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We propose new types of density-dependent contact pairing interactions which reproduce the pairing gaps
in symmetric and neutron matters obtained by a microscopic treatment based on realistic nucleon nucleon
interaction. These interactions are able to simulate the pairing gaps of either the bare interaction or the interaction
screened by the medium polarization effects. It is shown that the medium polarization effects cannot be cast
into the usual density power law function of the contact interaction and require the introduction of another
isoscalar term. The BCS-BEC crossover of neutron pairs in symmetric and asymmetric nuclear matters is studied
by using these contact interactions. This work shows that the bare and screened pairing interactions lead to
different features of the BCS-BEC crossover in symmetric nuclear matter. For the screened pairing interaction,
a two-neutron BEC state is formed in symmetric matter at kFn ∼ 0.2 fm−1 (neutron density ρn/ρ0 ∼ 10−3). In
contrast, the bare interaction does not form the BEC state at any neutron density.
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I. INTRODUCTION

Low density nuclear matter tends to be much more
interesting than a simple zero density limit of the bulk
physics of nuclei. Indeed, new phenomena show up and are
mainly associated with the formation of bound states or with
the emergence of strong correlations [1–6]. For instance,
in symmetric nuclear matter, neutrons and protons become
strongly correlated as the density decreases, and a deuteron
BEC state appears at very low density [7]. The deuteron-type
correlations give extra binding to the nuclear equation of state
and induce new features at low density [8]. This transition
belongs to the BCS-BEC crossover phenomena which have
been extensively studied in several domains of physics and
have recently been experimentally accessible in cold atomic
gas (see Ref. [9] and references therein).

In nuclear matter, neutron pairs are also strongly correlated.
Theoretical predictions suggest that at densities around ρ0/10,
where ρ0 = 0.16 fm−3, the 1S pairing gap may take a
considerably larger value than that at normal nuclear density
ρ0 [10]. The density dependence of the pairing gap at low
density is unfortunately not yet completely clarified and still
awaits a satisfactory solution [11–13]. Therefore, it could
be interesting to explore the pairing interaction based on
microscopic calculation and its influence on the BCS-BEC
crossover. Indeed, pairing at low density is relevant to different
purposes: the understanding of neutron-rich exotic nuclei near
the drip line [14–19] where the long tails of density profiles
give rise to “halo” or “skin” behavior, or the expanding nuclear
matter in heavy ion collisions [20], or even the physics of
neutron stars, where several physical phenomena, such as
cooling and glitches, are thought to depend very sensitively on
the size and density dependence of the pairing gap [21–23]. In
11Li, the wave function of the two neutrons participating in the
halo nucleus has been analyzed with respect to the BCS-BEC
crossover [24]. It has been shown that as the distance between
the center of mass of the two neutrons and the core increases,

the wave function changes from the weak coupling BCS
regime to the strongly correlated BEC regime. This is because
the pairing correlations are strongly density dependent [25] and
the distance between the two neutrons and the core provides a
measure of the pairing strength.

It should be emphasized that the bare nuclear interaction
in the particle-particle channel should be corrected by the
medium polarization effects [10,11] (usually referred to as
the screening effects). These effects have been neglected for
a long time, since the nuclear interaction is already attractive
in the 1S0 channel without the medium polarization effects,
contrary to the Coulomb interaction for which the medium
polarization effects are absolutely necessary to produce an
attractive interaction between electrons. However, several
many-body methods have been developed recently to include
the medium polarization effects in the calculation of the
pairing gap such as a group renormalization method [26], a
variational calculation [27], and extensions of the Brueckner
theory [10,11]. These calculations, except the one presented in
Ref. [27], predict a reduction of the pairing gap by a factor of
2–3 in neutron matter due to the medium polarization effects.

Note that, based on the nuclear field model, it has also been
suggested that the medium polarization effects contribute to the
pairing interaction in finite nuclei and increase the pairing gap
[28–30]. To understand this apparent contradiction between
neutron matter and finite nuclei, a microscopic calculation
including the medium polarization effects in both symmetric
and neutron matters has been performed in Ref. [11]. It
has been shown that the medium polarization effects are
different in neutron matter and in symmetric matter. The
medium polarization effects do not reduce the pairing gap in
symmetric matter, contrary to that in neutron matter. Instead,
in symmetric matter, the neutron pairing gap is much enlarged
at low density compared to that of the bare calculation.
This enhancement takes place especially for neutron Fermi
momenta kFn < 0.7 fm−1. This could explain why the medium
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polarization effects greatly increase the pairing correlations
in finite nuclei but decrease them in neutron matter. In this
paper, we propose an effective density-dependent pairing
interaction which reproduces both the neutron-neutron (nn)
scattering length at zero density and the neutron pairing
gap in uniform matter obtained by microscopic calculations
[11]. The proposed interaction has isoscalar and isovec-
tor terms which could simultaneously describe the density
dependence of the neutron pairing gap for both symmet-
ric and neutron matters. Furthermore, we invent different
density-dependent interactions to describe the “bare” and
“screened” pairing gaps, together with the asymmetry of
uniform matter, given in Ref. [11]. Then, we explore the
BCS-BEC crossover phenomena in symmetric and asymmet-
ric nuclear matter. This paper is organized as follows. In
Sec. II, we discuss how to determine the isoscalar and isovector
density-dependent contact interactions. Applications of those
interactions to the BCS-BEC crossover are presented in
Sec. III. We give our conclusions in Sec. IV.

II. DENSITY-DEPENDENT PAIRING INTERACTION

Recently, the spatial structure of the neutron Cooper pair
in low density nuclear matter has been studied using both
finite range interactions such as Gogny or G3RS and density-
dependent contact interactions properly adjusted to mimic
the pairing gap obtained with the former interactions [25].
It was found that the contact interactions provide almost
equivalent results compared to the finite range ones for many
properties of the Cooper pair wave functions. It is thus
reasonable to investigate the evolution of the Cooper pair wave
function with respect to density and isospin asymmetry using
contact interactions adjusted to realistic interactions based on
G-matrix theory. In this paper, we take a contact interaction
vnn acting on the singlet 1S channel,

〈k|vnn|k′〉 = 1 − Pσ

2
v0 g[ρn, ρp] θ (k, k′), (1)

where the cutoff function θ (k, k′) is introduced to remove
the ultraviolet divergence in the particle-particle channel.
A simple regularization could be done by introducing a
cutoff momentum kc. That is, θ (k, k′) = 1 if k, k′ < kc

and 0 otherwise. In finite systems, a cutoff energy ec is
usually introduced instead of a cutoff momentum kc. The
relation between the cutoff energy and the cutoff mo-
mentum may depend on the physical problem, and it is
known that the pairing strength v0 depends strongly on
the cutoff. A detailed discussion on the different prescrip-
tions used in the literature are presented in Appendix A.
In this paper, we choose the prescription 3 in Appendix A
so that the adjusted interaction can be directly applied to
Hartree-Fock-Bogoliubov calculations.

In Eq. (1), the interaction strength v0 is determined by
the low-energy scattering phase shift, which fixes the relation
between v0 and the cutoff energy ec, while the density-
dependent term g[ρn, ρp] is deduced from predictions of
the pairing gaps in symmetric and neutron matter based on
realistic nucleon nucleon interaction. The density-dependent

term accounts for the medium effects and satisfies the boundary
condition g → 1 for ρ → 0. The volume-type and surface-
type pairing interactions have g = 1 and g = 0 at ρ = ρ0,
respectively. In this paper, we introduce more general types
of pairing interactions, and the novelty is a dependence on
the ratio of neutron to proton composition of the considered
system. We thus define a function

g1[ρn, ρp] = 1 − fs(I )ηs

(
ρ

ρ0

)αs

− fn(I )ηn

(
ρ

ρ0

)αn

, (2)

where I is the asymmetry parameter, defined as I = (N − Z)/
(N + Z), and ρ0 = 0.16 fm−3 is the saturation density of
symmetric nuclear matter. We insert the function g1 into
Eq. (1) as g = g1. The goal of the functional form in Eq. (2)
is to reproduce the theoretical calculation of the pairing gap
in both symmetric and neutron matters and also to be used for
the prediction of the pairing gap in asymmetric matter. It could
also be applied to describe pairing correlations in finite nuclei
by acquiring an explicit dependence on the coordinate r in the
density ρ(r) and the asymmetry parameter I (r). In Eq. (2),
the interpolation functions fs(I ) and fn(I ) are not explicitly
known but should satisfy the conditions fs(0) = fn(1) = 1
and fs(1) = fn(0) = 0. The density-dependent function g1

is flexible enough, and we can obtain an effective pairing
interaction which reproduces the density dependence of the
pairing gap in uniform matter. It should, however, be noticed
that the interpolation functions fs(I ) and fn(I ) cannot be
deduced from the adjustment of the pairing gap in symmetric
and neutron matter. For that, theoretical calculations in
asymmetric nuclear matter or application to exotic nuclei are
necessary. In this paper, we choose fs(I ) = 1 − fn(I ) and
fn(I ) = I . Many different interpolation functions could be
explored, but we think that the function choice is of little
consequence in the BCS-BEC crossover.

We have also explored other density-dependent functionals,
introducing an explicit dependence on the isovector density,
1 − ηs(

ρ

ρ0
)αs − ηi(

ρn−ρp

ρ0
)αi , or introducing the neutron and

proton densities, 1 − ηn( ρn

ρ0
)αn − ηp( ρp

ρ0
)αp . The isospin depen-

dence of those functionals is fixed, but these functional forms
are not flexible enough, so the adjustment becomes sometimes
impossible. For instance, the pairing gap in symmetric and
neutron matter including the medium polarization effects
and calculated in Ref. [11] cannot be reproduced with such
functionals. In the following, we have therefore considered
only the density-dependent interaction given in Eq. (2).

Recently, another attempt has been made to introduce an
isospin-dependent volume type pairing interaction in a very
different approach [31]. This interaction has been adjusted to
reproduce empirical mass formulas over thousands of nuclei,
but the pairing gap calculated with this pairing interaction
compares very poorly with realistic calculations in uniform
matter.

A. The free interaction

In Ref. [14], it has been proposed that the free interaction
parameter v0 be deduced from the low energy phase shift of
nucleon-nucleon scattering. The nn, np, and pp phase shifts
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FIG. 1. (Color online) Phase shifts for s-wave nucleon-nucleon
scattering as a function of the center of mass energy. Left panel: nn
phase shifts obtained from Argonne v18 potential [16] (stars) and the
result of the best adjustment obtained with a contact interaction for
a set of cutoff energies (from 10 to 120 MeV). Right panel: s-wave
phase shifts for various channels: nn, np, and pp. The np and pp
phase shifts have been provided by the Nijmegen group (http://nn-
online.org).

versus the center of mass energy are shown on the right
panel of Fig. 1. It is clear from this figure that each of these
three channels are different, and the interaction parameter v0

should depend on the channel of interest. In this paper, we are
interested only in the nn channel. We then express the phase
shift as a function of the cutoff momentum kc and the scattering
length ann [16,32]:

k cot δ = − 2

απ

[
1 + αkc + αk

2
ln

kc − k

kc + k

]
(3)

= − 1

ann

− k

π
ln

kc − k

kc + k
, (4)

where α = 2ann/(π − 2kcann). In this way, for a given cutoff
momentum kc, the phase shift can be adjusted using the
scattering length ann as a variable. The results are shown in
Fig. 1 and Table I for a set of cutoff energies ec = h̄2k2

c /m

(note that we use the reduced mass m/2). We have found that
for cutoff energies larger than 20 MeV, the optimal parameters
cannot reproduce the nn phase shift simultaneously in low
energy (ec.m. < 2 MeV) and higher energy regions. We mainly
focus on the adjustment of the nn phase shift in the low energy
region. At higher energies, or equivalently at higher densities
in nuclear matter, the medium effects modify the interaction
and generate a density-dependent term in the interaction.

Fixing ec and ann, one can deduce the effective range
rnn = 4/πkc, the parameter α, and the interaction strength
v0 = 2π2αh̄2/m. The values of those parameters are given
in Table I. The value of the free interaction parameter v∗

0
deduced from the empirical value of the scattering length ann =
−18.5 fm is also indicated. One can see that the difference
between v0 and v∗

0 is small, as much as 3%. Indeed, as we
are in a regime of large scattering length, one can deduce
the interaction strength approximately from the relation v0 ≈
v∞

0 (1 + π/2kcann + · · ·) where v∞
0 = −2π2h̄2/mkc is the

interacting strength in the unitary limit (kcann → ∞).

TABLE I. For a given cutoff energy ec, the parameters rnn, α, and
v0 are determined by the scattering length ann which reproduces the
phase shift in the low energy region, ec.m. < 2 MeV. The interaction
strengths v∗

0 and v∞
0 are obtained from the empirical value of ann =

−18.5 fm and from the unitary limit, defined as ann → ∞.

ec

(MeV)
ann

(fm)
rnn

(fm)
α

(fm)
v0

(MeV
fm3)

v∗
0

(MeV
fm3)

v∞
0

(MeV
fm3)

120 −12.6 0.75 −0.55 −448 −458 −481
80 −13.0 0.92 −0.66 −542 −555 −589
40 −13.7 1.30 −0.91 −746 −767 −833
20 −15.0 1.83 −1.25 −1024 −1050 −1178
15 −15.7 2.12 −1.43 −1167 −1192 −1360
10 −17.1 2.59 −1.72 −1404 −1421 −1666

B. The density-dependent function g[ρn, ρ p]

The density-dependent function g is adjusted to reproduce
the pairing gaps in symmetric and neutron matter obtained
from Ref. [11]. Pairing in uniform nuclear matter is evaluated
with the BCS ansatz

|BCS〉 =
∏
k>0

(uk + vkâ
†
k↑â

†
−k↓)|−〉, (5)

where uk and vk represent the BCS variational parameters
and â

†
k↑ are creation operators of a particle with momentum

k and spin ↑ on top of the vacuum |−〉 [33–35]. The BCS
equations are deduced from the minimization of the energy
with respect to the variational parameters uk and vk . For a
contact interaction, the equation for the pairing gap �n takes
the following simple form at zero temperature:

�n = −v0g[ρn, ρp]

2(2π )3

∫
d3k

�n

En(k)
θ (k, k), (6)

where θ (k, k) is the cutoff function associated with the contact
interaction in Eq. (2), and En(k) = √

(εn(k) − νn)2 + �2
n is

the neutron quasiparticle energy, where εn(k) = h̄2k2/2m∗
n is

the neutron single-particle kinetic energy with the effective
mass m∗

n. We define the effective neutron chemical potential
νn = µn − Un, where the neutron mean field potential Un is
subtracted from the neutron chemical potential µn. The effec-
tive neutron chemical potential νn gives the neutron density

ρn = 2

V

∑
k

nn(k), (7)

where V is the volume and nn(k) is the occupation probability
defined as

nn(k) = 1

2

[
1 − εn(k) − νn

En(k)

]
. (8)

Finally, the neutron Fermi momentum kFn is defined as
ρn ≡ k3

Fn/3π2.
We have chosen to adjust our interaction to the results of

nuclear matter pairing gaps in Ref. [11], since they are the
only calculations performed for both symmetric and neutron
matters. We adjust the contact pairing interaction so that it
reproduces the position and the absolute values of the maxima
of the pairing gaps in symmetric and neutron matter. For the
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TABLE II. Parameters of the function g defined in Eq. (2). These
parameters are obtained from the fit to the pairing gaps in symmetric
and neutron matter. These are the parameters obtained from the
adjustment of the bare gap and the screened gap with g = g1, and
the screened gap including the additional function g2. The effective
mass is obtained from the SLy4 Skyrme interaction. Note that Ec is
the cutoff for the quasiparticle gap equation (6), while ec is that for
the two-body scattering so that Ec = ec/2. See the text for details.

Ec = ec/2 (MeV) ηs αs ηn αn

Bare 60 0.598 0.551 0.947 0.554
g = g1 40 0.664 0.522 1.01 0.525

20 0.755 0.480 1.10 0.485
10 0.677 0.365 0.931 0.378

Screened-I 60 7.84 1.75 0.89 0.380
g = g1 40 8.09 1.69 0.94 0.350

20 9.74 1.68 1.00 0.312
10 14.6 1.80 0.92 0.230

Screened-II 60 1.61 0.23 1.56 0.125
g = g1 + g2 40 1.80 0.27 1.61 0.122
η2 = 0.8 20 2.06 0.31 1.70 0.122

10 2.44 0.37 1.66 0.0939

bare pairing gap, the maximum is located at kFn = 0.87 fm−1

with �n = 3.1 MeV for both symmetric and neutron matter;
while for the screened pairing gap, the maximum is at kFn =
0.60 fm−1 with �n = 2.70 MeV for symmetric matter and
kFn = 0.83 fm−1 and �n = 1.76 MeV for neutron matter. The
values of the parameters ηs and ηn are freely explored in the
real axis, while the parameters αs and αn are imposed to be
positive to avoid singularities. The neutron effective mass m∗

n is
obtained from the SLy4 Skyrme interaction, since it is widely
used in nuclear mean field calculations. The results of the fits
are given in Table II and the pairing gaps are shown in Fig. 2.
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FIG. 2. (Color online) Pairing gap in symmetric, asymmetric
(xp = ρp/ρ), and neutron matter adjusted to the “bare gap” (upper
panel) or to the “screened gap” (lower panel) for various cutoff
energies Ec. The pairing gap calculated from microscopic theory
in Ref. [11] is also shown as star symbols.

One should note that for the bare interaction, even if the
pairing gap is identical in symmetric and neutron matter,
the adjusted contact interaction is not necessarily isoscalar.
Indeed, the transformation from the Fermi momentum, the x

axis of Fig. 2, to the density is different in symmetric nu-
clear matter, ρ/ρ0 = (kFn/kF0)3 [where ρ0 = 2/(3π2)k3

F0 =
0.16 fm−3], and in neutron matter, ρ/ρ0 = 0.5(kFn/kF0)3.
Therefore, an interaction which depends only on the ratio
ρ/ρ0 gives different results if it is plotted as a function of
kFn in symmetric and neutron matter. As the “bare” pairing
gap is quasi-identical in symmetric and neutron matters when
it is plotted versus kFn, one can then deduce the following
relations between the parameters of the density-dependent
term g1 (neglecting the isospin dependence of the effective
mass): αs = αn and ηs = ηn/2αn .

For the bare pairing gap and for a given cutoff energy Ec , the
position and maximum value of the gap are reproduced well
by the contact interaction in Fig. 2. However, in the high Fermi
momentum region kFn > 1 fm−1, we can see appreciable dif-
ference between the microscopic and the contact interaction.
The best agreement is obtained for a cutoff energy Ec =
40 MeV. In the screened case, the dependence of the pairing
gap on kFn is badly reproduced, especially for symmetric
nuclear matter. This is because the maximum position of the
pairing gap is shifted toward a lower neutron Fermi momentum
(one third in density from that for the bare gap). Consequently,
the density dependence of the function g1 becomes stiffer in the
“screened” case than in the bare case, and the gap drops faster
after the maximum, as shown in Fig. 2. This may indicate that
the screened interaction has a different density dependence
and cannot be cast into a simple power law of the density as
in Eq. (2). Indeed, in Ref. [11], an analysis of the medium
polarization effects at the level of the interacting potential
showed that these effects emerge at very low density and
remain relatively constant. To simulate such effects, it seems
necessary to introduce a new term g2 in Eq. (2). We propose
for g2 a simple isoscalar constant which switches on at a very
low value of the density (kF ∼ 0.15 fm−1) and switches off
around the saturation density. The following form satisfies this
condition:

g2 = η2
[(

1 + e
kF −1.4

0.05
)−1 − (

1 + e
kF −0.1

0.05
)−1]

. (9)

The new pairing interaction with g = g1 + g2, hereafter called
screened-II, has then only one new adjustable parameter η2.
As the medium polarization effects could also change the
density-dependent term g1, all five parameters have to be
readjusted. In Tables II and III, we give the new parameters
ηs, αs, ηn, and αn, obtained for several values of η2. The cutoff
energy is fixed to be Ec = 40 MeV. The corresponding pairing
gap is represented in Fig. 3. The best fit is obtained for the
value η2 = 0.8. Equation (9) may not be a unique way to take
into account the medium polarization effects. Nevertheless,
it is simple enough to apply to the BCS-BEC crossover, so
this is why we adopt this functional form. Solving the gap in
Eq. (6), the neutron effective chemical potential νn is de-
termined for a given interaction at a given neutron Fermi
momentum kFn. The neutron effective mass m∗

n, the effective
neutron chemical potential νn = µn − Un, and the difference
νn − εFn are represented in Fig. 4 as a function of the
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TABLE III. Parameters of the the screened-II
interaction, where the density-dependent function
of the pairing interaction is taken to be g = g1 + g2.
The functional forms g1 and g2 are obtained by
fitting the screened pairing gap for several values of
η2. The energy cutoff is taken to be Ec = 40 MeV and
the neutron effective mass is deduced from the SLy4
Skyrme interaction.

η2 ηs αs ηn αn

0.2 1.90 0.72 1.08 0.24
0.4 1.61 0.46 1.26 0.19
0.6 1.64 0.33 1.44 0.15
0.8 1.80 0.27 1.61 0.122

neutron Fermi momentum in symmetric and neutron matter.
The neutron effective mass and the neutron potential Un

are deduced from the SLy4 Skyrme interaction. Note that
the neutron density ρn is changed into the neutron Fermi
momentum, kFn. We have selected from Table II the bare and
the screened-II pairing interactions for a cutoff energy Ec =
40 MeV. In the absence of pairing, the effective neutron
chemical potential νn is identical to the neutron Fermi
kinetic energy, νn = εFn where εFn = εn(kFn). The difference
νn − εFn is then null in the absence of pairing correlations,
otherwise it is negative as shown in Fig. 4. From this difference,
one can estimate the relative importance of the pairing
correlations: in neutron matter the screened-II interaction leads
to weaker pairing correlations compared to the bare one, while
in symmetric matter, the screened-II interaction give much
stronger pairing correlations for kFn < 0.7 fm−1 and less for
kFn > 0.7 fm−1.

It is easy to show that the gap in Eq. (6) and the occupation
probability in Eq. (8) go over into the Schrödinger-like
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FIG. 3. (Color online) Pairing gap calculated in symmetric,
asymmetric, and neutron matters with the screened-II interaction
(g = g1 + g2) and for several values of η2 as indicated in the legend.
The corresponding parameters are given in Table III. See the text for
details.
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FIG. 4. (Color online) Comparison of the neutron effective mass
m∗

n, the effective chemical potential νn = µn − Un, and the difference
νn − εFn calculated with the bare and the screened-II contact
interactions. The parameters of the pairing interactions are taken from
Table II with the cutoff energy Ec = 40 MeV. The effective mass
m∗

n and the neutron potential Un are taken from the SLy4 Skyrme
interaction. The two arrows indicate the lower and upper limits for
the condition νn < 0 with the screened-II interaction in symmetric
nuclear matter.

equation for the neutron pair wave function �pair [36]

p2

m
�pair + [1 − 2nn(k)]

1

V
Tr vnn�pair = 2νn�pair. (10)

See Eq. (13) in Sec. III for a proper definition of the
neutron pair wave function �pair. Notice that at zero density
where nn(k) = 0, Eq. (10) is nothing but the Schrödinger
equation for the neutron pair. From Eq. (10), one usually
relates the effective neutron chemical potential νn to be a
half of the “binding energy” of a Cooper pair. The Cooper
pairs may then be considered to be strongly correlated
if νn is negative. Notice from Fig. 4, that the effective
neutron chemical potential νn becomes negative with the
screened-II interaction in symmetric nuclear matter for kFn =
0.05–0.35 fm−1, but not at all in neutron matter. One could
then expect in this case that the Cooper pair may resemble a
closely bound system (BEC) in symmetric nuclear matter at
very low density, while in neutron matter it should behave like
that of the weak coupling BCS regime. However, to go beyond
this rough interpretation, we need to study more accurately the
BCS-BEC crossover in asymmetric matter.

III. APPLICATION TO THE BCS-BEC CROSSOVER

It has been shown that going from the weak coupling BCS
regime, around the saturation density ρ0, down to the BCS-
BEC crossover for densities < ρ0/10, the spatial structure of
the neutron Cooper pair changes [25]. It is indeed expected
that the correlations between two neutrons get large as the
density decreases; as a consequence, the BCS-BEC crossover
occurs in uniform matter at low density. However, being of the
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second order, this transition is smooth. Hereafter, we clarify
the boundaries of the BCS-BEC phase transition by using
a regularized gap equation. Although the BCS ansatz (5)
has been developed to describe the Cooper pair formation
in the weak BCS regime [33], it has been shown that the
BCS equations are also valid in the strong BEC condensation
regime [36,37]. The BCS equations are thus adopted as a useful
framework in which to describe the intermediate BCS-BEC
crossover regime at zero temperature [38]. It has been proposed
to define the limit of the BCS-BEC phase transition using
a regularized model for the pairing gap [25,38,39]. In this
model, the BCS gap equation (6) is combined with the relation
between the interaction strength and the scattering length
which has a similar divergent behavior. The difference between
those two divergent integrals gives the regularized equation

mn

4πann

= − 1

2V
Tr

(
1

En(k)
− 1

εn(k)

)
, (11)

which has no divergence. The gap equation (6) can be solved
analytically for the contact interaction with the constraint of
the particle number conservation [Eq. (7)]. The solution of
this regularized gap equation is independent of the strength
of the interaction, and the gap is uniquely determined by
the value of the scattering length ann. From Eq. (11), one
can study the boundaries of the BCS-BEC phase transition
with respect to the dimensionless order parameter kFnann.
We give in Table IV the values of several quantities which
specify the phase transition: the probability P (dn) for the
partner neutrons to be correlated within the relative distance
dn (dn is the average distance between neutrons dn = ρ

−1/3
n ),

the ratio of the rms radius to the mean neutron distance
ξrms/dn, the ratio of the pairing gap to the single-particle kinetic
energy �n/εFn, and the ratio of the effective neutron chemical
potential to the single-particle kinetic energy νn/εFn. As we
already mentioned, these boundaries are indicative because
the phase transition is smooth at the boundaries being of the
second order. For instance, even if the nuclear matter does not
enter into the BEC regime, we will show that the Cooper pair
wave function is already very similar to the BEC one when it
is close.

A drawback of this regularized model is that the relation
between the dimensionless order parameter kFnann and the
density of the medium is unknown. To relate the order
parameter to the density, one has to reintroduce the pairing

TABLE IV. Reference values of (kFnann)−1, P (dn), ξrms/dn,
�n/εFn, and νn/εFn characterizing the BCS-BEC crossover in the
regularized model for the contact interaction. The values dn, P (dn),
and ξrms are, respectively, the average distance between neutrons
dn = ρ−1/3

n , the probability for the partner neutrons correlated within
the relative distance dn, and the rms radius of Cooper pair. The
numbers have been taken from Refs. [25,38]. See the text for details.

(kFnann)−1 P (dn) ξrms/dn �n/εFn νn/εFn

−1 0.81 1.10 0.21 0.97 BCS boundary
0 0.99 0.36 0.69 0.60 unitarity limit
1 1.00 0.19 1.33 −0.77 BEC boundary

strength in the gap equation (6). We could consider for instance
a contact interaction with a cutoff regularization. The density
would then trigger the phase transition for a given pairing
interaction strength. In the following, we study the BCS-BEC
phase diagram in asymmetric nuclear matter for the two pairing
interactions discussed in Sec. II. Namely, we explore the
properties of the Cooper pair wave function obtained by the
bare and the screened-II interactions presented in Table II for
a fixed cutoff energy Ec = 40 MeV.

The BCS approximation provides the Cooper pair wave
function �pair(k) [33–35]

�pair(k) ≡ C〈BCS|â†(k ↑)â†(−k ↓)|BCS〉 (12)

≡ Cukvk. (13)

The radial shape of the Cooper pair wave function is de-
duced from the Fourier transform of ukvk = �n/2En(k) in
Eq. (13). The rms radius of Cooper pairs is then given by
ξrms =

√
〈r2〉 =

√∫
drr4|�pair(r)|2. The rms radius ξrms and

Pippard’s coherence length ξP = h̄2kFn/m∗
nπ�n give a similar

size of the Cooper pair in the weak coupling regime. The
rms radius ξrms is nevertheless a more appropriate quantity
in the BCS-BEC crossover region as well as in the strong
BEC coupling region. To estimate the size of Cooper pairs,
a reference scale is given by the average distance between
neutrons dn. If the rms radius of Cooper pairs is larger than
dn, the pair is interpreted as an extended BCS pair, while
the Cooper pair will be considered as a compact BEC pair
if the rms radius is smaller than the average distance. Let us
introduce another important quantity that also gives a measure
of the spatial correlations: the probability P (r) for the partners
of the neutron Cooper pair to come close to each other within
the relative distance r ,

P (r) =
∫ r

0
dr ′r ′2|�pair(r

′)|2. (14)

The order parameters listed in Table IV are closely related.
For instance, approximating ξrms by ξP , it could easily be
shown that the ratio ξrms/dn is proportional to εFn/�n. Then,
the strong coupling regime is reached if the ratio �n/εFn is
large. The order parameter νn, the effective neutron chemical
potential, could be interpreted as a half of the binding energy of
Cooper pairs at finite density according to the Schrödinger-like
Eq. (10).

As shown in Appendix B, it is convenient to decompose the
Cooper pair wave function into

�pair(r) = �1(r) + �2(r), (15)

where

�1(r) = C ′
∫ k∞

0
dk

k2

En(k)

sin(kr)

kr
, (16)

�2(r) = C ′
∫ ∞

k∞
dk

k2

En(k)

sin(kr)

kr
. (17)

Choosing k∞/k0  1, with k0 = √
2m∗

nνn/h̄, it is possible to
find an analytic expression for �2:

�2(r) = −C ′

r

2m∗
n

h̄2 si(k∞r), (18)
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where si(u) is the sinus integral defined as si(u) =∫ ∞
u

dz [sin(z)/z]. It is clear from Eq. (18) that the term �2

has a 1/r-type singularity. This singularity is due to the nature
of the contact interaction which does not contain a hard core
repulsion. With the hard core repulsion, the wave function goes
to zero as r → 0 [25]. In the outer region (r > 3 fm), the wave
function behaves in the same way if the contact interaction is
deduced properly from the realistic calculations. We checked
the convergence of the wave function (15) with respect to the
parameter k∞. We found that the convergence is reached with
k∞ ≈ 2k0 as is is shown in Fig. 11 in Appendix B. In Ref. [25],
Matsuo introduced the cutoff momentum kc to calculate the
pair wave function (15). We have compared the pair wave
function �pair(r) with the one obtained by Matsuo. The two
wave functions give essentially the same results, except for
the low density region. In the worst case, the wave function
of Matsuo’s treatment increases the rms radius by about 10%
over the one obtained by the wave function (15).

The neutron Cooper pair wave function r2|�pair(r)|2 is
shown in Fig. 5 as a function of the relative distance r between
the pair partners taking different Fermi momenta kFn = 1.1,
0.8, 0.5, and 0.2 fm−1, which correspond, respectively, to the
densities ρn/ρ0 = 0.3, 0.1, 0.03, and 0.002. Calculations in
symmetric, asymmetric, and neutron matters are shown in
the left, middle, and right panels, respectively. In Fig. 5, we
observe that the spatial extension and the profile of the Cooper
pair vary strongly with the density. A large extension is found
close to the saturation density at kFn = 1.1 fm−1. The profile
of the wave function behaves as an oscillation convoluted by
a decreasing exponent and casts into the well-known limit ∼
K0(r/πξP ) sin(kF r)/kF r [33]. This indicates that the Cooper
pair is in the weak coupling BCS regime. At lower densities,
the Cooper pair shrinks, and the oscillation disappears. The
wave function resembles now the strong coupling limit (BEC)
∼ exp(−

√
4m/h̄2 |µ|r)/r [37]. This is an indication that a

possible BCS-BEC crossover may occur in uniform matter.
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the results of the bare and screened-II interactions. The values of the
effective neutron chemical potential νn/εFn are indicated by the filled
circles.

It should be remarked that the latter limit seems well
pronounced in symmetric matter with the screened gap (see
the panel at the left bottom corner of Fig. 5). We show in
Fig. 6 the evolution of the occupation probability of Eq. (8)
in symmetric matter for the two pairing interactions. For the
screened-II interaction, the pairing correlations become strong
at low densities as the occupation probability is considerably
different from the step function. For the bare interaction, the
correlations are not so strong as to change nn(k) drastically
even at low densities. It should be noticed that this analysis is
independent of the detailed structure of the Cooper pair wave
function. This change of the occupation probability proves that
the behavior of the Cooper pair wave function is not an artifact
induced by the zero range behavior of the contact interaction
but indeed is physical. Clearly, the low density symmetric
nuclear matter is much more correlated with the screened-II
interaction than with the bare one. This is also the case for the
BCS-BEC crossover, as will be discussed below.

Let us now discuss the BCS-BEC crossover which may
depend on the pairing interactions and on the asymmetry of
the nuclear medium. In the following, we study the different
order parameters in Table IV for the boundaries of the
BCS-BEC phase transition. Figure 7 shows the probabilities
P (r) for the partner neutrons to be correlated within the
typical scales, r = 3 fm and r = dn. The former scale is
the typical range of the nucleon-nucleon force. For the bare
interaction, the probability P (3 fm) has a similar behavior
in symmetric and asymmetric matter as a function of kFn.
For the screened-II interaction, there is a noticeable isospin
dependence. A low density shoulder appears in symmetric
matter at around kFn ∼ 0.25 fm−1 (ρn/ρ0 ∼ 0.003). Then, it
becomes smaller as the asymmetry increases and eventually
disappears in neutron matter. In neutron matter, the strong
concentration of the pair wave function within the interaction
range 3 fm, P (3 fm) > 0.5, is realized in the density region
kFn ∼ 0.3–1.1 fm−1 (or ρn/ρ0 ∼ 0.007–0.3) for both pairing
interactions. For symmetric matter, on the other hand, this
region is different for the two pairing interactions: the strong
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correlation occurs at a much lower density region for the
screened-II interaction than for the bare one. This property
can also be confirmed by the probability P (dn). For the
two pairing interactions, the Cooper pairs in symmetric and
asymmetric matter enter into the crossover regime at almost
the same density. The crossover in neutron matter occurs
somewhat at lower density for the screened-II interaction. As
the density decreases, a different behavior is observed between
the two pairing interactions for symmetric matter. While the
probability P (dn) decreases and goes back to the weak BCS
regime for the bare interaction at very small density below
kFn ∼ 0.1 fm−1, the probability P (dn) continues to increase
up to unity for the screened-II interaction at very low densities,
kFn < 0.7 fm−1 (ρ = n/ρ = 0 < 0.07 fm−1).

We study further the BCS-BEC crossover by looking at
the rms radius ξrms and the neutron pairing gap �n. In Fig. 8,
we show the rms radius ξrms as a function of the neutron
Fermi momentum kFn as well as the order parameter ξrms/dn.
The rms radius of the Cooper pair is less than 5 fm in the
region kFn ∼ (0.4–0.9) fm−1 (ρn/ρ0 ∼ 0.01–0.15) in the three
panels for the bare interaction. The screened-II interaction
gives different effects in symmetric and asymmetric matter:
it increases the rms radius for neutron matter, while the rms
radius stays small around 4 fm even at very low density at
kFn ∼ 0.15 fm−1 (ρn/ρ0 ∼ 0.0007) in symmetric matter. The
lower panels show the ratio of the rms radius to the average
distance between neutrons dn. For the bare interaction, the
size of the Cooper pair becomes smaller than dn for the Fermi
momentum kFn < 0.8 fm−1 (ρn/ρ0 ∼ 0.1) in general. There
are substantial differences for symmetric and asymmetric
matter in the case of the screened-II interaction. The crossover
region becomes smaller for the neutron matter, while the
crossover region increases in the cases of asymmetric (xp =
0.3) and symmetric matter. Especially, the correlations become
strong in symmetric matter, and the Cooper pair reaches almost
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FIG. 8. (Color online) Top panels: Comparison between the rms
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dn = ρ−1/3

n (thin line) as a function of the neutron Fermi momentum
kFn in symmetric, asymmetric, and neutron matter. Bottom panels:
The order parameter ξrms/dn as a function of kFn. The boundaries
of the BCS-BEC crossover are represented by the two dashed lines,
while the unitary limit is shown by the dotted line. The two pairing
interactions are used for the calculations.

the BEC boundary at kFn ∼ 0.2 fm−1 (ρn/ρ0 ∼ 0.002). Notice
that the two-neutron system is known experimentally to have
a virtual state in the zero density limit. We have shown that
this virtual state could lead to a strongly correlated BEC state
at low density in symmetric nuclear matter according to the
screened-II interaction.

The two other order parameters, �n/εFn and νn/εFn, are
shown in Fig. 9. These results confirm the BCS-BEC crossover
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given by the dotted line. See the text for details.
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behavior found in Fig. 8. Namely, in symmetric matter,
the gap �n is much enhanced by the screened interaction
in the low density region, while no enhancement can be
seen in neutron matter. As expected, the effective chemical
potential νn induced by the screened-II interaction becomes
negative for kFn ∼ 0.05–0.3 fm−1 (ρn/ρ0 ∼ 0.000 02–0.01) in
symmetric nuclear matter. This strong correlation is reduced
in asymmetric matter and is almost absent in neutron matter, as
can be seen in Fig. 9. It should also be remarked that the order
parameter νn/εFn, due to the Schrödinger-like Eq. (10), gives
the same BCS-BEC crossover behavior as that of the order
parameter ξrms/dn.The neutron effective chemical potential
is then a good criteria to use in discussing the BCS-BEC
crossover.

IV. CONCLUSIONS

A new type of density-dependent contact pairing interaction
was obtained to reproduce the pairing gaps in symmetric
and neutron matter calculated by a microscopic theory [11].
The contact interactions reproduce the two types of pairing
gaps, i.e., the gap calculated with the bare interaction and
the gap modified by medium polarization effects. It is shown
that the medium polarization effects cannot be cast into the
usual density power law form in symmetric nuclear matter,
so another new isoscalar term, g2 in Eq. (9), is added to the
density-dependent term of the pairing interaction in Eq. (1).

We have applied these density-dependent pairing interac-
tions to the study of the BCS-BEC crossover phenomenon in
symmetric and asymmetric nuclear matter. We found that the
spatial dineutron correlation is strong, in general, in a wide
range of low matter densities, up to kFn ∼ 0.9 fm−1 (ρn/ρ0 ∼
0.15). This result is independent of the pairing interaction,
either bare or screened-II, as well as of the asymmetry of the
uniform matter. Moreover, it is shown that the two pairing
interactions mentioned above lead to different features for
BCS-BEC phase transition in symmetric nuclear matter. To
clarify the difference, we studied various order parameters,
the correlation probability P (dn), the rms radius of the Cooper
pair ξrms, the gap �n, and the effective chemical potential
νn, as a function of the Fermi momentum kFn, or equiva-
lently as a function of the density. The screened interaction
enhances the BCS-BEC crossover phenomena in symmetric
matter; whereas in neutron matter, the pairing correlations
as well as the crossover phenomena are decreased by the
medium polarization effects. For the screened-II interaction,
the crossover reaches almost to the BEC phase at kFn ∼
0.2 fm−1 in symmetric matter. We should notice, however,
that the BEC state is very sensitive to the asymmetry of the
medium and disappears in neutron matter.
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APPENDIX A: EFFECTS OF THE CUTOFF PRESCRIPTION
ON PAIRING GAP

In the gap equation (6), the integral runs over the momentum
k, which is limited by the cutoff momenta k±

c to avoid the
ultraviolet divergence. There are several prescriptions for the
cutoff momenta depending on the physical problem for which
the interaction is applied.

Prescription 1: This is the most simple prescription,
imposing on the single-particle kinetic energy with the
condition εn(k) < Ec, i.e., k+

c = √
2m∗Ec/h̄ and k−

c = 0. It
is independent of the Fermi momentum and of the pairing
gap, but still has a weak dependence on the density through
the effective mass m∗(ρ). It has been used by several authors
[14–16] and also adopted in shell model calculations in which
all the shells up to a given cutoff energy are involved.

Prescription 2: This prescription is based on the fact that
the pairing occurs among states around the Fermi energy.
Then, it is natural to define the cutoff energy with respect
to the Fermi momentum by the condition εn(k) < εFn + Ec,
i.e., k+

c = √
2m∗(εFn + Ec)/h̄ and still k−

c = 0 [25]. Through
εF , the dependence on the density of this cutoff is much
stronger than for prescription 1. This prescription is close to
the prescription used in HFB calculations.

Prescription 3: This prescription is often used in the
HFB calculations for which the cutoff is defined with respect
to the quasiparticle energy

√
(εn(k) − νn)2 + �2

n < Ec. This
leads to the following definition of the cutoff momenta: k±

c =
[2m∗(νn ± √

E2
c − �2)]1/2/h̄ (if Ec > �n). If k−

c becomes
imaginary for very small νn, we set k−

c = 0. In this prescription,
the density dependence of the cutoff momenta k±

c is not trivial,
since it depends on the chemical potential and on the pairing
gap.

It should be noted that in the limit Ec  �n, prescriptions
2 and 3 give the same cutoff momenta k±

c . If the limit Ec  εFn

is also satisfied, then the three prescriptions are equivalent
to each other. In Fig. 10 are represented the pairing gaps
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TABLE V. Parameters of the density-dependent term g = g1 in
Eq. (1) obtained from the fit to the bare pairing gap in symmetric
nuclear matter. The effective mass is obtained from the SLy4 Skyrme
interaction. The parameters for prescription 3 are shown in Table II.

Ec (MeV) Presc. 1 Presc. 2

ηs αs ηs αs

60 0.461 0.579 0.593 0.537
40 0.413 0.487 0.657 0.506

obtained in symmetric nuclear matter with the bare pairing
interactions given in Table II. We compare the pairing gaps
calculated for the three prescriptions with different values of
the cutoff energy: 10, 20, and 60 MeV. For a low value of the
cutoff energy Ec = 10 MeV, the three prescriptions lead to
very different pairing gaps. For the cutoff energy larger than
20 MeV, prescriptions 2 and 3 give very similar results, because
Ec/�n  1. Notice that at very low Fermi momentum, kFn <

0.4 fm−1 (ρn/ρ0 < 0.01), the three prescriptions give a similar
pairing gap, because both conditions Ec  �n and Ec  εFn

are satisfied. Nevertheless, for kFn > 0.4 fm−1, prescription 1
gives a pairing gap different from that given by prescriptions
2 and 3, even for the larger cutoff energy Ec = 60 MeV. The
reason is that the limit Ec  εFn is not reached for kFn >

0.4 fm−1.
In Table V we give the parameters of the density-dependent

term g = g1 of Eq. (1) to fit the bare gap using prescriptions
1 and 2 for symmetric nuclear matter. Those for prescription
3 are already given in Table II. It shows how sensible these
parameters are on the cutoff prescription. One could remark
that the parameter ηs is much more affected by the prescription
than the parameter αs . We can also compare our results with
other calculations. The parameters obtained with prescription
1 can be compared to the one proposed in Ref. [16], namely,
ηs = 0.45, αs = 0.47 for Ec = 60 MeV. The value of the
parameter αs is significantly different. One can nevertheless
obtain a comparable value for αs if one takes the approximation
νn ∼ εFn. With prescription 2, we obtain similar parameters to
those in Ref. [25] in which ηs = 0.60–0.63, αs = 0.55–0.58
are obtained. The small differences can be explained by a
different effective mass and different adopted pairing gap.

APPENDIX B: COOPER PAIR WAVE FUNCTION

From the Cooper pair wave function (13) in the momentum
space, we obtain the radial dependence of the Cooper pair
wave function by a Fourier transform, that is,

�pair(r) = C

(2π )3

∫
d3k ukvke

i�k·�r (B1)

= C ′
∫

dk
k2

En(k)

sin kr

kr
, (B2)

where the normalization constant C ′ is determined from the
condition

∫
drr2|�pair(r)|2 = 1. The wave function �pair is

separated into two terms �1 and �2 defined in Eqs. (16)
and (17). The term �1 is solved numerically. If k∞/k0  1,
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FIG. 11. (Color online) Cooper pair wave function r2�2
pair as well

as its individual contributions r2�2
1 and r2�2

2 for different values of
the ratio k∞/k0 and for two values of the neutron Fermi momentum.
Notice that the convergence with respect to the ratio k∞/k0 is very
fast.

with k0 = √
2m∗

nνn/h̄, we obtain the analytical form in Eq. (18)
for �2(r) to the first order in νn/εn(k), 1/En(k) ∼ 2m∗

n/h̄
2k2.

It is shown in Fig. 11 that the convergence is very fast, and
k∞ = 2k0 provides already a good converged solution. Note,
however, that the pair wave function �pair represented on the
left panels of Fig. 11 converge much faster than the functions
�1 and �2 individually.

From the decomposition into �1 and �2 presented in
Eq. (15), the treatment of Matsuo is equivalent to setting
k∞ = kc and �2 = 0, where kc is the cutoff momentum
according to prescription 2 in Appendix A. By this treatment,
a good agreement between the wave function obtained with
the contact interaction and the one obtained with the Gogny
interaction is reached for a cutoff energy Ec = 30 MeV. The
agreement is very nice, especially in the region r < 3 fm.
This result is easily understood from the decomposition of
� into �1 and �2. Namely, by introducing a cutoff energy
in the definition of the Cooper pair wave function, Matsuo’s
modification effectively removes the singularity at r ∼ 0. The
justification of cutoff in the Cooper pair wave function could
be understood from model space considerations. For practical
reasons, the calculations for finite systems are never done with
a infinite basis but rather in a subbasis involving a finite number
of wave functions. A cutoff is then naturally introduced in
the finite model space, and all the quantities, including the
Cooper pair wave function, are calculated within the same
model space. The cutoff treatment of Matsuo is thus common
in nuclear matter and finite nucleus calculations. However, it
should be remarked that despite the singularity of the wave
function in nuclear matter, the rms radius ξrms stays finite and
larger than 3 fm, in the range of explored densities. We have
checked that the treatment of Matsuo only affects the rms
radius by about 10% in the worst situation, i.e., it increases
the rms radius by less than 0.5 fm for neutron density at
ρn ∼ ρ0/10.
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