(qi)ναi

〉 and |φ0(pf qf )ν0f
〉

with discrete quantum numbers ναi
, Jacobi momenta pi and qi ,

energy Eαi , and Z = Eαi + i0, do not have a R → ∞ limit.
However, as demonstrated in Refs. [16,28], the three-particle
amplitudes can be decomposed into long-range and Coulomb-
distorted short-range parts, where the quantities diverging in
that limit are of two-body nature, i.e., the on-shell transition
matrix

T c.m.
αR (Z) = W c.m.

αR + W c.m.
αR G(R)

α (Z)T c.m.
αR (Z), (4)

G(R)
α (Z) = (Z − H0 − vα − wαR)−1, (5)

derived from the screened Coulomb potential between spec-
tator and the center of mass (c.m.) of the bound pair, the
corresponding wave function, and the screened Coulomb wave
function for the relative motion of two charged particles in the
final breakup state. Those quantities, renormalized according
to Refs. [16,28], in the R → ∞ limit, converge to the two-body
Coulomb scattering amplitude 〈φα(qf )ναf

|T c.m.
αC |φα(qi)ναi

〉 (in
general, as a distribution) and to the corresponding Coulomb
wave functions, respectively, thereby yielding the three-
particle scattering amplitudes in the proper Coulomb limit

〈φβ(qf )νβf
|Uβα

∣∣φα(qi)ναi

〉
= δβα

〈
φα(qf )ναf

∣∣T c.m.
αC

∣∣φα(qi)ναi

〉
+ lim

R→∞

{
Z− 1

2
βR (qf )〈φβ(qf )νβf

|[U (R)
βα (Eαi + i0)

− δβαT c.m.
αR (Eαi + i0)

]∣∣φα(qi)ναi

〉
Z− 1

2
αR (qi)

}
, (6a)
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〈φ0(pf qf )ν0f
|U0α

∣∣φα(qi)ναi

〉
= lim

R→∞

{
z
− 1

2
R (pf )

〈
φ0(pf qf )ν0f

∣∣
×U

(R)
0α (Eαi + i0)

∣∣φα(qi)ναi

〉
Z− 1

2
αR (qi)

}
. (6b)

The renormalization factors ZαR(qi) and zR(pf ) are diverging
phase factors given in Refs. [16,27,28].

ZαR(q) = e−2iδαR (q), (7a)

where δαR(q), though independent of the relative angular
momentum l in the infinite R limit, is realized by

δαR(q) = σα
l (q) − ηα

lR(q), (7b)

with the diverging screened Coulomb phase shift ηα
lR(q)

corresponding to standard boundary conditions and the proper
Coulomb one σα

l (q) referring to the logarithmically distorted
Coulomb boundary conditions in channel α with orbital
angular momentum l between particle-pair α. For the screened
Coulomb potential of Eq. (1), the infinite R limit of δαR(q) is
known analytically as

δαR(q) = κα(q)[ln (2qR) − C/n], (7c)

with κα(q) = αeZα(Zβ + Zγ )Mα/q being the Coulomb pa-
rameter, Mα the reduced mass, and C ≈ 0.577 215 664 9 the
Euler number. Likewise,

zR(p) = e−2iδR (p), (8a)

where

δR(p) = κ(p)[ln (2pR) − C/n], (8b)

with κ(p) = αeZβZγ µα/p, where β and γ denote the two
charged particles and µα their respective reduced mass. The
R → ∞ limit in Eqs. (6) has to be calculated numerically,
but because of the short-range nature of the corresponding
operators, it is reached with sufficient accuracy at rather
modest R if the form of the screened Coulomb potential
has been chosen successfully as discussed above. More
details on the practical implementation of the screening and
renormalization approach are given in Ref. [16].

The three-body results are obtained from the solution of
the AGS equations (2) for the nuclear plus screened Coulomb
interaction together with the renormalization procedure (6).
The equations are solved using partial-wave decomposition
and retaining as many channels as needed for conver-
gence. Our numerical technique for solving AGS equations
with nonseparable potentials is explained in more detail in
Refs. [29,30] in the context of nucleon-deuteron scattering.

III. CDCC FORMALISM

The CDCC method [3,4] was introduced as an approximate
solution to the three-particle Schrödinger equation. Its main
objective is to provide a reliable yet practical way of describing
reactions involving three-body breakup.

Let us consider specifically the breakup reaction p + t →
c + x + t . In CDCC, the wave function is expanded in terms

of only one Jacobi coordinate set (r, R),


K (r, R) =
∑

p

φp(r)ψ K
p (R) +

∫ ∞

0
dkφk(r)ψ K

k (R), (9)

where φp(r) are eigenfunctions of the projectile, p(k) being
a general subscript for projectile bound (continuum) states,
and ψ K

p (R) the spectator wave function for the motion of
the projectile relative to the target. The Jacobi coordinate r
describes the c + x relative motion, while R describes the
p + t relative motion. In CDCC the Schrödinger equation
expressed in this Jacobi set reads

(H3b − E)
K (r, R) = 0, (10)

where the three-body Hamiltonian is separated into the internal
Hamiltonian of the projectile and the relative motion between
the projectile and the target: H3b = Hint + TR + Uxt + Uct ,
where Hint = Tr + Vxc(r). The projectile is modeled by a
real potential which produces its initial bound state, whereas
the fragment-target interactions should contain absorption
from channels not included explicitly in the model (optical
potentials). In principle, this is important for the validity of the
CDCC method [31], since it reduces the coupling to the other
three-body channels best described by other Jacobi sets taken
explicitly into account by the Faddeev method.

For practical reasons, the integral over projectile scattering
states in Eq. (9) is discretized and truncated at a maximum
energy. There are several methods of discretization, but here
we use the average method, in which the c + x scattering
radial functions uk(r) are averaged over k to be made square
integrable [6,11]. Thus, the radial functions for the continuum
bins in the average method, ũp(r), are a superposition of the
projectile scattering eigenstates, that is,

ũp(r) =
√

2

πNp

∫ kp

kp−1

gp(k)uk(r)dk, (11)

with weight function gp(k). The normalization constant is

defined by Np = ∫ kp

kp−1
|gp(k)|2dk.

After a few steps of algebra and using the eigenvalue
equation for the projectile Hintφp = εpφp, the standard CDCC
equation becomes

[TR + Vpp(R) − Ep]ψ K
p (R) = −

∑
p′ �=p

Vpp′ (R)ψ K
p′ (R), (12)

where Ep = Ec.m. − εp, and the coupling potentials con-
tain both nuclear and Coulomb parts Vpp′ (R) = 〈φp|Uxt +
Uct |φp′ 〉. This equation is indeed a coupled channel equation,
coupling the projectile ground state to its continuum states via
V0p, but also coupling projectile states within the continuum,
called the continuum-continuum couplings. The solution of the
coupled equations provides the wave functions ψ K

k (R). The
scattering observables (associated with the elastic and breakup
channels) are extracted from the asymptotic behavior of
ψ K

k (R). Numerical solutions of Eq. (12) involve partial-wave
expansions of φp(r), ψ K

k (R) and a multipole decomposition
of Uxt + Uct .

In its standard form, CDCC models the breakup of a
projectile as inelastic excitation (CDCC-BU). However, the
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CDCC wave function of Eq. (9) can also be used in the exit
channel of a transfer reaction. In that case, the breakup process
is understood as a transfer of the fragment to the continuum of
the final composite system (CDCC-TR∗). In the CDCC-TR∗
scheme, the scattering observables can be obtained by inserting
the CDCC wave function in the prior form of the transition
amplitude:

Tprior = 〈
(−)
f |Uxt + Uct − Upt |φpχp〉, (13)

where χp is a distorted wave, generated by the potential
Upt (R). In this work, we chose Upt (R) = 〈φ0|Uxt + Uct |φ0〉
as the single folding of the core-target and the fragment-target
interactions over the projectile’s ground state (the Watanabe
potential). We notice that if 


(−)
f is the exact solution of

the three-body Hamiltonian, the transition amplitude (13) is
exact and does not depend on the choice of the auxiliary
potential Upt . In practice, this wave function is replaced by
an approximate one which, in the TR∗ approach, corresponds
to the CDCC expansion in the final channel.

The transfer to the continuum approach seems to provide
a good description of the data in some cases [10,32,33]. In
Ref. [11], a detailed discussion of these two mechanisms is
presented along with a comparative study. In principle, and
as long as the CDCC model space is sufficiently large, one
would expect that different choices of the Jacobi coordinate
produce the same results. However, in Ref. [11] it is shown
that this equivalence does not hold for a number of reaction
observables.

IV. DETAILS OF THE CALCULATIONS

As mentioned above, we study the scattering of deuterons
on 12C at Ed = 56 MeV and 58Ni at Ed = 80 MeV, as well
as 11Be on protons at ELab/A = 38.4 MeV. All reactions are
considered as effective three-body problems, namely, p +
n + 12C, p + n + 58Ni, and 10Be + n + p, where 12C, 58Ni,
and 10Be are taken as inert cores. Therefore in the present
section, we define the interactions between all pairs together
with the model space used in solving the AGS and the CDCC
equations. For simplicity, all interactions are taken as being
spin independent, as often done in many CDCC calculations
(e.g., Ref. [3]), and therefore all particles are considered
spinless bosons. Nevertheless, spin-independent interactions,
especially for the n-p system, are only semirealistic, but they
are sufficient for making a benchmark comparison. This is not
a limitation of the CDCC method nor of the AGS method as
we have already demonstrated in nuclear reaction calculations
[17–19] with realistic spin-dependent potentials.

A. d + 12C at Ed = 56 MeV

The interactions between neutron-12C and proton-12C are
optical potentials that fit the elastic scattering at half the
incident laboratory energy [34]; the parameters are taken from
the global fit by Watson et al. [35]. The neutron-proton bound
and continuum states are modeled with a simple Gaussian

interaction fitted to the deuteron binding energy

V (r) = −V0 e−(r/r0)2
, (14)

where V0 = 72.15 MeV and r0 = 1.484 fm. The same inter-
action is used in all three test cases and corresponds to the
choice in Refs. [5,36].

The model space needed for converged solutions of the
AGS equations contains partial waves l � 3 in the n-p relative
motion, l � 12 in the n-12C channel, and l � 24 for elastic
scattering (l � 32 for breakup) in the p-12C channel. This
last channel is more demanding because of the presence of
the Coulomb force. Total angular momentum up to J = 30
(J = 60 for breakup) is included. The Coulomb potential
is screened with a radius of R = 10 fm (R = 18 fm for
breakup) and smoothness n = 4 [see Eq. (1)]. The exception
is the breakup kinematical situations characterized by small
momentum transfer in the p-12C subsystem which are sensitive
to the Coulomb interaction at larger distances and therefore
need larger screening radius and a special treatment as
described in the Appendix. Note that as optical potentials are
used for n-12C and p-12C, there is no transfer to p-13C and
n-13N channels.

The corresponding CDCC calculations include n-p partial
waves l � 8 and bins up to Emax = 46 MeV [with 15 (10)
energy bins for the even (odd) partial waves, evenly spaced
in linear momentum] integrated up to Rbin = 80 fm; for the
total angular momentum we include J � 60. The coupling
potentials were expanded in multipoles (Q) up to Qmax = 6.
We note that this relatively large model space is required to
achieve sufficient accuracy for the breakup observables. If only
elastic scattering is required, l � 2 gives almost a converged
result. The CDCC equations are solved up to Rmax = 100 fm.

B. d + 58Ni at Ed = 80 MeV

Similarly to the carbon test case, we study the scattering of
deuterons from a Ni target using neutron-58Ni and proton-58Ni
optical potentials from the global parametrization of Becchetti
and Greenlees [37], evaluated at half the incident laboratory
energy. The n-p interaction is given by Eq. (14).

In this case, the model space needed for converged solutions
of the AGS equations for elastic scattering contains partial
waves l � 3 in the n-p relative motion, l � 14 in the n-58Ni
channel, and l � 32 in the p-58Ni channel. Again this last
channel is more demanding because of the presence of the
Coulomb force. Total angular momentum up to J = 60 is
included. The Coulomb potential is screened with a radius of
R = 10 fm and n = 4 [see Eq. (1)].

For the CDCC calculations, we include n-p partial waves
l � 2. For l = 0, 1, the continuum was truncated at Emax =
30 MeV and divided into 12 bins evenly spaced in the linear
momentum, whereas for l = 2, we include excitation energies
up to Emax = 50 MeV and use 20 bins; Q � 2 multipoles
are retained in the expansion of the coupling potentials. The
coupled equations are integrated up to Rmax = 80 fm with total
angular momentum up to J = 100.
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TABLE I. Parameters of the n-10Be interaction in different partial
waves and resulting energies of bound states and resonance.

L V0 (MeV) εL (MeV) ε∗
L (MeV)

0 51.639 −30.28 −0.503
1 26.264 −0.183
2 51.639 1.317 − i 0.188/2

>3 51.639

C. 11Be + p

To describe the scattering of 11Be from a proton target,
we need a binding potential for the n-10Be pair, as well as
fragment-target optical potentials. The n-10Be interaction takes
the standard Woods-Saxon form

V (r) = −V0 f (r, R0, a0), (15)

with

f (r, R, a) = (1 + e(r−R)/a)−1, (16)

where Ri = riA
1
3 and A the mass number of 10Be. The

geometry of the interaction is fixed, with a radius r0 = 1.39 fm
and a diffuseness a0 = 0.52 fm. The depth of the interaction
is L dependent, and the corresponding values of V0 for
each partial wave are given in Table I, together with the
energies for the corresponding bound states and resonance.
In the three-body calculation, the lowest (Pauli forbidden)
bound state |b0〉 in L = 0 is moved to a large positive energy
�, replacing the potential V by V ′ = V + |b0〉�〈b0|. In the
� → ∞ limit, this is equivalent to projecting |b0〉 out as
demonstrated in Ref. [38]. In practical calculations, we found
that � ≈ 2 GeV is sufficiently large to obtain �-independent
results. Thus, the state with ε∗

0 = −0.503 MeV is left as the
ground state of 11Be. The unphysical deep s state is also left
out of the CDCC calculations.

As for the projectile-target interactions, given such a light
proton target, one of the potentials is simply the n-p interaction
that binds the deuteron and that is used in Secs. IV A and IV B
(no absorption). The p-10Be is obtained from a direct fit to
elastic data [25]. We use the standard optical potential form

V (r) = −V0 f (r, R0, a0) − i Wvf (r, Rv, av), (17)

where f (r, R, a) is given by Eq. (16), plus the Coulomb
interaction of a uniform charge sphere with radius Rc = rcA

1
3 .

A good fit to the p-10Be data at ELab/A = 39.1 MeV and
up to θc.m. = 70◦ (see Fig. 7) is obtained with the following
parameter set: V0 = 51.2 MeV, Wv = 19.5 MeV, rc = r0 =
rv = 1.114 fm, a0 = 0.57 fm, and av = 0.50 fm, as used in
Ref. [11]. These parameters are slightly different from those
proposed by Watson et al. [35]. Since the energy is sufficiently
close to 11Be-p scattering at ELab/A = 38.4 MeV, we expect
the fit to be appropriate.

The Faddeev model space contains partial waves l � 4 in the
n-p relative motion, l � 5 in the n-10Be channel, and l � 22 in
the p-10Be channel. Again, this last channel is more demanding
because of the presence of the Coulomb force. Total angular
momentum up to J = 20 (J = 40 for breakup) is included.
The Coulomb potential is screened with a radius of R = 10 fm

and smoothness n = 4. An additional difficulty is the presence
of the sharp d-wave n-10Be resonance, which is treated using
the subtraction technique as in Ref. [17].

CDCC calculations are performed using both the 11Be
breakup states (CDCC-BU), where the reaction mechanism
is inelastic excitation of the projectile into its continuum, and
the deuteron breakup states (CDCC-TR∗), where the reaction
mechanism involves transfer to the continuum of the deuteron
in the d + 10Be transfer channel [11]. In the course of the
calculations, it became apparent that the model space used
in Ref. [11] was not enough to achieve full convergence of
the CDCC-BU calculations. In this work, we increased the
number of partial waves for the n-10Be relative motion, as
well as the number of multipoles for the coupling potentials,
up to lmax = 8 and Qmax = 8, respectively. Even with this
large number of partial waves, the results were not completely
converged. Inclusion of higher partial waves led to numerical
instabilities in the calculations, and hence the results presented
here correspond to lmax = 8. Continuum bins were calculated
up to Emax = 34 MeV for l � 6 and Emax = 32 MeV for
l = 7, 8.

For CDCC-TR∗, the model space is also augmented with
respect to the calculations performed in Ref. [11]. The number
of partial waves for the pn relative motion is increased to
l � 8, and bins are considered up to Emax = 35 MeV and
Rbin = 60 fm. We notice also that in the present CDCC-
TR∗ calculations, the n-10Be interaction in the final channel
(d+10Be) is real, while in Ref. [11] this interaction was
complex. Multipoles Q � 4 are included for the CDCC
coupling potentials. An extended nonlocality range of 14 fm
was used for the transfer couplings.

For both the CDCC-BU and CDCC-TR∗ calculations, the
total angular momentum is J � 35, and the coupled equations
are integrated up to Rmax = 60 fm.

V. RESULTS

Our three test cases are chosen to span a variety of
situations. The d + 12C and d + 58Ni reactions at intermediate
deuteron energies contain important effects that could not be
well accounted for by simple, prior form, distorted-wave Born
approximation calculations [3,36]. These reactions have been
measured before, and detailed breakup data are available for
the former [36]. Finally we include a reaction involving a
loosely bound halo nucleus, the study of 11Be + p, where
three-body breakup has a decisive contribution and of which
there have been several experimental studies (e.g., Ref. [25]).
Previous studies [39] have suggested the relevance of the
interplay between the breakup and the (p, d) transfer channel.
The possibility of including both channels within the Faddeev
formalism constitutes a further motivation of the present
analysis.

A. d + 12C at Ed = 56 MeV

Our results for d + 12C elastic scattering at Ed = 56 MeV
are presented in Fig. 2 and compared with data around the same
energy. The differential cross section dσ/d� is divided by
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FIG. 2. (Color online) Elastic cross section for deuterons on 12C at
Ed = 56 MeV: the solid line corresponds to exact three-body results
and the dash-dotted line to CDCC. The result of a single channel
cluster folding (dotted) is also shown. The experimental data are
from Ref. [22].

the corresponding Rutherford cross section dσR/d�. First we
point out that the CDCC calculation reproduces the exact three-
body results up to very large scattering angles. Second, there
is agreement with the data at forward angles (θc.m. < 60◦),
but this agreement deteriorates for backward angles where
mechanisms other than three-body breakup may start to play
a role.

To show the well-known influence of the deuteron con-
tinuum on the elastic channel, we have also included in
Fig. 2 the CDCC calculation without any coupling to the
continuum. This corresponds to a one-channel calculation
with the deuteron-target potential given by the single-folding
expression V00(R) = 〈φd |Vpt + Vnt |φd〉. It can be seen that
this calculation largely overestimates the data in the angular
region where the cross section is large, giving evidence of the
importance of the deuteron breakup channel in the dynamics
of the reaction.

Next we consider the breakup observables. In Ref. [36],
measurements were taken by fixing the neutron detector at
θn = 15◦. We present both the proton angular distribution
(after integration over energy) and the energy distributions
for specific proton angles and compare with the data. The
agreement between CDCC and the exact three-body results is
seen over all proton angles as shown in Fig. 3. Also shown in
Fig. 3 are the three-body results obtained without the Coulomb
interaction, where it becomes clear that Coulomb cannot be
neglected for a wide angular range at forward scattering angles.
We note that the agreement of the present CDCC calculations
with the data has been improved compared to the CDCC
studies presented in Ref. [5], probably thanks to the larger
model space included in our work.

In addition, a note of caution needs to be added regarding
the convergence of the three-body results with screening radius
R for −30◦ < θp < 10◦ where we face the most demanding
phase space constraints. Since this region corresponds to small
momentum transfer in the p-12C subsystem, the convergence
with screening radius is slow and not uniform, forcing us to
use a more sophisticated treatment for the breakup amplitude,
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10
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d4 /d
Ω

ndΩ
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sr
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Faddeev
Faddeev: no Coulomb
CDCC-BU

12
C(d,pn)

12
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θn=15
o

FIG. 3. (Color online) Semi-inclusive differential cross section
vs proton scattering angle for the breakup of deuterons on 12C at
Ed = 56 MeV: the solid line corresponds to the exact three-body
results and the dash-dotted line to CDCC. The dotted line corresponds
to the three-body exact result in the absence of the Coulomb force.
The experimental data are from Ref. [36].

as described in the Appendix. For this reason the accuracy of
our calculation is 10% to 15% for −30◦ < θp < 10◦ and better
than 5% for all other values of θp. The most sensitive region
is the maximum of the cross section.

The proton energy distributions are shown in Fig. 4 for
protons being scattered to the same side as the neutron
(θp > 0), and in Fig. 5 for protons coming out at opposite
angles from the neutron (θp < 0). The overall agreement with
the data is remarkable. Missing cross section is visible for
the large positive scattering angles starting with θp = 25◦.
As for the angular distribution, our CDCC results show an
improvement over the results of the analysis of Ref. [5], which
we attribute to the inclusion of l = 4 in the relative motion of
n-p subsystem in our model space. Most important for this
work is the realization that CDCC simulates the three-body
effects contained in the solution of the exact three-body
problem, even at this level of detailed observables. Again,
for the reasons mentioned above, the three-body results shown
in Fig. 5 for θp = −15◦,−20◦, and −25◦ may change slightly
with the chosen screening radius, while at all other angles we
have fully converged results.

B. d + 58Ni at Ed = 80 MeV

We have reproduced the elastic scattering results presented
in Ref. [3], and compare in Fig. 6 our theoretical predictions
to two different sets of data around the same energy. As
before, we show the three-body results from the solution of
the AGS equations, and those calculated using CDCC. Both
calculations agree perfectly up to scattering angles θd = 80◦,
providing a good description of the data. We also show the
result with the cluster folding potential which demonstrates the
importance of deuteron breakup in the reaction mechanism, as
was the case for the elastic scattering of d+12C. The slight
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FIG. 4. (Color online) Exclusive differential cross section vs proton energy for the breakup of deuterons on 12C at Ed = 56 MeV, θn = 15◦,
and θp > 0: the solid line corresponds to exact three-body results and the dash-dotted line to CDCC. The experimental data are from Ref. [36].

disagreement of the full calculations and the data could be
due to the ambiguities of the optical potentials or due to
the influence of other channels not included explicitly in our
calculations (such as transfer or target excitation).

C. 11Be + p at ELab/A = 38.4 MeV

Our last test case involves the breakup of the loosely bound
11Be on a very light target, the proton. Previous works have
found difficulties in describing this process [40]; furthermore,
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FIG. 5. (Color online) Same as Fig. 4, but for θp < 0.
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FIG. 6. (Color online) Elastic cross section for deuterons on 58Ni
at Ed = 80 MeV: the solid line corresponds to the exact three-body
results and the dash-dotted line to CDCC results. The experimental
data at 80 MeV (diamonds) are from Ref. [23], and those at 79 MeV
(triangles) are from Ref. [24]. The dotted line is the CDCC calculation
suppressing the coupling to the deuteron continuum (see text).

this reaction raised a red flag when comparing two different
CDCC calculations which should produce the same results
[11]. We revisit the topic in the hope that the exact three-body
calculations can help shed light on this issue.

In Fig. 7, we show the results of our calculations for
11Be + p elastic scattering together with the corresponding
data. For comparison, we include p-10Be elastic data at
ELab/A = 39.1 MeV and the corresponding theoretical fit
obtained with the p-10Be optical potential given in Sec. IV C.
Two important features immediately arise: (i) the agreement
between the CDCC and the exact three-body results and
(ii) the mismatch with the data. In this work, the first point
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FIG. 7. (Color online) 1H(11Be, 11Be)p elastic cross section at
ELab/A = 38.4 MeV. The solid line corresponds to exact three-
body results while the dash-dotted line to CDCC. The dashed line
corresponds to an optical potential fit to the corresponding 10Be-p
data of Ref. [25] shown by the triangles. The diamonds correspond
to 11Be-p elastic data of Ref. [25].
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FIG. 8. (Color online) Transfer reaction 1H(11Be, 10Be)d cross
section at ELab/A = 38.4 MeV. The thick solid line corresponds to
the exact three-body result, while the dotted line corresponds to the
same calculation multiplied by 0.7. The thin solid line is the exact
calculation with a partial-wave independent n-10Be interaction. The
latter is to be compared with the CDCC-TR∗ calculation (dashed line),
as explained in the text. The experimental data are from Ref. [39] at
Ep = 35.3 MeV.

is of more relevance than the second, demonstrating that the
CDCC takes well into account the three-body effects fully
present in the AGS approach. However, point (ii) suggests
that in this reaction, degrees of freedom beyond three-body
breakup are being excited [40].

One main difference between this and the previous two
examples is the explicit inclusion of the transfer channel
in the three-body calculations. In other words, there is no
absorption in n-p, whereas the corresponding interactions
in the previous two test cases n-12C and n-58Ni included
absorption. In 11Be + p, the neutron transfer channel is
very important. We show in Fig. 8 the three-body pre-
dictions for the transfer 11Be(p, d)10Be together with the
data for Ep = 35.5 MeV [26]. The three-body calculation
predicts the transfer cross section ≈20% above the data.
If a simple proportionality of the transfer cross section to
the square of the n-10Be, l = 0, single-particle wave function
were to be assumed, the three-body results would suggest
ground state spectroscopic factors consistent with previous
work [39].

We also show in this figure the prediction of the CDCC-TR∗,
obtained with Eq. (13). Because of the impossibility of
including partial-wave dependent interactions in the evaluation
of the coupling potentials, this calculation was performed
assuming n-10Be potential of Eq. (15) with V0 = 51.639 MeV
in all partial waves, which reproduces the ground state of 11Be.
For a meaningful comparison with the exact result, we include
also in this figure a Faddeev calculation performed with the
same n-10Be interaction. Notice that in this case, there is no
bound excited state in 11Be. We see that the cross section
for this CDCC-TR∗ calculation is about 15% smaller than the
AGS and would hold a spectroscopy factor closer to unity. The
difference between AGS and CDCC could be due to the fact
that the CDCC wave function is not a good reproduction of the
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FIG. 9. (Color online) Semi-inclusive differential cross section
for the reaction 1H(11Be, 10Be)pn, at ELab/A = 38.4 MeV, vs 10Be
center of mass energy. The thick solid line corresponds to exact
three-body results, the dashed line to CDCC-TR∗, the dash-dotted
line and the thin solid line to CDCC-BU with lmax = 8 and lmax = 6,
respectively.

exact three-body wave function in the surface region, or that
the choice of the optical potentials appearing in the remnant
term of Eq. (16) is inadequate for this purpose, which could
be connected to the poor description of the 11Be elastic data.

Finally in Figs. 9 and 10 we show the semi-inclusive
differential cross section for the breakup 11Be + p → 10Be +
p + n, where 10Be is the detected particle. We present both
the energy distribution (Fig. 9) and the angular distribution
(Fig. 10). For the energy distribution, two CDCC-BU cal-
culations are shown, one with l � 8 and one with l � 6 for
the n-10Be motion. The significant difference between these
two calculations suggests that the CDCC-BU calculation is
not converged with respect to the number of n-10Be partial
waves. The calculation with l � 8 reproduces reasonably well
the shape of the energy distribution predicted by the AGS
calculation, but it underestimates this cross section at the
peak by about 20%. This underestimation could be due to
the contribution of higher n-10Be partial waves or due to some
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FIG. 10. (Color online) Same as Fig. 9, but showing 10Be angular
distribution after energy integration.

breakdown of CDCC. The angular distribution is also in good
agreement with the exact result for the whole angular range,
except at very small angles.

The CDCC-TR∗ calculation also reproduces reasonably
well the energy distribution. For the higher 10Be energies,
however, this calculation is well above the AGS result. More-
over, some underestimation of the cross section is observed
at the maximum of the distribution, as well as at low 10Be
energies. We notice that these energies are associated with
configurations in which the pn system is in a very high excited
state, and these states are difficult to include in the CDCC-TR∗
calculation. The peak observed in the energy distribution of
Fig. 9 corresponds to n-p quasifree scattering, and it is natural
that it is best reproduced by CDCC-TR∗. Note that, as for the
CDCC-TR∗ predictions for the transfer to the ground state,
in the CDCC-TR∗ breakup, the fixed n-10Be partial-wave
independent interaction was used to generate the deuteron
continuum. However, in this case, the results are not very
sensitive to this potential choice.

The CDCC-TR∗ angular distribution (Fig. 10) reproduces
well the Faddeev calculation at small angles but underestimates
the cross section for angles beyond 50◦. We notice again
that small angles are mainly associated with the np quasifree
scattering region which is better described in a pn basis, as it
is done in the TR∗ approach. Conversely, these configurations
are difficult to describe in the n-10Be basis which explains
the low convergence rate of the BU calculation at small 10Be
scattering angles.

We finish this section by noting that even if the CDCC wave
function is not appropriate to describe breakup in all regions
of phase space, this wave function can be accurate in a limited
domain. For example, in the CDCC-BU calculations presented
in this section, the CDCC solution can be a good approximation
of the exact three-body wave function in the region of space
that corresponds to small neutron-10Be separations.

VI. CONCLUSIONS

A comparative study of reaction observables calculated
within the three-body AGS framework and the approximate
CDCC equations is presented. The AGS results shown here
involve heavier nuclei where optical potentials together with
the full treatment of the Coulomb interaction are used to
describe direct nuclear reactions driven by deuterons and halo
nuclei. We perform calculations for the scattering of deuterons
on 12C at Ed = 56 MeV and 58Ni at Ed = 80 MeV, as well as
11Be on protons at ELab = 38.4 MeV/A, and calculate elastic,
breakup, and transfer observables.

The results indicate that for reactions involving the elastic
scattering and breakup of deuterons on carbon and Ni targets,
CDCC is in agreement with the full three-body results. Our
calculations also reveal that Coulomb effects in the breakup
of deuteron by 12C are not negligible for proton forward-angle
breakup. Indeed, the method of screening and renormalization
used to treat the Coulomb interaction in the AGS equations is
stretched to its limit of applicability in these regions of phase
space characterized by small momentum transfer in the p-12C
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subsystem, a situation never encountered before in p-d [16]
or d-α breakup [17].

For the 11Be-proton test case, the picture is more com-
plicated. For elastic scattering the two methods are in good
agreement, though they still fall short in describing the
data. For the transfer cross section, CDCC constructed on
the deuteron continuum underestimates the cross section
compared to the solution of the AGS equations. And finally
for the breakup observables, we only find good agreement
between CDCC and Faddeev in certain regions of phase
space, depending strongly on the choice of the basis used
for the CDCC expansion. Specifically, in the energy regime
dominated by p-n quasifree scattering (forward 10Be angle)
the representation based on the pn system (CDCC-TR∗)
accounts well for the full three-body effects; whereas for
large angles of the detected fragment, corresponding to small
excitations of the n-10Be system, the basis constructed from
the 11Be continuum (CDCC-BU) is more appropriate. A word
of caution is required for the choice of the CDCC basis to be
used for given kinematic regimes. It is also important to note
that the rate of convergence of the CDCC observables is very
slow, particularly for CDCC-BU. This may in part explain the
disagreement found at some angles and energies of the detected
fragments.

The CDCC equations attempt to produce a wave function
that describes all the three-body effects, from small internal
projectile distances to very large ones. In fact, all CDCC-BU
observables are obtained here from the asymptotics of the
three-body wave function. Since this is computationally very
demanding, an alternative has been suggested that consists in
using the wave function only in the range of the interactions,
that is, inserted into the post form transition amplitude [41].
Further work on this topic is needed to explore such a
possibility.
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APPENDIX

The kinematic situations characterized by small momentum
transfer �k in the subsystem of charged particles are sensitive
to the screened Coulomb potential at large distances. In elastic
scattering, �k may even vanish, but the problem is resolved
by separating the long-range part of the amplitude of Eq. (4)
and explicitly performing the R → ∞ limit. In breakup
the transition operator is a Coulomb-distorted short-range
operator, �k is always nonzero, and the R → ∞ limit can
be reached at finite R with sufficient accuracy. Nevertheless,
the decomposition of the breakup operator of Eq. (2b) into two
parts with different range properties, i.e.,

U
(R)
0α (Z) = B

(R)
0α (Z) + [

U
(R)
0α (Z) − B

(R)
0α (Z)

]
, (A1)

may be useful in practical calculations. It was shown in
Refs. [16,28,42] that the R → ∞ limit in Eq. (6b) exists for
both parts separately and that the longer range part of the
breakup amplitude is given by

B
(R)
0α (Z) = [1 + TρR(Z)G0(Z)]vα

[
1 + G(R)

α (Z)T c.m.
αR (Z)

]
,

(A2)

where ρ is the neutral particle and TρR(Z) = wρR +
wρRG0(Z)TρR(Z) is the two-charged-particle screened
Coulomb transition matrix. This part of the amplitude, called
the pure Coulomb breakup term, requires a larger screening
radius for convergence if �k is small, but is simpler to calculate
than the full U

(R)
0α (Z). In contrast, the convergence with R is

faster for the shorter range part [U (R)
0α (Z) − B

(R)
0α (Z)], even

when �k is small. Therefore in kinematic configurations of
d + 12C breakup with small �k, it is sufficient to calculate
[U (R)

0α (Z) − B
(R)
0α (Z)] with standard parameters described in

Sec. IV A, but the remaining term B
(R)
0α (Z) needs considerably

larger R. In the latter case, we use the form

B
(R)
0α (Z) = wρRG0(Z)TρR(Z) − W c.m.

αR G(R)
α (Z)T c.m.

αR (Z)

+ TρR(Z)G0(Z)vαG(R)
α (Z)T c.m.

αR (Z)

+wρR − W c.m.
αR , (A3)

which is equivalent to Eq. (A2) on-shell. The partial-wave
convergence is slowest for the last term wρR − W c.m.

αR , which
we therefore calculate without partial-wave expansion. Rea-
sonably converged d + 12C breakup results in the present
paper are obtained with the screening radius up to 60 fm
for the pure Coulomb breakup term. Partial waves with
p-12C orbital angular momentum l � 38 and total angu-
lar momentum J � 100 are included in the calculation of
B

(R)
0α (Z).
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