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Reexamining the neutron skin thickness within a density dependent hadronic model
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In the present work, we calculate the 208Pb neutron skin thickness, binding energy, surface energy, and density
profiles within the Dirac solution of a density dependent hadronic model. The same calculation is performed with
the NL3 parametrization of the nonlinear Walecka model. The asymmetry of a polarized electron scattered from
a heavy target is also obtained within a partial wave expansion calculation. The theoretical results are then ready
to be compared with the experimental results expected to be available very soon at the Thomas Jefferson National
Accelerator Facility. For completeness, other nuclei such as 40Ca, 48Ca, 66Ni, and 90Zr are also investigated.
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I. INTRODUCTION

Relativistic models are a very useful tool in the description
of a wide variety of applications in nuclear matter, finite
nuclei, and nuclear astrophysics. They can be tested and,
hopefully, constrained according to experimental and astro-
physical observation results. Unfortunately, most theoretical
results are model dependent, and so far it is unclear whether
some of them should be discarded. Many variations of the
well-known quantum hadrodynamic model [1] have been
developed and used in the last decades. Some of them rely
on density dependent couplings between the baryons and the
mesons [2–5], while others use constant couplings [6–8]. Still
another possibility of including density dependence in the
Lagrangian density is through the coupling of the mediator
mesons among themselves [9]. The strong model dependence
of the results comes from the simple fact that relativistic model
couplings are adjusted to fit expected nuclei properties such
as binding energy, saturation density, compressibility, and
energy symmetry at saturation density only. Once the same
relativistic models are extrapolated to higher densities as in
stellar matter or higher temperatures as in heavy-ion collisions
or even to lower densities as in the nuclear matter liquid
gas phase transitions, they can and indeed provide different
information. Hence, experimental constraints obtained either
from polarized electron scattering from a heavy target, from
heavy-ion collisions at different energies, or from astronomical
observations are very important in order that adequate models
are chosen and inadequate ones are ruled out.

In the present work, we focus our attention on the
calculation of the difference between the neutron and the
proton radii known as the neutron skin thickness. Based
on the argument that experimental results should be used
to constrain relativistic models, it is very important that
an accurate experimental measurement of the neutron skin
thickness is achieved. This depends on a precise measurement
of both the charge and neutron radii. The charge radius is
already known within a precision of 1% for most stable
nuclei, using the well-known single-arm and nonpolarized
elastic electron scattering technique as well as the spectroscopy
of muonic atoms [10]. For the neutron radius, our present
knowledge has an uncertainty of about 0.2 fm [11]. However,
using polarized electron beams it is possible to obtain the

neutron distribution, as first discussed in Ref. [12] and, as a
consequence, to obtain the desired neutron radius. In fact, the
Parity Radius Experiment (PREX) at the Thomas Jefferson
National Accelerator Facility (JLab) [13] is currently running
to measure the 208Pb neutron radius with an accuracy of less
than 0.05 fm, using polarized electron scattering. In the PREX
experiment, the asymmetry is expected to be measured at a
momentum transfer q ≈ 0.4 fm−1.

At this point it is worth mentioning that two other
experimental methods have been used to measure neutron skins
and neutron halos [14,15], namely, the nuclear spectroscopy
analysis of the antiproton annihilation residues one mass
unit lighter than the target mass and the measurements of
strong-interaction effects on antiprotonic x rays. Whenever
possible, the results obtained with these methods are also used
for comparison in the results section.

In a recent work [16], the neutron skin thickness and the
asymmetry for polarized electron scattering off a hadronic
target were investigated with the help of both density de-
pendent and constant coupling relativistic models. For these
calculations, two important compromises were made: for the
calculation of the proton and neutron densities, a Thomas-
Fermi approach was used; and for the calculation of the
asymmetry, a plane wave Born approximation (PWBA) for the
electron [17] was enforced. The 208Pb neutron skin thickness
was then obtained with two different density dependent
hadronic (DDH) model parametrizations, the TW [3], where
the density dependence is introduced explicitly through the
couplings, and the NLωρ model [9], where the density
dependence appears through the coupling of the vector and
the isovector mesons. One of the most-used parametrizations
of the nonlinear Walecka model (NLWM), the NL3, was also
used. The asymmetry, in the momentum transfer range of
interest for the calculation of neutron skins, was shown to
give very similar results for all models. On the other hand,
the neutron skin thickness is smaller with the DDH model
than with the NL3. As the coupling strength between the
ω and ρ mesons increases in the NLωρ model, the neutron
skin thickness moves from the original NL3 toward the DDH
results. As the momentum transfer increases, the asymmetry
becomes strongly model dependent.

In the present work we revisit the same quantities, but
with improvements in both approximations mentioned above
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in order to check if the model differences remain. As the target
is a heavy nucleus (208Pb), the results for the asymmetry are
reconsidered with the use of the partial wave expansion method
as briefly discussed in the Appendix. On the other hand, the
proton and neutron densities are calculated from the solution
of the Dirac equation. We also extend our calculations to
obtain the neutron skin thickness of 40Ca, 48Ca, 66Ni, and 90Zr.
For the asymmetry, we also include applications for 48Ca. As
the NLωρ model was shown to give results that interpolate
between the NL3 parametrization of the NLWM and the
TW parametrization of the DDH model, we next restrict
ourselves to the NL3 and the DDH models, i.e., one with
constant couplings and another one with density dependent
couplings. We also comment on the differences between the
results obtained in the present work and those within the
Thomas-Fermi approximation. It is worth mentioning that
most applications to neutron stars, equations of state used
to describe supernova simulations, and the description of
nucleation processes have been done within the Thomas-Fermi
approximation. Understanding its limitations and accuracy is
indeed very important. Information about the skin thickness as
obtained in finite nuclei can be directly related to astrophysical
calculations, and so the possible connections between Thomas-
Fermi and Dirac density profiles can be useful.

The paper is organized as follows. In Sec. II, we show
the Lagrangian density of the DDH model and describe the
formalism used; in Sec. III, we present and discuss the results;
in Sec. IV, we draw our final conclusions.

II. FORMALISM

We describe the main quantities of the DDH model, which
has density dependent coupling parameters. The Lagrangian
density reads

LH = ψ̄

[
γµ

(
i∂µ − �vV

µ − �ρ

2
τ · bµ − e

(1 + τ3)

2
Aµ

)

− (M − �sφ)

]
ψ + 1

2

(
∂µφ∂µφ − m2

sφ
2
)

− 1

4
	µν	

µν + 1

2
m2

vVµV µ − 1

4
Bµν · Bµν

+ 1

2
m2

ρbµ · bµ − 1

4
FµνF

µν, (1)

where φ, V µ, bµ, and Aµ are the scalar-isoscalar, vector-
isoscalar, and vector-isovector meson fields and the pho-
ton field, respectively; 	µν = ∂µVν − ∂νVµ, Bµν = ∂µbν −
∂νbµ − �ρ(bµ × bν), Fµν = ∂µAν − ∂νAµ, and τ3 = ±1 for
protons and neutrons, respectively. The parameters of the
model are the nucleon mass M = 939 MeV, the masses of
the mesons ms,mv,mρ , the electromagnetic coupling constant
e = √

4π/137, and the density dependent couplings �s, �v,

and �ρ , which are adjusted to reproduce some of the nuclear
matter bulk properties, using the parametrization

�i(ρ) = �i(ρsat)hi(x), x = ρ/ρsat, (2)

with

hi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
, i = s, v, (3)

and

hρ(x) = exp[−aρ(x − 1)], (4)

with the values of the parameters mi, �i(ρsat), ai, bi, ci, and
di, i = s, v, ρ given in Ref. [3]. This model does not include
self-interaction terms for the meson fields as in NL3. We
consider two parametrizations of the above-mentioned DDH
model: the original one that we next refer to as TW and a more
recent one known as DDME1 [18], obtained from a fitting that
includes known experimental values of the 208Pb neutron skin.

Once the Lagrangian density is chosen, the Euler-Lagrange
equations are used to calculate the equations of motion. The
meson field equations of motion are easily found in the
literature, and we refrain from writing them. An interested
reader can obtain the equations in Refs. [2,3,16,19], among
other papers in the literature.

The Dirac equation for the nucleon field reads

[γ µ(i∂µ − �µ) − (M − �s)] = 0, (5)

where the scalar and vector self-energies are given, respec-
tively, by

�s = �sφ, �µ = �(0)
µ + �R

µ , (6)

with

�(0)
µ = �vVµ + �ρ

2
τ · bµ + e

(1 + τ3)

2
Aµ,

�R
µ = jµ

ρ

(
∂�v

∂ρ
ψ̄γ νψVν + 1

2

∂�ρ

∂ρ
ψ̄γ ντψ · bν (7)

− ∂�s

∂ρ
ψ̄ψφ

)
.

The term �R
µ is known as the rearrangement term. As done

in Refs. [1,20], we consider that the nucleus is approximately
given by a Slater determinant and only the lowest lying positive
energy states are occupied. The usual ansatz for the nucleon
spinor is

ψ(�r, t) = ψ(�r) exp(−iEt), (8)

and the one-particle states are obtained from the solution of
the Dirac equation. Only spherically symmetric nuclei are
considered, and the usual notation for the expected values
of the meson fields are used. The self-energies become

�0 = �vV0(r) + 1

2
�ρτ3b0(r) + e

(1 + τ3)

2
A0(r) + �R

0 , (9)

�R
0 =

(
∂�v

∂ρ
ρ(r)V0 + 1

2

∂�ρ

∂ρ
ρ3(r)b0 − ∂�s

∂ρ
ρs(r)φ

)
, (10)

where ρ3 = ρp − ρn and ρs and ρ are the usual scalar and bary-
onic densities. Next the ansatz given in Eq. (8) and the spin-

isospin wave functions ψ = ( gκ (r)Yjm
κ

ifκ (r)Yjm
−κ

) ⊗ ξ are substituted into

the Dirac equation. Yjm
±κ and ξ are the spinorial spherical

harmonics and the isospin wave functions, respectively. After
some straightforward algebraic manipulations, a new system
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of coupled equations is obtained:

(M�(r) + V (r))gκ (r) −
(

∂

∂r
− κ − 1

r

)
fκ (r) = Egκ (r),

(11)(
∂

∂r
+ κ + 1

r

)
gκ (r) − (M�(r) − V (r))fκ (r) = Efκ (r),

where

M�(r) = M − �s(r)φ(r),

and

V (r) = �v(r)V0(r) + �ρ(r)

2
τ3b0(r)

+ e
(1 + τ3)

2
A0(r) + �R

0 (r).

At this point, fκ (r) and gκ (r) are expanded in the harmonic
oscillator basis of dimensions N and M , respectively, as in
Ref. [20]. The linear variational method is then used to solve
the above equations, and we are left with an eigenvalue
problem solved by the diagonalization of a matrix of order
N + M . The fields φ, V0, and b0 are also expanded in a
harmonic oscillator basis and solved iteratively through their
corresponding Klein-Gordon equations. The Coulomb field A0

is obtained by the Green’s function method.
The proton and neutron mean-square radii are defined as

R2
i =

∫
d3rr2ρi(r)∫
d3rρi(r)

, i = p, n, (12)

and the neutron skin thickness reads

θ = Rn − Rp. (13)

It is also useful to define the nuclear charge distribution as

ρc(r) = 1[(
a2

p − B2
)
π

]3/2

×
∫

d3r ′ exp

[
− (r − r′)2(

a2
p − B2

)
]

ρp(r′), (14)

where B2 = b2/A, ap = 0.653 fm, and b is the oscillator
length used to define our basis set. The above definition
includes the proton finite size, for which we have assumed
a Gaussian shape to describe its intrinsic charge distribution,
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FIG. 1. 208Pb neutron and proton densities obtained with TF
(Thomas-Fermi), DDME1 (Dirac), and TW (Dirac). Larger densities
are for neutrons and lower for protons.

that is,

ρint(r) = 1(
a2

pπ
)3/2 exp[−(r/ap)2], (15)

and an approximate center-of-mass correction according to the
prescription given in Ref. [21]. Neutron finite size corrections
are disregarded; i.e., its intrinsic form factor is taken equal to
one.

For the calculation of the differential elastic electron cross
section (dσ/d	) and the asymmetry A, details are given in
the Appendix.

III. RESULTS AND DISCUSSION

We first plot the 208Pb neutron and proton densities obtained
for the DDH model within the Thomas-Fermi approximation
from Ref. [16] and the solution of the Dirac equation in Fig. 1.
It is well known that the Thomas-Fermi approximation flattens
the central energy densities, while the Dirac equation keeps the
internal nuclear structure. The difference in the central density
is then compensated near the surface, with consequences in
the calculations of the mean-square radii and neutron skin
thickness. One can see that the DDME1 parametrization gives
almost the same density profiles as those obtained with the
original TW parametrization.

TABLE I. 208Pb properties.

Model Approximation Rn (fm) Rp (fm) Rc (fm) θ (fm) B/A (MeV) σ (Mev/fm2)

NL3 TF 5.79 5.57 0.22 −7.79 0.96
NL3 Dirac 5.74 5.46 5.51 0.28 −7.91 1.13
TW TF 5.68 5.52 0.16 −7.46 1.10
TW Dirac 5.61 5.42 5.48 0.20 −7.78 1.30
DDME1 Dirac 5.66 5.46 5.51 0.20 −7.91 1.18
Exp. [22] 5.50
Exp. [23] −7.87
Exp. [24] 0.12 ± 0.07
Exp. [25] 0.20 ± 0.04
Exp. [15] 0.16 ± 0.02 ± 0.04

064318-3



S. S. AVANCINI et al. PHYSICAL REVIEW C 76, 064318 (2007)

TABLE II. Finite nuclei properties.

Model Nuclei Rn (fm) Rp (fm) Rc (fm) θ (fm) B/A (MeV) σ (Mev/fm2)

NL3 40Ca 3.32 3.37 3.43 −0.05 −8.62 1.48
TW 40Ca 3.28 3.33 3.39 −0.05 −8.36 1.60
DDME1 40Ca 3.32 3.37 3.43 −0.05 −8.62 1.45
Exp. [18] 40Ca 3.48 −8.55
NL3 48Ca 3.60 3.37 3.44 0.23 −8.72 1.54
TW 48Ca 3.54 3.35 3.42 0.19 −8.49 1.70
DDME1 48Ca 3.58 3.39 3.46 0.19 −8.66 1.53
Exp. [26] 48Ca −8.67
Exp. [18] 48Ca 3.48
NL3 90Zr 4.30 4.19 4.25 0.11 −8.86 1.37
TW 90Zr 4.24 4.15 4.22 0.08 −8.55 1.52
DDME1 90Zr 4.28 4.19 4.25 0.08 −8.73 1.38
Exp. [26] 90Zr −8.71
NL3 66Ni 3.96 3.76 3.82 0.20 −8.74 1.47
TW 66Ni 3.89 3.74 3.81 0.15 −8.56 1.63
DDME1 66Ni 3.93 3.77 3.84 0.16 −8.72 1.49
Exp. [26] 66Ni −8.74

In Table I, we show the results of the present calculations
for 208Pb obtained with the NL3 and both parametrizations of
the DDH model. For completeness, we also include the results
obtained in Ref. [16] within the Thomas-Fermi approach. One
can observe that the Thomas-Fermi results for the radii are
systematically larger than the Dirac solutions, but the neutron
skins are smaller. The surface energies also give smaller
contributions within the TF approach. Both parametrizations
of the DDH model show the same neutron skins albeit with
small differences in the proton and neutron radii. The binding
energy and the surface energy are also slightly different.
Finally, the charge radius Rc, calculated with the charge
distribution given by Eq. (14) is presented and compared with
the experimental value. All results are very similar.

In Table II, we show the results for 40Ca, 48Ca,66Ni, and
90Zr. Most of the conclusions drawn from Table I remain
valid; i.e., the neutron skin thickness are the same for both
parametrizations of the DDH model, TW gives larger surface
energies than DDME1 and NL3, and the proton, neutron, and
charge radii vary from one model to the other.

According to Ref. [14], experimental data show a linear
relation between the neutron skin thickness and the proton-
neutron asymmetry of the considered nuclei, i.e., δ = (N −
Z)/A. Assuming that this dependence really exists, the authors
of Ref. [14] fit it as

θ = (−0.04 ± −0.03) + (1.01 ± 0.15)δ. (16)

In Fig. 2, we have plotted the fitted dependence lines
considering the most extreme values for θ . If this dependence
has really to be satisfied, the theoretical points should lie
within both curves. The TW and DDME1 points coincide, and
they are shown to be inside the appropriate range, while the
NL3 results for very asymmetric nuclei are outside the upper
boundary.

Now let us focus on the electron scattering cross sections
and asymmetry. In Fig. 3, the elastic cross section for NL3
and DDH models are compared with the experimental data for

208Pb and 48Ca. Finite size proton as well as center-of-mass
effects were also included in the cross-section calculation. In
both cases, the theoretical and experimental results are in very
good agreement and both models show very small quantitative
differences all along the momentum transfer region covered
by the data. While TW and DDME1 seem to give a slightly
better description for 208Pb, the NL3 results are closer to the
cross section for 48Ca at momentum transfers between 3.0 and
3.5 fm−1. For completeness, we added the results obtained with
the Thomas-Fermi approximation for the TW parametrization
of the DDH model for 208Pb. One can see that the results for
the cross section start to deviate from the experimental points
around 1.5 fm−1 with larger discrepancies at larger momentum
transfers.

As for the asymmetry, our results are displayed in
Fig. 4(a) for 208Pb. The curve labeled PWBA is simply

FIG. 2. (Color online) Skin thickness as a function of the proton-
neutron number asymmetry. Squares represent our values in the TW,
and full circles in the NL3. The lines represent the limits for the
fitting given in Ref. [14]. From lower to higher asymmetries, we have
plotted results for 40Ca, 90Zr, 66Ni, 48Ca, and 208Pb.
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(a)

(b)

FIG. 3. Elastic electron scattering cross section in the NL3
(dashed line), TW (full line), and DDME1 (dotted line) approaches
for (a) 208Pb and (b) 48Ca. The electron incident energy is taken
as 502 MeV for 208Pb and as 757.5 MeV for 48Ca. Experimental
data are from Refs. [27] and [28], respectively. The dot-dashed line
in (a) corresponds to the Thomas-Fermi approximation and TW
parametrization.

the result obtained from Eq. (A7) in the Appendix, for the
case where Zρn = Nρp. This can be compared with the
curve labeled Fermi3p, where the same condition is imposed
but the cross-section calculation considered the partial wave
expansion method and a three-parameter Fermi distribution
to obtain the Coulomb and weak potentials as defined in the
Appendix. The difference between those curves clearly states
the necessity to incorporate the electron wave distortion effects
in the calculation of the asymmetry. The other two curves
give us the structure effects coming from the NL3 and DDH
models. Similar results are shown in Fig. 4(b) for 48Ca. Notice
that while the proton distribution in the NL3 and DDH models
follows the same trend even for large momentum transfer,
as can be seen from Fig. 3, the asymmetry starts to present
important qualitative differences at q >∼ 2 fm−1, indicating that
the neutron distribution seems to be more sensitive to the model
used.

(a)

(b)

FIG. 4. (Color online) Asymmetry obtained for (a) 208Pb and
(b) 48Ca in the NL3 (dashed line) and TW (full line). The dotted line
is the PWBA result and the dash-dotted one is the three-parameter
Fermi result (Fermi3p) as explained in the text. The incident electron
energy was chosen as E = 800 MeV.

IV. CONCLUSIONS

In this work, we have recalculated the neutron skin
thickness and asymmetry that will be measured at the PREX
experiment with two kinds of relativistic models previously
used within a Thomas-Fermi plus PWBA approximations. We
have here considered the full solution of the Dirac equation
and used an exact calculation for the scattered electron wave
function. Density dependent and constant coupling relativistic
models provide different results, and so the model dependence
of the electron scattering asymmetry is confirmed by the more
exact calculation, although it is still very hard to be extracted
from small momentum transfer data.

If a linear relation between the neutron skin thickness
and the proton-neutron asymmetry of the considered nuclei
is really to be satisfied, as suggested in Ref. [14], the TW and
DDME1 model parametrizations provide results within the
appropriate range, while the NL3 results for very asymmetric
nuclei are outside the upper limit imposed by the present data.

Once a more precise measurement of the neutron skin
is published, it will certainly provide a better constraint to
different models, and our results should then be revisited for a
proper comparison.
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APPENDIX: CROSS SECTION FOR POLARIZED
ELECTRONS

The electron hadron Lagrangian density is

L = ψ̄
[
γµ

(
i∂µ + eAµ + γ5A

µ

W

) − me

]
ψ + LH , (A1)

where LH is the hadronic Lagrangian, Aµ is the electromag-
netic field generated by the hadronic target, and

A
µ

W = − G√
2
Jµ,NC (A2)

is the weak field, where G is the Fermi constant. In the elastic
scattering of electrons from an even-even spherical nucleus
whose elementary particles are just the protons and neutrons,
only the static time component of the currents contribute, and
the electron obeys the Dirac equation

[α.p + γ0me + V (r) + γ5VA(r)]ψ = Eψ, (A3)

with V (r) = −eA0(r) and VA(r) = G√
2
J NC

0 (r). From the stan-
dard model, we know that the weak neutral current (NC) is
[29]

J 0,NC(r) = χpρp(r) + χnρn(r). (A4)

The above constants are χp � 0.04 and χn = −0.5. Hence,
we conclude that the weak potential depends strongly on the
neutron distribution in nuclei, while the e.m. field A0 depends
(not considering the neutron electric form factor) exclusively

on the proton distribution. For high energy electrons and
scattering angles not to close to 180◦, we may use the
approximation me

E
∼ 0, for which the Dirac equation can be

rewritten in the form

[α.p + V (r) ± VA(r)]ψ± = Eψ±, (A5)

with ψ± = 1
2 (1 ± γ5)ψ and the ± signs represent the two

possible electron initial polarization (helicity) states. We have
solved the above equation for the electron exactly, using
the well-known partial wave phase-shift expansion method,
as explained, for instance, in Ref. [30]. Note that for each
electron helicity state, a different set of phase shifts must be
determined, whose differences come from the contribution of
the weak potential. We now define the asymmetry through the
expression

A = dσ+/d	 − dσ−/d	

dσ+/d	 + dσ−/d	
, (A6)

where dσ±/d	 is the differential cross section for initially
polarized electrons with positive (+) and negative (−) helici-
ties. The solution of Eq. (A5) in first-order perturbation theory
leads us to the PWBA [12] result

A = − Gq2

2πα
√

2

[
χp + χn

ρn(q)

ρp(q)

]
, (A7)

where q is the momentum transfer and ρn(p)(q) is the neutron
(proton) distribution in q space. Even for medium mass nuclei,
important differences between the PWBA and the exact result
should be found in the asymmetry [17]. In this paper, all the
cross sections were obtained through the full solution of the
Dirac equation for the electron.
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