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Quantum Monte Carlo calculations of electroweak transition matrix elements in A = 6, 7 nuclei

Muslema Pervin,* Steven C. Pieper,† and R. B. Wiringa‡

Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
(Received 5 October 2007; published 28 December 2007)

Green’s function Monte Carlo (GFMC) calculations of magnetic dipole, electric quadrupole, Fermi, and
Gamow-Teller transition matrix elements are reported for A = 6, 7 nuclei. The matrix elements are extrapolated
from mixed estimates that bracket the relevant electroweak operator between variational Monte Carlo (VMC)
and GFMC propagated wave functions. Because they are off-diagonal terms, two mixed estimates are required
for each transition, with a VMC initial (final) state paired with a GFMC final (initial) state. The realistic Argonne
v18 two-nucleon and Illinois-2 three-nucleon interactions are used to generate the nuclear states. In most cases
we find good agreement with experimental data.
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I. INTRODUCTION

The variational Monte Carlo (VMC) and Green’s function
Monte Carlo (GFMC) techniques are powerful tools for
calculating properties of light nuclei. The GFMC method, in
combination with the Argonne v18 (AV18) two-nucleon (NN )
and Illinois-2 (IL2) three-nucleon (3N ) potentials, reproduces
the ground- and excited-state energies for A � 10 nuclei [1–4].
It is beginning to be used to calculate reactions, such as
nucleon-nucleus scattering [5]. Electroweak transitions in A =
6, 7 nuclei have been calculated using the more approximate
VMC technique with AV18 and the older Urbana-IX (UIX)
3N potential. These include 6Li elastic and transition form
factors and radiative widths [6], electric quadrupole (E2)
transition probabilities in 7Li for pion inelastic scattering [7],
Gamow-Teller (GT) matrix elements in 6He and 7Be weak
decays [8], and radiative capture reactions producing 6Li, 7Li,
and 7Be [9,10].

The VMC results for electroweak transitions reported in
earlier works were in reasonable agreement with experimental
data. However, the AV18 + IL2 Hamiltonian reproduces p-
shell binding energies better than AV18 + UIX, and GFMC
wave functions are better approximations to the true eigen-
states. Hence GFMC calculations with AV18 + IL2 for these
electroweak transitions are worth investigating. In this work
we study electromagnetic [E2 and magnetic dipole (M1)]
transition strengths and nuclear β-decay [Fermi (F) and
GT] rates, with the GFMC technique using the AV18 + IL2
potential for nuclei with A = 6, 7. This is the first off-
diagonal matrix element calculation using the nuclear GFMC
method. The GFMC technique of evaluating off-diagonal
matrix elements should be applicable in many other nuclear
calculations, such as isospin-mixing, and low-energy nuclear
reactions.

In this work we consider only the one-body parts
of the transition operators. Schematic expressions for
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these are

E2 = e
∑

k

1

2

[
r2
k Y2(r̂k)

]
(1 + τkz), (1)

M1 = µN

∑
k

[(Lk + gpSk)(1 + τkz)/2

+ gnSk(1 − τkz)/2], (2)

F =
∑

k

τk±, (3)

GT =
∑

k

σ kτk±, (4)

where k labels individual nucleons, r is the spatial coordinate,
Y is a spherical harmonic, τkz(±) is the third (raising/lowering)
component of the isospin operator, σ is the Pauli spin matrix,
µN is the nuclear magneton, L(S) is the orbital (spin) angular
momentum operator, and gp(n) is the gyromagnetic ratio for a
proton (neutron). In all cases the appropriate projection (z,+,
and −) of the operators is understood. Note that e, µN , and
gp(n) are all physical values; i.e., no effective charge is used.

The current work does not include the contributions of two-
body electroweak current operators. The effect of two-body
meson-exchange operators has been studied previously and
found to be small in electric quadrupole and weak transitions,
but significant for magnetic transitions [6,8].

II. VMC TRIAL FUNCTIONS

In this work we calculate the off-diagonal transition matrix
element 〈�f (Jπ ′; T ′)|O|�i(Jπ ; T )〉, where O is one of the
one-body electroweak transition operators given above and
�(Jπ ; T ) is the nuclear wave function with a specific spin-
parity Jπ and isospin T . The variational wave function is an
approximate solution of the many-body Schrödinger equation

H�(Jπ ; T ) = E�(Jπ ; T ). (5)

The Hamiltonian used here has the form

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk, (6)
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where Ki is the nonrelativistic kinetic energy, Argonne v18 [11]
is the NN potential vij , and Illinois-2 [12] is the 3N interaction
Vijk .

The VMC trial function �T (Jπ ; T ) for a given nucleus is
constructed from products of two- and three-body correlation
operators acting on an antisymmetric single-particle state with
the appropriate quantum numbers. The correlation operators
are designed to reflect the influence of the interactions at
short distances, while appropriate boundary conditions are
imposed at long range [9,10,13,14]. The �T (Jπ ; T ) has
embedded variational parameters that are adjusted to minimize
the expectation value

EV = 〈�T |H |�T 〉
〈�T |�T 〉 � E0, (7)

which is evaluated by Metropolis Monte Carlo integration [15].
A good variational trial function has the form

|�T 〉 =

1 +

∑
i<j<k

ŨT NI
ijk





S

∏
i<j

(1 + Uij )


 |�J 〉. (8)

The Jastrow wave function, �J , is fully antisymmetric and
has the (Jπ ; T ) quantum numbers of the state of interest. For
s-shell nuclei, �J has the simple form

|�J 〉 =

 ∏

i<j<k � A

f c
ijk





 ∏

i<j � A

fc(rij )


 |�A(JMJ T Tz)〉.

(9)

Here fc(rij ) and f c
ijk are central two- and three-body correla-

tion functions and �A is a Slater determinant in spin-isospin
space, e.g., for the α particle, |�4(0000)〉 = A|p ↑ p ↓ n ↑
n ↓〉. The Uij and Ũ T NI

ijk are noncommuting two- and three-
nucleon correlation operators, and S indicates a symmetric
product over all possible ordering of pairs and triples. The Uij

includes spin, isospin, and tensor terms:

Uij =
∑

p=2,6

up(rij )Op

ij , (10)

where the O
p=1,6
ij = [1, σ i · σ j , Sij ] ⊗ [1, τ i · τ j ] are the

main static operators that appear in the NN potential. The
fc(r) and up(r) functions are generated by the solution of a
set of coupled differential equations containing the bare NN

potential with asymptotically confined boundary conditions
[13]. The Ũ T NI

ijk has the spin-isospin structure of the dominant
parts of the 3N interaction as suggested by perturbation theory.

For the p-shell nuclei, �J includes a one-body part that
consists of four nucleons in an α-like core and (A − 4)
nucleons in p-shell orbitals. We use LS coupling to obtain
the desired JMJ value, as suggested by standard shell-model
studies [16]. We also need to sum over different spatial
symmetries [n] of the angular momentum coupling of the
p-shell nucleons [17]. The one-body parts are multiplied by
products of central pair and triplet correlation functions, which
depend upon the shells (s or p) occupied by the particles and

on the LS[n] coupling:

|�J 〉 = A
{ ∏

i<j<k

f c
ijk

∏
i<j � 4

fss(rij )
∏

k � 4<l � A

fsp(rkl)

×
∑
LS[n]

(
βLS[n]

∏
4<l<m � A

f LS[n]
pp (rlm)|�A

× (LS[n]JMJ T T3)1234:5...A〉
)}

. (11)

The operator A indicates an antisymmetric sum over all pos-
sible partitions into four s-shell and (A − 4)p-shell particles.

The LS[n] components of the single-particle wave function
are given by

|�A(LS[n]JMJ T T3)1234:5...A〉
= |�4(0000)1234

∏
4<l � A

φLS[n]
p (Rαl)

×
{[ ∏

4<l � A

Y1ml
(	αl)

]
LML[n]

×
[ ∏

4<l � A

χl

(
1

2
ms

)]
SMS

}
JMJ

[ ∏
4<l � A

νl

(
1

2
t3

)]
T T3

〉
.

(12)

The φLS
p (Rαl) are p-wave solutions of a particle in an effective

α-N potential that has Woods-Saxon and Coulomb parts. They
are functions of the distance between the center of mass of the
α core and nucleon l and may vary with LS[n]. The fss, fsp,
and f LS[n]

pp all have similar short-range behavior, like the fc of
the α particle, but different long-range tails.

Two different types of �J have been constructed in recent
VMC calculations of light p-shell nuclei: an original shell-
model kind of trial function [14], which we call Type I, and
a cluster-cluster kind of trial function [9,10], which we call
Type II. In Type I trial functions, the φLS

p (r) has an exponential
decay at long range, with the depth, range, and surface
thickness of the Woods-Saxon potential serving as variational
parameters. The fsp goes to a constant ∼1, while f LS[n]

pp has
a much smaller tail to allow clusterization of the p-shell
nucleons. Details of these A = 6, 7 trial functions are given in
Ref. [14].

In Type II trial functions, φLS
p (r) is again the solution of

a p-wave differential equation with a potential containing
Woods-Saxon and Coulomb terms, but with an added Lagrange
multiplier that turns on at long range. This Lagrange multiplier
imposes the boundary condition

[
φLS[n]

p (r → ∞)
](A−4) ∝ Wkm(2γ r)/r, (13)

where the Whittaker function, Wkm(2γ r), gives the asymptotic
form of the bound-state wave function in a Coulomb potential.
The γ is related to the cluster separation energy which is taken
from experiment (the GFMC computed separation energies
for AV18 + IL2 are close to the experimental values). The
accompanying fsp goes to unity (more rapidly than in the
Type I trial function) and the f LS[n]

pp are taken from the exact
deuteron wave function in the case of 6Li, or the VMC triton
(3He) trial function in the case of 7Li (7Be). Consequently, the
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Type II trial function factorizes at large cluster separations as

�T → ψαψτWkm(2γ rατ )/rατ , (14)

where ψα and ψτ are the wave functions of the clusters and rατ

is the separation between them. More details on these wave
functions are given in Refs. [9] and [10]. In the case of 6He,
which does not have an asymptotic two-cluster threshold, we
generate a f LS[n]

pp correlation assuming a weakly bound 1S0 nn

pair.
For either type of trial function, a diagonalization is carried

out in the one-body basis to find the optimal values of the βLS[n]

mixing parameters for a given (Jπ ; T ) state. The trial function,
Eq. (8), has the advantage of being efficient to evaluate while
including the bulk of the correlation effects.

III. GFMC WAVE FUNCTIONS

The GFMC method [18,19] projects out the exact lowest-
energy state, �0, for a given set of quantum numbers, using

�0 = lim
τ→∞ exp[−(H ′ − E0)τ ]�T , (15)

where H ′ is a possibly simplified version of the desired
Hamiltonian H and �T is an initial trial wave function. If
the maximum τ actually used is large enough, the eigenvalue
E0 is calculated exactly while other expectation values are
generally calculated neglecting terms of order |�0 − �T |2 and
higher [14]. In contrast, the error in the variational energy EV

is of order |�0 − �T |2, and other expectation values calculated
with �T have errors of order |�0 − �T |. In the following we
present a brief overview of nuclear GFMC methods; much
more detail may be found in Refs. [14] and [20].

We start with the �T of Eq. (8) and define the propagated
wave function �(τ )

�(τ ) = e−(H ′−E0)τ�T = [e−(H ′−E0)�τ ]n�T , (16)

where we have introduced a small time step, τ = n�τ ;
obviously �(τ = 0) = �T and �(τ → ∞) = �0. Quantities
of interest are evaluated in terms of a “mixed” expectation
value between �T and �(τ ):

〈O(τ )〉M = 〈�(τ )|O|�T 〉
〈�(τ )|�T 〉 . (17)

The desired expectation values would, of course, have �(τ )
on both sides; by writing �(τ ) = �T + δ�(τ ) and neglecting
terms of order [δ�(τ )]2, we obtain the approximate expression

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V ], (18)

where 〈O〉V is the variational expectation value. More accurate
evaluations of 〈O(τ )〉 are possible [21], essentially by measur-
ing the observable at the midpoint of the GFMC propagation.
However, such estimates require a propagation twice as long as
the mixed estimate and require separate propagations for every
expectation value to be evaluated. The nuclear calculations
published to date use the approximation of Eq. (18).

For off-diagonal matrix elements relevant to this work the
mixed estimate is generalized to the following expression

〈�f (τ )|O|�i(τ )〉√
〈�f (τ )|�f (τ )〉

√
〈�i(τ )|�i(τ )〉

≈ 〈O(τ )〉Mi
+ 〈O(τ )〉Mf

− 〈O〉V , (19)

where

〈O〉V =
〈
�

f

T

∣∣O∣∣�i
T

〉
√〈

�
f

T

∣∣�f

T

〉√〈
�i

T

∣∣�i
T

〉 , (20)

〈O(τ )〉Mi
=

〈
�

f

T

∣∣O|�i(τ )〉〈
�i

T

∣∣�i(τ )
〉

√√√√
〈
�i

T

∣∣�i
T

〉
〈
�

f

T

∣∣�f

T

〉 , (21)

〈O(τ )〉Mf
= 〈�f (τ )|O∣∣�i

T

〉
〈
�f (τ )

∣∣�f

T

〉
√√√√〈

�
f

T

∣∣�f

T

〉
〈
�i

T

∣∣�i
T

〉 , (22)

and the index i (f ) refers to the wave function of the initial
(final) nuclear state. In our calculation the operator always
acts on the trial wave function. The first term of Eq. (21)
is thus replaced by its conjugate 〈�i(τ )|O†|�f

T 〉 in our real
computation. Note here the computation for each extrapolated
transition requires two independent GFMC propagations.

The quantities 〈�i(τ )|O|�f

T 〉/〈�i(τ )|�i
T 〉 and 〈�f (τ )|

O|�i
T 〉/〈�f (τ )|�f

T 〉 can be directly evaluated in the GFMC
propagations of �i(τ ) and �f (τ ), respectively. The VMC
expectation value can be cast as

〈O〉V =
〈
�

f

T

∣∣O∣∣�i
T

〉
〈
�i

T

∣∣�i
T

〉
√√√√

〈
�i

T

∣∣�i
T

〉
〈
�

f

T

∣∣�f

T

〉 (23)

=
〈
�i

T

∣∣O∣∣�f

T

〉
〈
�

f

T

∣∣�f

T

〉
√√√√〈

�
f

T

∣∣�f

T

〉
〈
�i

T

∣∣�i
T

〉 , (24)

in which the first term can be computed in VMC walks guided
by �i

T and �
f

T , respectively. The ratio 〈�i
T |�i

T 〉/〈�f

T |�f

T 〉 or
its inverse can be also computed in the �i

T and �
f

T walks. In
this present GFMC calculation the propagation of the mixed
off-diagonal matrix element was generally carried out for a
value of τ up to 3 MeV−1. In most cases the transition matrix
elements are quite stable with this large value of τ .

As noted in Eq. (15), the GFMC propagation may be
computed using a simplified Hamiltonian. In the current work
we use H ′ = AV8′ + IL2′, where AV8′ is a reprojection of
AV18 defined in Ref. [14] and the strength of the central
repulsive part of IL2 is modified in IL2′ so that 〈H ′〉 ≈
〈H 〉. Energies are then perturbatively corrected by adding
〈H − H ′〉. However all other expectation values are really
for eigenfunctions of H ′; we have no way of correcting them
to expectation values in the eigenfunctions of the desired H .
Because H ′ is a good approximation to H , this in general
should not be a problem. However, Fermi matrix elements
are different from their trivial values (2J + 1), only because
of charge-independence-breaking components in the wave
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TABLE I. Electromagnetic transition reduced matrix elements for A = 6 nuclei.

J π
i ; Ti → J π

f ; Tf Mode VMC Mi Mf GFMC

6Li(3+; 0) → 6Li(1+; 0) E2(e fm2) 8.20(1) 8.46(3) 8.77(3) 9.03(5)
6Li(2+; 0) → 6Li(1+; 0) E2(e fm2) 6.20(8) 6.49(16) 6.29(3) 6.58(18)
6Li(0+; 1) → 6Li(1+; 0) M1(µN ) 3.682(4) 3.658(1) 3.643(1) 3.619(4)
6Li(2+; 1) → 6Li(1+; 0) M1(µN ) 0.09(3) −0.010(3) −0.010(7) −0.11(3)
6He(2+; 1) → 6He(0+; 1) E2(e fm2) 1.44(1) 1.64(2) 1.63(1) 1.81(3)

functions:

〈||F ||〉2 = (2J + 1)(1 − ε). (25)

The AV8′ does not contain the strong charge symmetry
breaking (CSB) component of AV18 and has only a Z-
dependent isoscalar projection of the Coulomb potential as
proposed by Kamuntavičius et al. [22]; all other electro-
magnetic terms in AV18 are not included. Therefore our
calculations may seriously underestimate the correct values
of ε for AV18 + IL2. This is suggested by a comparison
with correlated hyperspherical harmonics (CHH) calculations,
using the AV18 + UIX Hamiltonian, of the F and GT matrix
elements for 3H decay [23]. The CHH value for the GT matrix
element is 2.258 while our result computed using AV8′ + UIX′
is 2.260 ± 0.001. However, their value for ε is 0.0013, while
ours is 0. ± 0.0005.

IV. RESULTS FOR A = 6, 7 NUCLEI

Evaluation of the transition matrix elements is fairly
straightforward. The VMC or GFMC wave function samples
for a given (Jπ ; T ) state are constructed with a specific MJ

projection. We find it convenient to use the same MJ for both
initial and final states, even if J is different. This makes the M1
operator exactly equivalent to the magnetic moment operator
and also keeps the GT operator particularly simple. We note
that the size of the Monte Carlo statistical errors can vary
significantly depending on the particular MJ substate that is
chosen. Below we present more than a dozen electroweak
transitions between different states of A = 6, 7 nuclei. The
first two subsections discuss the electromagnetic transitions
and the last subsection discusses the weak transitions.

A. Electromagnetic transitions of A = 6 nuclei

Table I shows the VMC, the two mixed estimates, and
the extrapolated GFMC reduced matrix elements given in
Eq. (19), for various electromagnetic transitions between

different states of A = 6 nuclei. The corresponding transition
widths (computed with the experimental excitation energies)
are shown in Table II, where they are compared with Cohen-
Kurath (CK) shell-model values [16], no-core shell-model
values (NCSM) [24], and experiment [25,26]. The NCSM
values were computed for the AV8′ + TM′ Hamiltonian,
which we expect to have transitions similar to those of the
AV8′ + IL2′ Hamiltonian used here.

The GFMC propagation for the 6Li E2 matrix elements is
shown in Fig. 1. For each of the E2 transitions we plot the two
mixed reduced matrix elements: red squares for those with
GFMC ground state configurations and green circles for those
with GFMC excited state configurations. The solid purple line
starting from the origin shows the pure VMC estimate, while
the black stars represent the extrapolated matrix elements in
each E2 transition. The other solid lines are the average, over
the range of τ shown, for each reduced matrix element, with
standard deviations shown as dashed lines.

In Table I and Fig. 1 we note that for the E2 transition
between the ground (1+; 0) and the first excited (3+; 0) states
of 6Li, the average values for the two mixed estimates are
larger than the pure VMC estimate. As a result the extrapolated
GFMC matrix element is 10% larger than the VMC value
and hence the GFMC transition width is about 20% larger
than the VMC width, as shown in Table II. We also note that
the GFMC width for this transition is a little bigger than the
experimental value, but it is within the experimental range.
It is worth mentioning that the CK shell-model prediction
for this width is about half the experimental value, despite
the use of effective charges for proton and neutron of 1.4e

and 0.4e, respectively. The NCSM value is only one quarter
our result, despite our expectation that the two Hamiltonians
(AV8′ + TM′ in NCSM and AV8′+IL2′ in our work) should
not result in very different transition moments. In a more recent
publication, NCSM values using a 10h̄ω space for AV8′ with
no 3N potential were presented [27]. The B(E2) increased by
20% from the 6h̄ω values presented in Table I.

TABLE II. Electromagnetic transition widths in eV of A = 6 nuclei.

J π
i ; Ti → J π

f ; Tf EM mode CK NCSMa VMC GFMC Expt.

6Li(3+; 0) → 6Li(1+; 0) E2 (10−4) 2.17 1.22 3.86(1) 4.68(5) 4.40(34)
6Li(2+; 0) → 6Li(1+; 0) E2 (10−2) 0.34 0.38 0.92(2) 1.04(6) 0.54(28)
6Li(0+; 1) → 6Li(1+; 0) M1 (100) 7.85 8.05 7.10(2) 6.86(2) 8.19(17)
6Li(2+; 1) → 6Li(1+; 0) M1 (100) 0.23 0.20 0.003(2) 0.004(2) 0.27(5)
6He(2+; 1) → 6He(0+; 1) E2 (10−5) – – 0.63(1) 1.03(3) 1.63(10)

aFor AV8′ + TM′ from Ref. [24].
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FIG. 1. (Color online) E2 transitions for
6Li(3+; 0) and 6Li(2+; 0) to 6Li(1+; 0) ground
state.

The E2 transition from the (2+; 0) excited state to the
ground state turns out to be difficult to calculate, as can be
seen in Fig. 1. The plot shows that the GFMC mixed estimates
using either the ground or the first excited (3+; 0) states of
6Li nucleus are moderately stable. On the other hand the
GFMC mixed estimate that uses the broad (2+; 0) state of
6Li is growing rapidly with τ , which makes a simple average
meaningless. This is undoubtedly related to the difficulty in
obtaining GFMC energies for broad, particle-unstable, states.
Figure 2 shows the computed energies of the (1+; 0), (3+; 0),
and (2+; 0) states in 6Li as a function of τ . The (1+; 0) and
(3+; 0) energies drop rapidly with τ from the initial VMC value
and then become constant, aside from statistical fluctuations.
The stable energy is reached around τ = 0.2 MeV−1 as marked
in the figure by the open stars. However, after a similar initial
rapid decrease, the energy of the experimentally broad (2+; 0)
state continues to decrease. At the same time the rms radius
is steadily increasing; the GFMC algorithm is propagating
this state to separated α and deuteron clusters. Based on the
convergence of the (1+; 0) and (3+; 0) energies, we assume that
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-32
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) 
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M
eV

)
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FIG. 2. (Color online) GFMC E(τ ) for different states of 6Li.

values at τ = 0.2 MeV−1 represent the best GFMC estimates
for this state. Using this value of τ for the transition results
in the value 6.49(16) for the 〈2+||E2||1+〉 Mi matrix element,
which is shown as an open circle in Fig. 1. The quoted error
is based on a range of ±0.1 for the τ at which the value is
evaluated. This GFMC result for the width is only 10% larger
than the VMC value, but is three times as big as the CK value,
and twice as big as the experimental value, which however has
a sizable error bar.

A similar analysis was used for the 6He E2 matrix element
given in Table I. The experimental value here is taken from
a recent measurement of the B(E2 ⇑) from 6He breakup on
209Bi near the Coulomb barrier [26].

The GFMC propagation for the M1 transition 6Li(0+; 1) →
6Li(1+; 0) is shown in Fig. 3. The GFMC matrix element
reduces the VMC estimate slightly, giving a width that is
smaller than the current experimental value. However, this
is not unexpected as we have used only one-body transi-
tion operators in our present calculation. Two-body meson-
exchange currents (MEC) are known to increase isovector
magnetic moments by 15–20% for A = 3 nuclei, while
having profound effects on the magnetic form factors [28].
A previous VMC calculation of the width of this transition
found a 20% increase from 7.49(2) to 9.06(7) eV when
MEC appropriate for the AV18 + UIX Hamiltonian were
added [6]. A similar increase applied to the present GFMC
calculation would predict a width of 8.29(3) eV in excellent
agreement with the experimental width of 8.19(17) eV.
We plan to evaluate MEC corrections with the GFMC wave
functions in future work. The NCSM result is in good
agreement with experiment without any MEC contributions;
if the MEC contributions are the size we expect, however, this
good agreement will be lost when they are added.

Finally, we have a very difficult time evaluating the M1
transition between 6Li(2+; 1) and 6Li(1+; 0) states. The former
is again a wide state that has the same GFMC propagation dif-
ficulty as the E2 transition between 6Li(2+; 0) and 6Li(1+; 0)
states discussed above. However, the biggest problem is a
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FIG. 3. (Color online) M1 transition for
6Li(0+; 1) to 6Li(1+; 0).

large cancellation between different LS[n] components of the
two wave functions, because the dominant pieces, 1D2[42]
and 3S1[42], are not connected by the M1 operator. The
VMC diagonalization and GFMC propagation are driven to
minimize the energy and may not determine small components
of the wave functions sufficiently well to obtain such sensitive
cancellations. Finally, the contribution of MEC terms may be
much more important here because of the cancellations in
the impulse approximation; hints of this were observed in the
earlier VMC study [6].

B. Electromagnetic transitions of A = 7 nuclei

In Table III we present the matrix elements of a number of
electromagnetic transitions in A = 7 nuclei. As in Table I, this
table shows the VMC estimates, the two mixed estimates, and
the GFMC extrapolated matrix elements for each transition.
We suppress the isospin quantum numbers for different states
of 7Li and 7Be because all states we consider have T = 1

2 .
For those transitions in A = 7 nuclei between particle-stable
states, we made two independent calculations using both Type
I and Type II trial wave functions as discussed in Sec. II.

However, the Type II trial function is not defined for particle-
unstable states like 7Li( 7

2
−

). It is expected that, even though
the VMC estimates may be somewhat dependent on the trial
wave functions, the GFMC calculation should remove most of
the dependence. (It is exact at the order of |�0 − �T |2). The
extrapolated regular (I) and asymptotic (II) expectation values
are within 2% of each other for every transition we considered.

Table IV shows the corresponding widths of the electromag-
netic transitions in A = 7 nuclei, compared to the CK shell-
model values [16] and experiment [25,29]. The GFMC width
is about 20% bigger than the CK and VMC values and in good
agreement with the experimental width for the 7Li( 1

2
−

) →
7Li( 3

2
−

) E2 transition. The corresponding transition in 7Be has
not been measured. The widths for both the M1 transitions are
relatively smaller than the corresponding experimental widths
as expected for just one-body magnetic-moment operator
expectation values. If there is a 20% additional contribution as
expected from MEC terms, these will approach within 10% of
the experimental values.

The GFMC propagation for the E2 transition from 7Li( 7
2

−
)

to 7Li( 3
2

−
) is illustrated in Fig. 4. We note that even though

TABLE III. Electromagnetic transition reduced matrix elements of A = 7 nuclei.

J π
i → J π

f �T Mode VMC Mi Mf GFMC

7Li( 1
2

−
) → 7Li( 3

2

−
) I E2(e fm2) 5.11(5) 5.44(2) 5.37(2) 5.69(6)

7Li( 1
2

−
) → 7Li( 3

2

−
) II E2(e fm2) 5.38(6) 5.53(3) 5.56(2) 5.71(7)

7Li( 1
2

−
) → 7Li( 3

2

−
) I M1(µN ) 2.742(1) 2.749(3) 2.693(2) 2.695(4)

7Li( 1
2

−
) → 7Li( 3

2

−
) II M1(µN ) 2.738(1) 2.673(3) 2.706(2) 2.641(3)

7Li( 7
2

−
) → 7Li( 3

2

−
) I E2(e fm2) 7.67(4) 8.28(3) 8.30(3) 8.91(6)

7Be( 1
2

−
) → 7Be( 3

2

−
) I E2(e fm2) 8.51(3) 9.09(4) 9.54(3) 10.12(6)

7Be( 1
2

−
) → 7Be( 3

2

−
) II E2(e fm2) 8.86(13) 9.74(7) 9.60(6) 10.48(16)

7Be( 1
2

−
) → 7Be( 3

2

−
) I M1(µN ) 2.423(2) 2.412(2) 2.403(3) 2.394(4)

7Be( 1
2

−
) → 7Be( 3

2

−
) II M1(µN ) 2.405(3) 2.390(2) 2.386(5) 2.372(6)
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TABLE IV. Electromagnetic transition widths in eV of A = 7 nuclei.

J π
i → J π

f �T EM mode CK VMC GFMC Expt.

7Li( 1
2

−
) → 7Li( 3

2

−
) I E2 (10−7) 2.79 2.61(3) 3.24(7) 3.30(20)

7Li( 1
2

−
) → 7Li( 3

2

−
) II E2 (10−7) – 2.90(3) 3.26(8) 3.30(20)

7Li( 1
2

−
) → 7Li( 3

2

−
) I M1 (10−3) 5.69 4.74(3) 4.58(3) 6.30(31)

7Li( 1
2

−
) → 7Li( 3

2

−
) II M1 (10−3) – 4.73(1) 4.41(1) 6.30(31)

7Li( 7
2

−
) → 7Li( 3

2

−
) I E2 (10−2) 0.98 1.29(1) 1.74(2) 1.50(20)

7Be( 1
2

−
) → 7Be( 3

2

−
) I E2 (10−7) – 4.24(3) 6.00(7) –

7Be( 1
2

−
) → 7Be( 3

2

−
) II E2 (10−7) – 4.60(13) 6.44(19) –

7Be( 1
2

−
) → 7Be( 3

2

−
) I M1 (10−3) – 2.69(1) 2.62(1) 3.43(45)

7Be( 1
2

−
) → 7Be( 3

2

−
) II M1 (10−3) – 2.65(1) 2.57(1) 3.43(45)
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FIG. 4. (Color online) E2 transition for
7Li( 7

2

−
) to 7Li( 3

2

−
).
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FIG. 5. (Color online) Gamow-Teller transi-
tions for 7Be( 3

2

−
) to 7Li( 3

2

−
) and 7Be( 3

2

−
) to

7Li( 1
2

−
).
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TABLE V. Weak transition reduced matrix elements of A = 6, 7 nuclei.

J π
i → J π

f �T Mode VMC Mi Mf GFMC

6He(0+; 1) → 6Li(1+; 0) I GT 2.195(1) 2.176(1) 2.175(1) 2.157(1)
6He(0+; 1) → 6Li(1+; 0) II GT 2.253(3) 2.184(1) 2.276(1) 2.207(3)

7Be( 3
2

−
) → 7Li( 3

2

−
) I F 2.0000(0) 1.9998(1) 1.9998(1) 1.9997(3)

7Be( 3
2

−
) → 7Li( 3

2

−
) II F 1.9995(1) 1.9987(3) 1.9983(3) 1.9976(5)

7Be( 3
2

−
) → 7Li( 3

2

−
) I GT 2.325(1) 2.298(1) 2.301(1) 2.274(2)

7Be( 3
2

−
) → 7Li( 3

2

−
) II GT 2.339(4) 2.311(1) 2.319(1) 2.291(4)

7Be( 3
2

−
) → 7Li( 1

2

−
) I GT 2.146(2) 2.119(3) 2.129(3) 2.099(4)

7Be( 3
2

−
) → 7Li( 1

2

−
) II GT 2.139(1) 2.121(1) 2.098(2) 2.080(1)

7Be( 1
2

−
) → 7Li( 3

2

−
) II GT 2.138(1) 2.125(3) 2.104(1) 2.092(3)

the individual points for the two mixed estimates are a
little scattered, the average values for these overlap. The
extrapolated GFMC result is larger than the VMC estimate by
15%, making the transition width 30% larger. The VMC value
is one experimental standard deviation below the experimental
value [29] while the GFMC value is the same amount above
the experimental value.

C. Weak transitions in A = 6, 7 nuclei

The weak Fermi and Gamow-Teller matrix elements in A =
6, 7 nuclei are shown in Table V. We note that in every F
and GT transition the extrapolated GFMC matrix elements are
smaller than the VMC estimates. However, the reduction is not
large, being about 2% for GT terms. This suggests the starting
trial functions are already good approximations for these weak
transitions. The differences between Type I and Type II trial
functions are not great, and the GFMC propagation does not
reduce these differences.

The Fermi matrix element for 7Be( 3
2

−
) to 7Li( 3

2
−

) is exactly
2 for charge-symmetric wave functions such as our Type I.
The Type II wave functions are not charge-symmetric because
the αt and ατ separation energies in Eq. (14) are different
and also the triton and 3He clusters are slightly different.
It appears that the GFMC propagation will introduce only

a small asymmetry when starting from a charge-symmetric
(Type I) trial function, but if given a small starting asymmetry
(Type II), it can enhance it considerably. However, as noted at
the end of Sec. III, the present calculations may still seriously
underestimate this asymmetry and its effect on 〈||F ||〉. We also
show in the last line of Table V the GT matrix element for the
transition from 7Be( 1

2
−

) to 7Li( 3
2

−
), which is not an observable

weak decay, but could be measured in a (p, n) reaction.
The charge-symmetric Type I trial function would give the
same result as the 7Be( 3

2
−

) to 7Li( 1
2

−
) transition, but the Type

II trial function gives a very slightly different result.
The log(f t) values obtained from VMC, shown in Table VI,

are already in reasonable agreement with the corresponding
experimental values and the GFMC values are even better.
The previous VMC study [8] included MEC contributions that
boosted the GT transition matrix elements ∼1.5% for A = 6
and ∼3% for A = 7. This resulted in too small a half-life for
6He but about right for 7Be. When MEC contributions are
eventually added to the GFMC calculation, the half-life for
6He should be quite good, but the rate for 7Be will probably
be a little too fast. The last two lines of Table VI give the
branching ratio ξ of the weak decay to the two final states in
7Li for Type I and II trial functions. These are also a little low
compared to experiment, but MEC contributions should also
improve the agreement.

TABLE VI. Log(f t) values for weak transitions of A = 6, 7 nuclei.

J π
i → J π

f �T Weak current CK NCSMa VMC GFMC Expt.

6He(0+; 1) → 6Li(1+; 0) I GT 2.84 2.87 2.901(1) 2.916(1) 2.910(2)
6He(0+; 1) → 6Li(1+; 0) II GT – – 2.879(2) 2.897(2) –

7Be( 3
2

−
) → 7Li( 3

2

−
) I F & GT 3.38 3.30 3.288(1) 3.302(1) 3.32

7Be( 3
2

−
) → 7Li( 3

2

−
) II F & GT – – 3.285(1) 3.297(1) –

7Be( 3
2

−
) → 7Li( 1

2

−
) I GT 3.46 3.53 3.523(1) 3.542(1) 3.55

7Be( 3
2

−
) → 7Li( 1

2

−
) II GT – – 3.526(1) 3.550(1) –

ξ Li( 1
2

−
)/Li( 3

2

−
) I F & GT 14.2% 10.38% 10.38(3)% 10.25(3)% 10.44(4)%

ξ Li( 1
2

−
)/Li( 3

2

−
) II F & GT – – 10.25(3)% 10.00(3)% –

aFor AV8′ + TM′ from Ref. [24].
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In Fig. 5 we present the various reduced matrix elements as
a function of τ for two Gamow-Teller transitions, 7Be( 3

2
−

) to
7Li( 3

2
−

) and 7Be( 3
2

−
) to 7Li( 1

2
−

). The former is shown for the
Type I trial function and the latter for the Type II trial function.
The GFMC mixed estimate points for both transitions are quite
stable.

V. CONCLUSIONS

These first GFMC calculations of transition matrix elements
in light A = 6, 7 nuclei are generally in good agreement with
the current experimental data. A number of these transitions
have been calculated previously using the more approximate
VMC technique with an older 3N potential [6–8]. Here we
explored a significant number of electroweak transitions using
the GFMC method and calculated the corresponding widths
or log(f t) for each transition. We compared our results to
Cohen-Kurath shell-model and no-core shell-model results
where available and also to the current experimental results.
In most of the transitions we considered we found that the
GFMC transition widths or log(f t) values have been improved
from the VMC and are in good agreement with experimental
numbers. This is in general true for most of the E2 and all of the
GT and F type transitions. However, for M1 type transitions
the GFMC widths we obtained are smaller than the current
experimental values. Meson-exchange current corrections are
expected to be large for M1 transitions and must be calculated
for a meaningful comparison with data. We note here that
the effect of MEC on E2 and GT transitions are expected to
be smaller, about �3%. In addition to the good results we
obtained in most cases we faced some difficulties, especially
treating broad nuclear states using the GFMC method. In these

cases scattering boundary conditions should be used; GFMC
has recently been successfully applied to the nα scattering
states [5]. We also had difficulty when the main components of
the wave functions did not contribute to the transition, with the
result depending on cancellations between small components.

Some of the transitions that we explored were also treated
by using two different types of trial wave functions. The
extrapolated GFMC values obtained by using either of the
wave functions should be the same; in practice they are within
2% of each other. This is indeed found in our calculations; the
widths we obtain by using one or the other type of trial wave
function are very close.

In the future, we expect to extend this work to larger
nuclei in the A = 8–10 range and for additional operators
such as E1 and M3. One difficulty we anticipate is that some
transitions of interest, such as the weak decays of 8He, 8Li,
and 8B, run predominantly from large components of the
initial state wave function to small components in the final
states. These small components may not be well-determined
by the GFMC calculation so additional constraints may be
necessary. We also need to evaluate two-body contributions to
the electroweak current operators that are consistent with our
chosen Hamiltonian.
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