
PHYSICAL REVIEW C 76, 064315 (2007)

Low-lying collective excitations of nuclei as a semiclassical response
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For the low-lying multipole collective excitations in nuclei, the transport coefficients of the response function
theory, such as the inertia and the friction, are derived within the periodic orbit theory in the lowest orders of
semiclassical expansion corresponding to the extended Thomas-Fermi approach with the surface and the curvature
corrections. The collective vibrations near the spherical shape are described in the mean-field approximation
through the spherical edgelike potential by using a statistical averaging of the transport coefficients. It is shown
that the inertia of the collective motion is significantly larger than that of irrotational hydrodynamical flow. For
large enough particle numbers in the nucleus, the mean energies of quadrupole and octupole low-lying collective
vibrations, their sum rule contributions, and reduced transition probabilities are in reasonable agreement with
experimental data.
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I. INTRODUCTION

The collective dynamics of complex nuclei at low excitation
energies, such as the vibration modes, can be described within
several theoretical approaches [1–3]. One of the most powerful
tools for its description is based on the response function theory
[1,4], also within the semiclassical approaches [5–7]. The
collective variables are introduced explicitly as deformation
parameters of a mean single-particle field. In Ref. [4], the
nuclear collective excitations are parametrized in terms of the
transport coefficients such as the stiffness, inertia, and friction
parameters through the adequate collective response functions.

The quantum formulation of a rather complicated many-
body dynamical problem can be significantly simplified [8,9]
by using the Strutinsky shell correction method (SCM) [10–
12]. The SCM is based on the concept of the existence of the
quasiparticle spectrum near the Fermi surface by the Migdal
theory of finite fermion systems with a strong interaction of
the particles [2]. Within this concept, for instance, the shell
component of free energy can be considered perturbatively as
a quasiparticle correction to the total nuclear free energy on the
basis of the statistically averaged (macroscopic) background
described phenomenologically through the liquid drop model
or the extended Thomas-Fermi (ETF) approach [12].

Within the periodic orbit theory (POT) [12–15], so suc-
cessful for its semiclassical description of the nuclear shell
structure [12,14–16] and extended to the response functions
of collective dynamics [17], it would be worth applying first
the ideas of the SCM averaging and POT at a few lowest
orders in h̄, as in the ETF approach, for calculations of
the smooth transport coefficients at low excitation energies.
The semiclassical derivations of the famous wall formula
for the average friction, owing to collisions of particles
of the perfect Fermi gas with a slowly moving surface
of the mean-field edgelike potential, were suggested in
Refs. [18–20], see also the derivations of the wall formula
in Refs. [6,21,22]. The explicit analytical expressions of a
smooth inertia for the low-lying nuclear collective excitations
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within the semiclassical Gutzwiller path-integral approach to
the POT [13,15] at leading orders in h̄, with the main focus
on the consistency condition [1,4,23] between the variations of
potential and particle density, were studied in Ref. [24]. Many-
body collective dynamics near the edge of the nucleus was
described in terms of the effective nuclear surface (ENS, the
points of the maximal particle-density gradient) by employing
a macroscopic averaging in phase-space variables [8,25,26].
The ENS approximation [25,26] as an expansion in the
leptodermic parameter (the ratio of the diffuseness parameter
to a size of nucleus with A nucleons, ∼A−1/3) was used
for derivations of the dynamical equations with macroscopic
boundary conditions of the liquid and Fermi-liquid drop
models [25,27–30].

The main scope of this paper is the semiclassical calculation
of the response function at small frequencies in terms of the av-
eraged transport coefficients by using a more traditional way in
order to study also the reduced transition probabilities and con-
tributions to the energy-weighted sum rule (EWSR) of the low-
lying collective states [1]. The key point of these derivations
is to show analytically a significant enhancement of the ETF
inertia with respect to that of the hydrodynamical (irrotational-
flow liquid drop) model. Following Ref. [4], we begin with a
general response function formalism in Sec. II. The semi-
classical transport coefficients averaged macroscopically in
phase-space variables (in particular, over many single-particle
states near the Fermi surface) are obtained in the case of a
spherical edgelike potential for the mean field at equilibrium in
Sec. III. The coupling constants and the consistent collective
transport coefficients for such potentials while accounting
for important surface and curvature corrections of the next
order in h̄ are obtained in suitable variables in Sec. IV.
The statistically mean vibration energies of the low-lying
collective states and their EWSR contributions are derived in
terms of the analytical functions of nuclear particle number in
Sec. V. The reduced probabilities for the direct radiation decay
of γ quanta and the corresponding lifetimes of nuclei are
discussed in Sec. VI. These analytical results for the low-lying
quadrupole and octupole collective modes are compared with
experimental data [31–33] in Sec. VII. They are summarized
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in the conclusion section. Some details of the derivations are
presented in Appendices A–D.

II. RESPONSE THEORY AND TRANSPORT
COEFFICIENTS

Many-body collective excitations can be described con-
veniently in terms of the nuclear response to an external
perturbation, Vext = Q̂ qω

exte
−iωt , with a vibration amplitude

qω
ext and the multipole one-body operator Q̂ = rLYL0(θ ) for

L � 2 [1]. Its quantum average perturbation δ〈Q̂〉t at time t is
calculated through the Fourier transform as

δ〈Q̂〉ω = −χ coll
QQ(ω)qω

ext , (1)

where χ coll
QQ(ω) is the collective response function [1,4]. The

Hamiltonian at qω
ext = 0 depends on a collective variable q

defined as the time-dependent deformation parameter of a
mean-field potential V (q) of the nucleus. The vibrations of
the axially symmetric nuclear surface with a multipolarity
L near the spherical shape can be described by R(θ, q) =
R[1 + q(t)YL0(θ )], q(t) = qωe−iωt ; in spherical coordinates,
YL0(θ ) is the spherical harmonics. (The unperturbed quantities
in dynamical variations are zero in this case.) The consistency
condition is written as

δ〈Q̂〉ω = κQQ δqω, (2)

where κQQ is the coupling constant, see Appendix A. With the
help of condition (2), the collective response [1]

χ coll
QQ(ω) = κQQ

χQQ(ω)

χQQ(ω) + κQQ

(3)

is expressed in terms of the so-called intrinsic response
function, χQQ(ω), defined by

δ〈Q̂〉ω = −χQQ(ω)
(
δqω + qω

ext

)
. (4)

One dominating peak in the collective strength function

S(ω) = 1

π
Imχ coll

QQ(ω), (5)

based on Eq. (3) at low excitation energies h̄ωL, is assumed to
be well enough separated from all other solutions of the secular
equation χQQ(ω) + κQQ = 0 for ω = ωL. [See more detailed
explanations of this approach for the case of the single-particle
operator F̂ = (∂V/∂q)q=0 in Eq. (A1) and its applications to
the nuclear collective dynamics in Refs. [4,23,24]]. In this case,
the oscillator response function in the q mode, χ coll

qq (ω), can be
conveniently written in an inverted approximate form [4,23]
as

1

χ coll
qq (ω)

= 1

χqq(ω)
+ κFF = −MFF ω2 − iγFF ω + CFF ,

(6)

where κFF is the coupling constant in the F mode [Eq. (A1)],
and

χqq(ω) = χFF (ω)

κ2
FF

= χQQ(ω)

κ2
QQ

. (7)

According to the consistency conditions (2) and (A1), we used
in Eq. (7) the approximate transformations between the quan-
tities defined in different variables F and Q, corresponding to
the single-particle operators F̂ and Q̂. These transformations
will be used for presentation of the results satisfying the
consistency condition for variations of the nuclear potential
and the particle density in suitable units. The inverse collective
response function for low frequencies ω is approximated
in Eq. (6) by the response function of a damped harmonic
oscillator, χ coll

qq (ω), with the stiffness of the nuclear free energy
F , CFF ≈ CFF (0) = (∂2F/∂q2)q=0, and the friction γFF and
the inertia MFF ,

CFF = CQQ

κ2
FF

κ2
QQ

,

γFF = γQQ

κ2
FF

k2
QQ

, (8)

MFF = MQQ

κ2
FF

κ2
QQ

.

The consistent transport coefficients CQQ, γQQ, and MQQ in
variables Q are related to the auxiliary intrinsic parameters
CQQ(0), γQQ(0), and MQQ(0), as those of expansion of the
intrinsic response function χQQ(ω) in ω in the “zero-frequency
limit”, ω → 0, for a slow enough collective motion [4]; that
is,

χQQ(ω) = χQQ(0) − iγQQ(0) ω − MQQ(0) ω2 + · · · ,
(9)

χQQ(0) = −κQQ − CQQ(0).

Thus, for the transport parameters of the oscillator ω depen-
dence in Eqs. (6) and (8), one has

CQQ = [1 + CQQ(0)/χQQ(0)]CQQ(0),

γQQ = [1 + CQQ(0)/χQQ(0)]2γQQ(0),

MQQ = [1 + CQQ(0)/χQQ(0)]2[MQQ(0) + γ 2
QQ(0)/χQQ(0)

]
.

(10)

The intrinsic response χQQ(ω) in Eqs. (3), (4), and (7)
can be expressed in terms of the one-body Green’s function
G [17,34] as

χQQ(ω) = ds

π

∫ ∞

0
dε n(ε)

∫
dr1

∫
dr2Q̂(r1)

× Q̂(r2) ImG(r1, r2, ε)[G∗(r1, r2, ε − h̄ω)

+G(r1, r2, ε + h̄ω)], (11)

where n(ε) is the Fermi occupation number at energy ε

for temperature T , n(ε) = {1 + exp[(ε − λ)/T ]}−1, with the
chemical potential λ ≈ εF , where εF is the Fermi energy.
The factor of ds accounts for the spin-isospin degeneracy by
neglecting differences between the neutron and the proton
potential wells. For Green’s function G(r1, r2, ε), we use the
energy spectral representation

G(r1, r2, ε) =
∑

i

ψi(r1)ψ∗
i (r2)

ε − εi + iε
, (12)
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where εi are eigenvalues, ψi are eigenfunctions, and ε → +0
in the quantum mean-field approximation (asterisk in Eqs. (11)
and (12) means the complex conjugation).

With the help of Eq. (11), the intrinsic response function
χQQ(ω) in the “zero-frequency limit” of Eq. (9) (ω → 0)
can be expressed in terms of Green’s function G through the
intrinsic parameters [4,23,34]

γQQ(0) = −i

(
∂χQQ(ω)

∂ω

)
ω=0

= dsh̄

π

∫ ∞

0
dε n(ε)

∫
dr1

∫
dr2 Q̂(r1) Q̂(r2)

× ∂

∂ε
[Im G (r1, r2, ε)]2 , (13)

MQQ(0) = 1

2

(
∂2χQQ(ω)

∂ω2

)
ω=0

= dsh̄
2

π

∫ ∞

0
dε n(ε)

∫
dr1

∫
dr2 Q̂(r1) Q̂(r2)

× Im G(r1, r2, ε)
∂2

∂ε2
Re G(r1, r2, ε). (14)

Using the spectral representation (12) for Green’s function G,
one reduces equivalently Eq. (14) to the well-known cranking
model inertia in the mean-field limit (ε → +0), see, e.g.,
Ref. [4].

For the collective response function at low-lying excitation
energies, Eq. (3), with help of Eqs. (6) and (7), one has

χ coll
QQ(ω) = κ2

QQ

−MFF ω2 − iγFF ω + CFF

, (15)

where the inertia MFF , friction γFF , and stiffness CFF

are given by Eqs. (8), (10), (13), and (14). The coupling
constant κQQ is defined by the consistency condition (2), see
Appendix A. Thus, with the strength function SL(ω) in Eqs. (5)
and (15) for the first lowest peak, one can evaluate the prob-
ability distributions for excitations of the low-lying collective
states as

SL,l = h̄l+1
∫ ∞

0
dω ωl SL(ω), l = 0, 1, . . . . (16)

III. SEMICLASSICAL APPROACH

The intrinsic response function χQQ(ω) [Eq. (11)] can be
found with the help of the semiclassical expansion of Green’s
function G derived by Gutzwiller [12,13] from the quantum
path-integral propagator, that is,

G(r1, r2, ε) =
∑

α

Gα(r1, r2, ε), (17)

where

Gα(r1, r2, ε) = − 1

2πh̄2 |Jα(p1, tα; r2, ε)|1/2

× exp

[
i

h̄
Sα(r1, r2, ε) − iπ

2
µα

]
. (18)

The index α covers all classical isolated paths inside the
potential well which connect the two spatial points r1 and

r
r

z

1
2

pz 1

′

α
0

α1

O

O

FIG. 1. Trajectory α0 from the initial r1 to the final r2 point; the
spherical coordinate systems with the polar axes z and z′, the centers
O and O ′, respectively, are shown; dashed line denotes another
trajectory α1 with one mirror reflection from the spherical boundary.

r2 for a given energy ε. Sα is the classical action along
such a trajectory α, and µα denotes a phase related to the
Maslov index through the number of caustic and turning
points of the path α [12,15]. The Jacobian Jα(p1, tα; r2, ε) for
transformation from the initial momentum p1 and the time tα
of particle motion along the trajectory α to its final coordinate
r2 and energy ε is derived in Ref. [24] for the infinitely deep
spherical square-well potential by means of the techniques
explained in Refs. [12,13,15].

Among all classical trajectories α we may single out α0

which directly connects r1 and r2 without reflections from
the edge of potential well in intermediate points, see Fig. 1.
For Green’s function G [Eqs. (17) and (18)], one then has the
separation G = Gα0 + Gosc, where Gα0 is given by Eq. (18)
at α = α0 and Gosc(r1, r2, ε) is coming from all other closed
trajectories, α 	= α0. It leads to the corresponding split of the
semiclassical level density gscl(ε), defined through the trace of
G as

gscl(ε) = − 1

π
Im

∫
dr[G(r1, r2, ε)]r1→r2→r

= gETF(ε) + gosc(ε), (19)

into a smooth part of the ETF model, gETF(ε), and its
oscillating shell correction gosc(ε) in terms of the POT sum over
periodic orbits, see Refs. [12–15]. The ETF particle number
conservation then becomes [12,14]

A = ds

∫ ∞

0
dε n(ε)gETF(ε)

= ds

[
2(kF R)3

9π
− (kF R)2

4
+ 2kF R

3π

]
, (20)

where kF is the Fermi momentum in units of h̄, kF =√
2mεF /h̄2, and m is the mass of the nucleon. Equation (20)

determines the semiclassical parameter kF R as a function of
the particle number A. The second and third terms in the very
right approximation in Eq. (20) for spherical edgelike mean
fields, which becomes exact for the infinitely deep square-
well potential, account for important surface and curvature h̄

corrections to the first main volume component, respectively.
The temperature corrections ∼(T/εF )2 might be taken into
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account through the usual Sommerfeld expansion, too; see,
for instance, Refs. [4,24]. We will omit such small corrections,
because the applications will be related below to the low-lying
collective excitations at zero temperature.

As is well known [12,15], due to h̄ in the denominator of
the exponent argument of Eq. (18) in the oscillating terms
of Green’s function traces, their semiclassical expansions
in powers of h̄ (or in the dimensionless parameter h̄/Sα ∼
1/kF R) converge after averaging in kF R, for instance, over
a large enough interval of the particle number A through
the radius R in accordance with Eq. (20). The Strutinsky
averaging [9–11] with a Gaussian width � which covers at least
a few gross shells in energy spectrum (see Appendix B) leads to
the local (r2 → r1) smooth quantities, in particular, to the level
and the particle densities and the free energy. According to
Eqs. (13) and (14), the nonlocal (r2 	= r1) contributions into the
ETF transport coefficients become also important. Therefore,
we need more extended statistical averaging in the phase
space (both energy and spatial coordinate) variables, as in the
semiclassical (moreover, local hydrodynamical) derivations
within the many-body particle density or Green’s function
formalism [8,28,35,36].

The averaged semiclassical inertia M̃QQ(0) and friction
γ̃QQ(0) parameters can be found by substitution of the
trajectory expansion of Green’s function (17) into Eqs. (13)
and (14),

M̃QQ(0) = dsh̄
2

π

∑
αα′

〈 ∫ ∞

0
dε n(ε)

∫
dr1

∫
dr2Q̂(r1)Q̂(r2)

× Im Gα(r1, r2, ε)
∂2

∂ε2
Re Gα′ (r1, r2, ε)

〉
av

, (21)

γ̃QQ(0) = dsh̄

π

∑
αα′

〈 ∫ ∞

0
dε n(ε)

∫
dr1

∫
dr2Q̂(r1)Q̂(r2)

× ∂

∂ε
[Im Gα(r1, r2, ε) Im Gα′ (r1, r2, ε)]

〉
av

. (22)

The angle brackets 〈· · ·〉av mean the SCM averaging over the
phase-space coordinates, as mentioned above. To calculate
analytically these quantities, we need to distinguish the two
limit cases [24]: (i) the nearly local part, Sα(r1, r2, εF )/h̄ =
kFLα <∼ 1, and (ii) nonlocal contributions, kFLα 
 1, where
Lα is the length of the trajectory α in the edgelike potential
wells. We emphasize that the averaging over phase-space
variables leads to the nearly local approximation (i) for the
inertia [Eq. (21)] and the friction [Eq. (22)] coefficients, in
contrast to the restriction (ii). For case (i), the partial SCM
averaging in kF R (for instance, in nuclear sizes R or particle
numbers A for constant kF fixed by the particle density of the
infinite matter, ρ∞ = 2k3

F /3π2 [2]) ensures a convergence of
the semiclassical expansions of smooth quantities in 1/kF R

within the ETF model [9,12,15]. The strong energy depen-
dence of the exponential factor in Eq. (18), exp(iSα(ε)/h̄),
for h̄ → 0, leads to the appearance of the damping factor,
∝ exp[−(Lα�/4R)2], after such averaging with a width of
the Gaussian weight function, � ≈ (2–4)kF Rh̄�/2εF ; see
Appendix B. This averaging which corresponds approximately
to the 2–4 distances between the gross shells in the energy

spectrum, h̄� ≈ εF /A1/3 = 7–10 MeV, for heavy nuclei, A =
200 − 50, respectively, removes shell effects, almost like in the
ETF level and particle densities [9–12,24]. The most important
contribution is coming then from the shortest trajectory,
α = α′ = α0 (see Fig. 1), with a length s smaller or of the order
of the wave length 1/kF ,Lα0 = s = |r2 − r1| <∼ 1/kF � R,
at a sufficiently large semiclassical parameter, kF R 
 1.

As in Refs. [24,28,36], it is convenient now to transform
the variables {r1, r2} to the Wigner coordinates {r, s},

r = r1 + r2

2
, s = r2 − r1, (23)

in order to simplify calculations of the inertia M̃QQ(0)
[Eq. (21)] and the friction γ̃QQ(0) [Eq. (22)] by separating
a smooth slow motion of particles in variable r and their
fast dynamics in s. As shown in Ref. [24], for small enough
length s of the trajectory α0, s/R � 1 within the nearly
local approximation (i), the corresponding component Gα0

of Green’s function (17) in Eqs. (21) and (22) in terms of the
new integration variables {r, s} is reduced approximately to its
simple analytical form

Gα0(r1, r2, ε) ≈ G0(r1, r2, ε)

= − m

2πh̄2s
exp(iks), s = |r2 − r1|, (24)

with k =
√

2mε/h̄2. Formally, G0 coincides with the well-
known Green’s function for free particle motion [14,15,19,20].
With the transformation (23) and exchange of the energy and
spatial integrations in Eqs. (21) and (22), in case (i), one has

M̃QQ(0) = dsh̄
2

π

〈 ∫
dr

∫
ds Q̂

(
r + s

2

)
Q̂

(
r − s

2

)

×
∫ ∞

0
dε n(ε) Im G0

(
r + s

2
, r − s

2
, ε

)

× ∂2

∂ε2
Re G0

(
r + s

2
, r − s

2
, ε

) 〉
av

, (25)

γ̃QQ(0) = dsh̄

π

〈 ∫
dr

∫
ds Q̂

(
r + s

2

)
Q̂

(
r − s

2

)

×
∫ ∞

0
dε n(ε)

∂

∂ε

[
Im G0

(
r + s

2
, r − s

2
, ε

)]2
〉

av

.

(26)

The internal integral over ε in Eqs. (25) and (26) can be
taken analytically. For the analytical evaluation of the integrals
over the Wigner coordinates r and s, the integrands depending
on kF s in Eqs. (25) and (26) are simplified by means of
averaging in the phase-space variables. As demonstrated in
Appendices B–D, using the approximation (24), one may
identically transform the expressions for the inertia M̃QQ(0)
and the friction γ̃QQ(0) and the isolated susceptibility χ̃QQ(0)
to sums of the local (volume) terms and their small nonlocal
(surface) corrections. The integrands, proportional linearly to
the nonlocal (correlationlike) components depending on kF R,
are zeros within approach (i). The inertia terms expressed
linearly through the correlation function 〈Q̂(r + s/2)Q̂(r −
s/2) − Q̂2(r)〉av, averaged in phase-space variables, are ne-
glected as in the derivations of the hydrodynamic model
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starting from a many-body system of strongly interacting
particles [8,35]. The more general statistical principle of the
weakness of correlations is used usually in semiclassical
derivations of the kinetic equations with integral collision
terms, by separating a slow motion along the mean coordinate
r within the nearly local condition (i) from fast dynamics in
the relative coordinate s in terms of its collisional correlations
[28,36]. Such correlationlike functions are concentrated at
small s of the order of a few wave lengths, as explained
in Appendix B. The transport coefficients are simplified by
doing averaging in fast oscillations of functions of the relative
variable s at a given mean coordinate r. The integrations over
angles of vectors s and r can be approximately performed ana-
lytically in the nearly local approximation (i), see Appendix B
for details.

The major terms of Eqs. (25) and (26) can be found in
the perfect local case when a smooth product of the multipole
operators in these equations can be approximately taken off the
integral over s at s = 0 due to the property of the phase-space
averaging of the correlation functions mentioned above. For
the main local approximation within the framework of (i), after
the integration over ε (or corresponding kR), one may take also
analytically the integrals over s and r in Eqs. (25) and (26). As
the final result for L � 2, one finally arrives at the inertia

M̃QQ(0) = dsm
3R2L+6

12πh̄4 f
(3)
L , (27)

the friction

γ̃QQ(0) = dsm
2R2L+4

2π2h̄3 f
(1)
L , (28)

and the isolated susceptibility

χ̃QQ(0) = dsmR2L+2 kF R

2π2 h̄2 f
(0)
L . (29)

Here, f
(n)
L are the integrals over the dimensionless radial

variable, that is,

f
(n)
L =

∫ 1

0
d℘ ℘2L+2 (℘ + 1)n,

(30)
n = 0, 1, 2, . . . , ℘ = r/R,

f
(0)
L = 1

2L + 3
, f

(1)
L = 4L + 7

2(L + 2)(2L + 3)
,

(31)

f
(3)
L = (4L + 9)[(4L + 9)2 − 7]

4(L + 2)(L + 3)(2L + 3)(2L + 5)
.

The next higher order terms of expansion of the product of mul-
tipole operators in powers of the dimensionless variable s/R

lead to some relatively small surface corrections, ∼1/kF R, at
large particle number A. In particular, it is shown that the next
order curvature corrections, ∼1/(kF R)2, for a given large kF R

can be neglected within the nearly local approximation (i).
Notice, more important surface (∼1/kF R) and curvature
[∼1/(kF R)2] corrections originate from those of the ETF
relationship [Eq. (20)] between kF R and particle number A.
The derivation of the surface and curvature corrections are
considered in all Appendices. (They will be shown for brevity

only at the very end of Sec. IV and will be discussed in
Secs. V–VII).

For evaluation of the contributions (ii) of longer trajectories,
the Gutzwiller expansion [Eqs. (17) and (18)], valid for the
isolated classical paths, fails because we have to account for
a continuous symmetry of the spherical Hamiltonian, i.e., the
appearance of the axially symmetric degenerated families of
planar periodic orbits with their points fixed inside of the
spherical reflection boundary [15]. For such a family, due to
the integration over its continuous parameter, the amplitude of
Gα in expansion (17) of Green’s function over trajectories α

is enhanced on the order of (kFLα)1/2 (or h̄−1/2, kFLα 
 1),
as compared to Eqs. (17) and (18), see Eqs. (16) and (31)
in Ref. [15]. For the nondiagonal (α 	= α′) contributions (ii)
into the integrals over r2 (or s in the r and s coordinates) in
Eqs. (21) and (22) with parameter � of the SCM averaging [9]
(much smaller than that related to the distance between gross
shells h̄�), the leading terms in the semiclassical parameter
kF R are the periodic orbits, according to the stationary-
phase conditions [17]. The nondiagonal (α 	= α′) terms of
Eqs. (21) and (22) through the stationary-phase (periodic-
orbit) conditions provide mainly the shell (nonlocal) correc-
tions to the inertia MQQ(0), friction γQQ(0), and isolated
susceptibility χQQ(0) [9]. They will be discussed in detail
in further publications. In the following, we will consider only
the smooth transport coefficients, and therefore, the tilde above
them will be omitted for simplicity.

IV. COUPLING CONSTANTS AND TRANSPORT
COEFFICIENTS

The consistent collective-transport coefficients γQQ,MQQ,

and CQQ of Eq. (10) differ from their intrinsic parameters
γQQ(0) [Eq. (28)], MQQ(0) [Eq. (27)], and CQQ(0), see also
χQQ(0) [Eq. (29)], in the low frequency expansion (9) by
semiclassically small corrections,

CQQ(0)

χQQ(0)
= CFF (0)

χFF (0)
∼ 1

(kF R)2
� 1, (32)

as shown in Refs. [4,24], and

γ 2
QQ(0)

χQQ(0)MQQ(0)
= 6

π

[
f

(1)
L

]2

f
(0)
L f

(3)
L

1

kF R
≈ 1

kF R
� 1, (33)

in contrast to the corresponding result within the approach
of Ref. [24]. Therefore, in the following derivations, we may
neglect the corrections of Eq. (32) in Eq. (10) but keep Eq. (33)
for the surface corrections, ∼1/kF R. Thus, up to relatively
small surface corrections to the transport coefficients, one gets
γQQ ≈ γQQ(0),MQQ ≈ MQQ(0), and CQQ ≈ CQQ(0).

For calculations of the response function χ coll
QQ(ω) [Eq. (15)],

one has to transform the transport coefficients γQQ,MQQ, and
CQQ from the variable Q related to the one-body operator Q̂

to another variable associated with the operator F̂ by using
Eq. (8) [1,4,24,34]. As shown in Appendix A, the coupling
constants κFF and κQQ appearing in the transformations of
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Eq. (8) are given by

κFF = −32ρbvKR4

675bsr0
≈ − 8 KR

225π bsr0
bvA, (34)

and

κQQ = ρRL+3, ρ = ρ∞

(
1 + 6bsr0

KR

)
≈ ρ∞. (35)

Here bv is the energy of particle separation from nuclear matter,
bv = 16 MeV; K is the incompressibility modulus, K =
220 MeV; bs is the energy surface constant, bs = 18 MeV; and
r0 = (3/4πρ∞)1/3, where ρ∞ = 0.16 fm−3 for the nuclear-
matter particle density. For these typical nuclear parameters,
the surface-tension particle-density correction in Eq. (35)
inside of the nucleus is relatively small for heavy enough
nuclei, i.e., 6bsr0/KR ≈ 6bs/KA1/3 � 1, in the effective
nuclear surface (ENS) approximation [25,26].

Substituting Eqs. (10), (34), (35), (27), and (28) into Eq. (8)
for the consistent transport coefficients in the Thomas-Fermi
approach, one approximately finds

MFF = 6π2Lf
(3)
L ρ

(
16bv KR

2025εF bsr0

)2 (kF R)4

A
Mirr,

(36)

Mirr = 3AmR2

4Lπ
,

γFF = 1

2
f

(1)
L

(
32bvKR

675εF bsr0

)2

γwf, γwf = 3

4
h̄ρkF R4, (37)

where Mirr is the irrotational flow inertia of the hydrodynamic
model [1], and γwf is the wall formula [18,20] derived in
Ref. [24] for the operator F̂ of Eq. (A1) in the same nearly
local approximation (i). They both are used as convenient units.
The incompressibility K and surface energy constant bs appear
in these equations in terms of the single semiclassical and
leptodermic parameter 1/kF R ∼ a/R ∝ bs/KA1/3 (kF a ∼
kF r0 ∼ 1, R = r0A

1/3) up to a number constant of the order
of unity through Eq. (34) for the coupling constant κFF ,
see Appendix A. Such general common properties of the
extended Thomas-Fermi and liquid drop models both based
on expansion in this small parameter were found, for instance,
within the ENS approach [25,26]. The ETF inertia MFF in
Eq. (36) is much larger than that of irrotational flow, Mirr, for
large enough particle numbers A when using the nuclear data
mentioned above, that is,

MFF

Mirr
= MFF A, MFF ≈

{
0.036, L = 2

0.043, L = 3

}
. (38)

For A = 100–200, the inertia value MFF [Eq. (38)] is larger
than the irrotational flow one by a factor of about 4–7 for the
quadrupole (L = 2) and almost 4–9 for the octupole (L = 3)
vibrations (see Refs. [9,24] and also within another approach
[37]).

Taking into account the nonlocal surface corrections in
Eq. (B11) of Eq. (25) and in Eq. (33) of Eq. (10) [∝ γ 2

QQ(0)],
which are both relatively small as 1/kF R ∼ A−1/3, for the
inertia MFF [see also Eq. (8)] up to the negligibly small

curvature corrections of Eq. (32), one obtains

MFF = πρm3R2L+6

2h̄4k3
F

κ2
FF

κ2
QQ

(
f

(3)
L + ζL

π kF R

)

×
(

1 + 6
[
f

(1)
L

]2

πkF Rf
(0)
L f

(3)
L

)
. (39)

Here, κFF and κQQ are the coupling constants (A8) and
(A10) completed by surface and curvature corrections,
respectively; f

(n)
L are given by Eqs. (30) and (31), ζL =

ζ
(1)
L + ζ

(2)
L > 0; ζ (1)

2 = −3f
(2)
2 = −127/84, ζ

(2)
2 = 1279/576

for L = 2; ζ (1)
3 = −3f

(2)
3 = −199/165, ζ

(2)
3 = 67031/42240

at L = 3; and f
(2)
L = (8L2 + 32L + 31)/[(L + 2)(2L +

3)(2L + 5)] [Eqs. (B10) and (B11)].
For the stiffness CFF at leading order of expansion in A−1/3

within the ENS approximation [24–26], as for the coupling
constant κFF , one has the values of the hydrodynamic (HD)
model for the vibration multipolarity L [1], i.e.,

CFF ≡ C
(S)
L + C

(Coul)
L . (40)

The surface component of the HD stiffness,

C
(S)
L = bs

4πr2
0

(L − 1)(L + 2) R2, (41)

is complemented by the Coulomb term along the β-stability
line [1,38],

C
(Coul)
L = − 3 (L − 1)

2π (2L + 1)

Z2e2

R
,

(42)

Z =
[

A

2 + 3e2 A2/3/5r0bsym

]
,

where Ze is the charge of the nucleus. The square brackets
in Eq. (42) mean the integer part of the number, and bsym is
the coefficient of the symmetry term in the nuclear binding
energy, bsym = 60 MeV. The approximation CFF ≈ CFF (0)
up to semiclassically small curvature corrections, ∼A−2/3 [see
Eq. (32)], was used here as in Eq. (39) [4,24].

V. VIBRATION ENERGIES AND SUM RULES

The energies of the collective vibration modes are deter-
mined by poles of the response function (15) with the inertia
MFF [Eq. (36)], friction γFF [Eq. (37)], and stiffness CFF

[Eq. (40)] as well as the coupling constant κQQ (35). These
poles are given by

ω± = �
(
±

√
1 − η2 − iη

)
, (43)

where

� =
√

CFF

MFF

, η = γFF

2
√

MFF CFF

. (44)

According to Eqs. (44), (37), (36), and (40), for the effective
damping parameter η, one finds respectively η <∼ 0.4 and
0.2 for L = 2 and 3. The last estimates were obtained for
the same nuclear parameters shown above at A <∼ 200 while
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accounting for the surface and curvature corrections. As seen
from these estimates, the collective motion under consideration
is essentially underdamped, η < 1, for any particle number
A <∼ 200. Note that the residue interaction was zero from the
very beginning in Eq. (12) for Green’s function G, ε = +0.
The averaging over kF R (which guarantees a convergence of
smooth transport coefficients in the semiclassical expansion in
1/kF R) leads to a finite friction coefficient γFF or an effective
damping constant η, as formally, with the Lorentzian weight
function [14,20] because of the appearance of a finite ε 	= 0 in
Eq. (12). However, as shown in this and the next two sections,
the influence of an effective damping parameter η on cal-
culations of the excitation energies, transitions probabilities,
and EWSR contributions can be neglected in the following
derivations.

Neglecting now the small η2 term in the real part of Eq. (43)
for calculations of the smooth low-lying collective vibration
energy, h̄ω = h̄ Reω+ ≈ h̄� , from Eqs. (43), (44), (36),
and (40) (L � 2), one approximately obtains

h̄ωL = DL

A
, DL = DL

(
1 + C

(Coul)
L

C
(S)
L

)1/2

, (45)

DL = 75 bsεF

4πbvK

√
3εF bs(L − 1)(L + 2)

f
(3)
L

. (46)

For the nuclear parameters mentioned above, the constant DL

independent of the particle number A is given approximately
by D2 = 100 MeV and D3 = 180 MeV. With the Coulomb
corrections of Eq. (45), these constants become slightly, almost
linearly, decreasing functions of A within the interval of
about A = 100–200. For this A interval, they are modified
approximately to the values D2 = 90–70 and D3 = 170–
150 MeV [see Eqs. (41) and (42)].

We may now evaluate the energy-weighted sum rule SL,1

for the contribution of the first low-lying excitation, see
the integral (16) at l = 1 with the strength function SL(ω)
[Eqs. (5) and (15)]. Finally, integrating analytically over ω in
Eq. (16) for the EWSR of the low-lying collective excitation,
one finds [see also Eqs. (16), (35), and (36)]

SL,1 = h̄2κ2
QQ

2MFF

= Mirr

MFF

SL,cl, (47)

where SL,cl is the contribution of the low-lying peak in the
hydrodynamic model of irrotational flow in a classical liquid
drop, that is,

SL,cl = h̄2κ2
QQ

2Mirr
= 3LεF

4π (kF R)2
AR2L. (48)

This SL,cl appears to be equivalent to the EWSR estimation
independent of the model, see Eq. (6.179a) in Ref. [1]. The
ratio of the inertias, Mirr/MFF , in Eq. (47) is given by
Eq. (36). Note that the last equation in Eq. (47) recalls the
EWSR relation (6.183) of Ref. [1]. Thus, we may evaluate
the relative contribution of the low-lying collective state into
the total EWSR estimation (48) [see Eqs. (47), (36), and (38)],

SL,1

SL,cl
= SL

A
, SL = 2

Lf
(3)
L

(
225εF bskF r0

8πbvK

)2

, (49)

with constants S2 ≈ 7 and S3 ≈ 6 for the same nuclear
parameters. For A ∼ 100–200, one has a relatively small
EWSR contribution of the low-lying collective excitations in
the framework of the Thomas-Fermi (TF) model. According to
Eq. (38), this is obviously because of small enough values of
the ratio of inertia parameters, Mirr/MFF , for large particle
numbers A. It is in contrast to the HD model where the
first low-lying peak exhausts erroneously 100% of the EWSR
(48) [1]. For this reason, the TF approach to the collective
nuclear vibrations is much improved with respect to the HD
model: in addition to the low-lying collective states, one has
a possibility for the giant multipole resonance contributions
which mainly exhaust the EWSR.

The relatively small surface and curvature corrections can
be taken into account in the vibration energies [Eq. (44)]
and sum rules [Eq. (47)] through Eq. (39) for the inertia and
Eq. (20) for the ETF relationship of the parameter kF R to the
particle number A [see Eqs. (A8) and (A10) and Appendix B].
The last kind of surface (∼A−1/3) and curvature (∼A−2/3)
corrections from Eq. (20) give the major contribution to the
A systematics of the vibration energies [Eq. (45)] for large A,
that is,

h̄ωL = DL

A

(
1 − w

(s)
L

A1/3
+ w

(c)
L

A2/3

)
, (50)

where DL is defined in Eqs. (45) and (46),

w
(s)
L =

(
9π

8

)2/3

≈ 2.3, w
(c)
L = 3

(
8

9π

)2/3

≈ 1.3. (51)

Similarly, from Eq. (47) one obtains the EWSR ratio

SL,1

SL,cl
= SL

A

(
1 − 2w

(s)
L

A1/3
+

[
w

(s)
L

]2 + 2w
(c)
L

A2/3

)
, (52)

where SL is the constant independent of the particle number
A in Eq. (49). Other surface and curvature components do
not contribute much because of their smallness or mutual
compensations. Notice that the surface corrections essentially
decrease both the vibration energies h̄ωL [Eq. (50)] and the
EWSR contributions SL,1 [Eq. (52)] for sufficiently large
particle numbers, A = 100–200, because of the positive sign
of the dominating surface correction, w

(s)
L > 0.

VI. TRANSITION PROBABILITIES AND DIRECT
RADIATION DECAY

The radiation decay of the low-lying collective states can
be considered as a direct emission of the γ quantum from
a nucleus with the semiclassical description of a charged
system within our ETF model. A similar process was studied
in Ref. [39] for the case of the direct radiation decay of
isoscalar giant multipole resonances within the framework of
the semiclassical description of a nuclear system by using
the Landau-Vlasov approach with macroscopic boundary
conditions [27]. For the probability of the transitions per unit
of time with the electric radiation of the γ -quantum energy εγ
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at the multipolarity L, one has [38]

W (EL, I1 → I2)

= 8π (L + 1)

L[(2L + 1)!!]2h̄

(εγ

h̄c

)2L+1
B(EL, I1 → I2). (53)

Here, I1 and I2 are the spins of the initial and the final states,
B(EL, I1 → I2) is the reduced probability,

B(EL, I1 → I2) =
∑
µM2

|〈I2M2|M(EL,µ)|I1M1〉|2, (54)

µ and M2 are the projections of the γ -quantum spin L and
the angular momentum of a final nuclear state I2, respectively,
and

M(EL,µ) = eZ

A

∫
dr ρ(r) rLYLµ(θ, ϕ). (55)

The effective charge factor can be approximately put at unity
for the isoscalar collective excitations with L � 2.

The reduced probability B(EL, 0 → L) of Eq. (54) can
be evaluated through the zero (l = 0) moment SL,0 of the
strength function SL(ω), see Eqs. (16), (5), and (15). Taking
into account the conservation equations for the energy εγ =
h̄ωL, and the angular momentum I2 = L (I1 = 0) in the direct
nuclear γ decay [38,39] for the zero moment of Eq. (16), one
obtains [Eqs. (37) and (40)]

SL,0 = h̄ κ2
QQ

2πMFF ωL

√
1 − η2

arccot

[
2η2 − 1

2η
√

1 − η2

]

= h̄ κ2
QQ

2MFF ωL

[
1 − 2η

π
+ O(η2)

]
, (56)

where MFF , κQQ, and η are given by Eqs. (39), (A10),
and (44), respectively (η < 1/

√
2). As shown in Sec. V,

all small η corrections of Eq. (56) can be really neglected
for particle numbers A <∼ 200 and multipolarities L � 2. The
averaged probability B(EL, 0 → L) in Eq. (54) can be then
approximated semiclassically within the ETF model as

B(EL,0 → L) ≈ Bscl(EL,0 → L) = (2L + 1)

(
eZ

A

)2

SL,0

≈ (2L + 1)

(
eZ

A

)2 h̄κ2
QQ

2MFF ωL

. (57)

The degeneracy factor 2L + 1 was accounted for because of
the additional summation over the projections M2 of the final
angular momentum I2 = L in Eqs. (54) and (55), as compared
to the simplest multipole operator for the isoscalar excitations
of A nucleons,

∫
dr ρ(r)rLYL0(θ ), in the previous sections.

The factor (eZ/A)2 must be also taken into account in the
last two equations in Eq. (57) [see Eqs. (54) and (55), and
Eqs. (6.61) and (6.182) of Ref. [1]]. The semiclassical energy
of the low-lying collective state, h̄ωL, was derived in Sec. V
[see the first equation in Eq. (44) and its approximations (45)
and (50)]. Other denotations are the same as in the sum rule of
Eq. (47). Thus, from comparison of the transition probability
(57) and the EWSR (47) modified with the operator (55),
one has the expected approximate relationship between the

probability (57) and the corresponding sum rule [1,39]:

SL,scl ≡ (2L + 1)

(
eZ

A

)2

SL 1 = h̄ωLBscl(EL,0 → L). (58)

According to Eqs. (58), (47), (38), (45), and (42), the
reduced probability B(EL) (for example, for the radiation
process L → 0) in units of the single-particle estimation [38]
is mainly written as

Bscl(EL)

Bs.p.(EL)
≈ h̄2L(3 + L)2

6mr2
0DLMFF

(
Z

A

)2

A1/3. (59)

As seen from this simple evaluation, the particle dependence
of the reduced probability Bscl(EL) divided by the factor
(Z/A)2 in the single-particle units is roughly proportional to a
semiclassically large parameter A1/3. Taking into account also
the coefficient in front of the A1/3 dependence [Eq. (59)], one
obtains an even larger magnitude for this relative probability,
≈80–130 for the quadrupole and ≈80–90 for the octupole
low-lying collective states at particle numbers A = 100–200.
With the main surface and curvature corrections of Eqs. (52)
and (50), owing to the dominating ones of the ETF relationship
between kF R and A, these quantities diminish with respect to
their local (volume) approximation, ≈50–70 for L = 2 and
≈50–60 for L = 3. Thus, in any case, the quadrupole and
octupole electric transitions within the ETF model are the
well-pronounced-enough collective excitations.

For the mean semiclassical lifetime with respect to the direct
γ decay, one has

tL,scl = W−1
scl (EL,L → 0) ∝ ω

−(2L+1)
L B−1

scl (EL,L → 0)

∝ (A/eZ)2A2(2L+1)/3. (60)

With the semiclassical ETF probability per unit of time
Wscl(EL,L → 0) [Eq. (53)] corresponding to the reduced
probability Bscl(EL,L → 0) [Eq. (57)], one obtains t2,scl ≈
80–1100 and t3,scl ≈ (17–1100) × 106 ps for quadrupole and
octupole low-lying collective vibration states within the
same particle number interval. We accounted for the main
surface and curvature corrections which increase significantly
lifetimes tL,scl [Eq. (60)]. In all these evaluations, one can
neglect the corrections caused by the conversion processes,
which become important for much smaller excitation energies.

VII. DISCUSSION

Figures 2 and 3 show the local Thomas-Fermi approach
to the low-lying collective quadrupole h̄ω2 and octupole h̄ω3

excitation energies [see Eq. (45) with Eq. (40) for the stiffness
CFF and Eq. (36) for the inertia MFF ] without surface and
curvature corrections, as compared with the experimental
data [31] and [32], respectively; see also Ref. [33]. The
almost spherical (even-even) nuclei with quadrupole defor-
mations, q2 <∼ 0.05, are selected from these experimental data
[24,33,40,41]. The TF results for smooth vibration energies are
significantly improved with respect to the hydrodynamic (HD)
behavior with the same stiffness CFF [Eq. (40)] but irrotational
flow inertia Mirr [Eq. (36)], especially for the quadrupole case.
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FIG. 2. Low-lying quadrupole vibration energies h̄ω2 vs particle
number A; curve TF is given by Eqs. (45), (44), (40), and (36); ETF
is the extended TF approach accounting for the surface and curvature
corrections of Eqs. (39) and (20); ETFA is the asymptotical formula
(50) with Eq. (40) for the stiffness; and HD shows the standard
hydrodynamical model [1]. Solid dots are the experimental data [31,
33] for the nearly spherical nuclei with quadrupole deformations
q2 < 0.05 [33,40,41]; ρ = 0.16 fm−3 (r0 = 1.14 fm), bv = 16 MeV,
bs = 18 MeV, K = 220 MeV, and bsym = 60 MeV.

The more complete ETF approach [Eqs. (45), (40)
and (39)], which accounts for the surface and the curvature
corrections of the function kF R(A), found from Eq. (20),
and those of the inertia MFF [ Eqs. (39), (A8), and (A10)],
is shown as ETF curves in Figs. 2 and 3. As expected, the
comparison with experimental data, except for several doubly-
closed-shell (magic) nuclei which appear above the regular
A systematics, is essentially improved by these corrections
mainly for smaller particle numbers A. The Coulomb stiffness
component becomes important for larger A. The reason for
the better agreement of the ETF approach, as compared to the
HD model, with experimental data for nonmagic nuclei can
be explained by larger ETF inertia MFF [Eq. (38)] than that
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FIG. 3. Same as Fig. 2, but for the low-lying octupole vibration
energies h̄ω3; experimental data are from Refs. [32,33].
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FIG. 4. Reduced probabilities B(E2) for the transition 0+ → 2+

in units of e2 b2; solid dots are experimental data [31,33]; the
semiclassical B(E2) is given by Eq. (57) (short-dashed curve) with
exact account for the η dependence and without η corrections (solid
curve); other notation is the same as in Fig. 2.

of the irrotational flow Mirr for enough heavy nuclei. As seen
from these figures, the explicitly analytical asymptotics of
Eq. (50) (shown as ETFA), where only the surface and
curvature corrections in the kF R(A) ETF dependence
[Eq. (20)] were taken into account, are good asymptotics
for A >∼ 40. This comparison shows the importance of these
corrections, as compared to all other ones.

Figures 4 and 5 show the semiclassical reduced probabil-
ity [Bscl(EL, 0 → L) = (2L + 1)Bscl(EL,L → 0), Eq. (57)]
related to the zero (l = 0) moment [Eq. (16)] of the strength
function in Eqs. (5) and (15) versus experimental data [31–33]
for the quadrupole, 0+ → 2+, and the octupole, 0+ → 3−,
electric collective transitions in the low-lying energy region
for the same (almost spherical) nuclei. The logarithmic scale
is used to show this comparison in a wide region of particle
numbers. As displayed in these figures, one has a rather
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FIG. 5. Reduced transition probabilities B(E3) for the transition
0+ → 3− in units of e2 b3; notation is the same as in Fig. 4, but
experimental data are from Refs. [32,33].
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FIG. 6. Quadrupole EWSR S2,1 of Eq. (16) in units of S2,cl from
Eq. (48) [1]; solid data points show h̄ω2B(E2) with the experimental
vibration energies h̄ω2 and reduced probabilities B(E2) of Refs. [31,
33], see Figs. 2 and 4; the semiclassical S2,1 is given by Eq. (47).

good agreement between the averaged semiclassical reduced
transition probabilities [in particular, the lifetimes in Eq. (60)]
and the global behavior of experimental data [31,32] (besides
that of magic nuclei). The surface and the curvature correction
effects measured by differences between TF and ETF curves
greatly improve our semiclassical smooth A-systematic results
toward the allowance data. The agreement between the full
ETF (thin solid) and the analytical asymptotics ETFA (thick
dashed) with the dominating surface and curvature corrections
coming from Eq. (20) is really perfect for almost all particle
numbers, except for small particle-number region. As seen
from comparison of the ETF∗ and ETF curves in Figs. 4
and 5, one may really neglect the η corrections of Eq. (57)
which arise artificially from the averaging procedure.

One of the most important characteristics of the low-lying
collective states is their energy-weighted sum rule contribution
[Eq. (47)] into the total value of Eq. (48) [1], see Figs. 6
and 7. The experimental EWSR were evaluated as the products
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FIG. 7. Octupole EWSR S3,1 in units of S3,cl [Eq. (48) [1]; data
points show h̄ω3B(E3) with the experimental h̄ω3 and B(E3) from
Refs. [32,33]; other notation is the same as in Fig. 6.

of the measured transition probabilities B(EL) plotted in
Figs. 4 and 5 and the corresponding vibration energies h̄ωL

(see Figs. 2 and 3) both taken from Refs. [31] and [32]
for the quadrupole (Fig. 6) and octupole (Fig. 7) vibrations,
respectively. According to Eqs. (38), by the same reason of
enhancement of the inertia MFF with respect to the irrotational
flow Mirr, the relative contribution of the low-lying collective
states into the EWSR within the TF approach [Eqs. (47)
and (36)] and the more complete ETF model [Eqs. (47),
(39), (A8), and (A10)] become basically correct for larger
particle numbers A, in contrast to the HD model. As shown in
Figs. 6 and 7, within the ETF approximation, we obtained rel-
atively much smaller EWSR contributions of these states [see
Eqs. (47), (52), and (51)] into the total EWSR [Eq. (48)]
for large enough particle numbers, A >∼ 70. This is mainly
in agreement with experimental data [31,32] for the EWSR at
such values of A, especially better when accounting for the
surface and the curvature corrections. Again, the good EWSR
asymptotics of Eq. (52) (ETFA) for large A takes only into
account the most essential surface and curvature corrections
of the kF R(A) function as determined by the ETF particle
number conservation equation (20).

However, Figs. 2–7 show also the obvious importance of
other contributions, first of all arising from the shell effects,
which are especially pronounced for the quadrupole case,1

see Figs. 2, 4, 6. They are certainly beyond the smooth ETF
approximation, in line of the SCM results of Ref. [9]. As
expected, magic nuclei such as Pb-208 [the full point much
above others on right of Figs. 2 and 6 and near the very right
of the minimum of the B(EL) in Fig. 4, for example] should
be excluded from comparison with the ETF approach for
vibration energies, the reduced transition probabilities, and the
EWSR contributions. The deflection of the experimental data
for B(EL) from the averaged semiclassical A dependences
can be assumed to be referred to those of the matrix elements
in Eq. (54) within both of the more exact RPA and POT
approaches, taking into account the shell effects. As noted
in Refs. [9,24], the pairing effects in calculations of the
inertia within the cranking model [5,11] for even-even nuclei,
lead basically to the A−2/3 behavior for both the not too
heavy and light nuclei [40,41]. Notice that the mean vibration
energy h̄ωL as function of its multipolarity L [Eqs. (45),
(46), and (50)] differs essentially from that predicted by the
hydrodynamical approach [1] and the pairing cranking model
[5] and from that found in Ref. [24] (with the same surface
HD stiffness) because of different evaluations of the inertia.
For heavy nuclei, the A dependence of the pairing gap is more
undetermined, and the pairing correlation effects are still a
challenge to the investigation of smooth and shell components
of the transport coefficients within the POT approximation
to the SCM. Nevertheless, as seen from Figs. 2–7, the
ETF approximation accounting for the Coulomb, surface,

1The smooth ETF energies h̄ωL of Eq. (44), probabilities B(EL),
and EWSR [Eqs. (16), (5), and (15)] differ from the statistically
averaged experimental data [31,32] because originally, they depend
on the oscillating shell components of the transport coefficients and
coupling constants in a complicated nonlinear way [9].
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and curvature corrections (even without pairing correlations)
are largely in good agreement with the experimental data
for the almost spherical heavy enough nuclei, except for
enhancement due to the obviously pronounced shell effects
in a few doubly-closed-shell nuclei.

VIII. CONCLUSIONS

For low-lying nuclear collective excitations within a few
lowest orders of the POT in h̄ corresponding to the extended
Thomas-Fermi approximation, we derived smooth inertia for
the vibrations near a spherical shape of the mean edgelike field.
The consistent collective ETF inertia is significantly larger
than that of irrotational flow. The smooth low-lying collective
vibration energies in almost spherical (besides doubly-closed-
shell) nuclei might roughly satisfy the A−1 particle-number
dependence with the A−1/3 surface and A−2/3 curvature correc-
tions for heavy enough nuclei, in contrast to the mainly A−1/2

behavior predicted by the HD model and A−1/3 dependence
obtained in Ref. [24]. We emphasize the importance of the
quantum h̄ (surface) corrections (coming mainly from the
ETF dependence of the semiclassical parameter kF R on
particle number A) in comparison with experimental data
for the quadrupole and octupole vibration energies and their
EWSR contributions. As the ETF inertia MFF is significantly
larger than Mirr for the irrotational hydrodynamic flow, our
vibration energies, the electric reduced transition probabilities,
and contributions to the EWSR are basically in much better
agreement with their experimental data than those found
in the HD approach for large enough (nonmagic) particle
numbers. We proved semiclassically that the reduced transition
probabilities in Weisskopf units for the low-lying vibration
excitations are sufficiently large to refer them to the collective
states. The effect of surface corrections on the smooth vibration
energies and the sum rules within the ETF approach is much
emphasized in comparison with the TF approximation leading
in semiclassical expansion over 1/kF R. We found simple
analytical asymptotics for the vibration energies, the reduced
probabilities, and the EWSR with explicit A dependence
for larger particle numbers A in very good agreement with
the more complete ETF approach. We point out also the
importance of the shell effects in all such characteristics of
low-lying collective states in magic nuclei, especially for the
collective quadrupole-vibration modes which are certainly
outside of the smooth A systematics predicted by the ETF
model.

For further perspectives, the Gutzwiller trajectory expan-
sion (17) which accounts for symmetries of the Hamiltonian
[15] can be used in the semiclassical derivations of inertia
and friction by applying the stationary-phase method for
calculating the transport coefficients in order to study their
shell corrections in terms of the periodic orbits [17]. This
approach can be also applied to calculations of the moment of
inertia for analysis of allowance data on the collective states
in rotating nuclei; see Ref. [42] for the ETF step of their study.
We hope to semiclassically overcome some problems with the
inertia and friction calculations which take into account the
dissipative width of the multipole strength functions.
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APPENDIX A: COUPLING CONSTANTS

The consistency condition for the single-particle operator
F̂ of the external field reads [1,4]

δ〈F̂ 〉ω = κFF δqω,
(A1)

κFF = −χFF (0) − CFF (0), F̂ =
(

∂V

∂q

)
q=0

,

where κFF is the coupling constant, and χFF (0) is the
corresponding isolated susceptibility in the F mode. For a
quasistatic process, the first consistency relation in Eq. (A1),

δ〈F̂ 〉 =
∫

drF̂ (r)δρ(r, q) =
∫

drF̂ (r)

(
∂ρ(r, q)

∂q

)
q=0

δq,

(A2)

determines the coupling constant κFF by

κFF =
∫

dr F̂ (r)

(
∂ρ(r, q)

∂q

)
q=0

. (A3)

Within the considered macroscopic model, the particle density
variation (transition density) can be presented as a sum of the
“volume” and “surface” parts in the effective nuclear-surface
(ENS) approximation [25,26]

δρ(r, q) = δρvol(r, q) y(ξ ) − ρin
R

a

∂y(ξ )

∂ξ
YL0(r̂). (A4)

Here ρin [Eq. (35), low index in ρin is omitted in the main
text] is the particle density inside of the system far from the
ENS [the spatial points of maximal particle density gradient
∇ρ(r)], r̂ = r/r . The radial coordinate dependence of the
particle density, ρ(r, θ, q) = ρiny(ξ ), ξ = [r − R(θ, q)]/a, is
approximated via the profile steplike function y(ξ ) with a sharp
change from 0 to 1 near the nuclear surface, r = R(θ, q),
within a small transition region of the order of a diffuseness
parameter, a = (4βρ∞/bv)1/2. The coefficient β (in front of
the [∇ρ(r)]2 term of the effective nuclear Skyrme forces) is
given by [26]

β = 4πr5
0 b2

s

27bv J 2
, J =

∫ ξ0

−∞
dξ

(
dy(ξ )

dξ

)2

≈ 8

15
,

(A5)

y(ξ ) = ρ(ξ )

ρ
≈ tanh2(ξ − ξ0),
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where ξ0/R = arctanh(
√

y0) = 0.658 . . . for the value y =
y0 = 1/3 at the ENS, bs ≈ 4bva/5r0. The solution y(ξ ) of
(A5) for the particle density is related to the simplest parabolic
approximation −bv + K(1 − y)2/18 for the energy density
per particle inside the nucleus up to a relatively small kinetic
energy [∇ρ(r)]2 correction in the ENS layer of the width a.
As shown in Ref. [26], it is in good agreement with the
Hartree-Fock calculations of the particle densities based on
several Skyrme force parameters, except for small quantum
effects outside of the narrow ENS layer.

In the framework of the ENS approximation, at leading
order of expansion in the parameter a/R ∼ A−1/3, for the
operator F̂ (r) of Eq. (A1) (L � 2), one has

F̂ (r) =
(

δV

δρ

∂ρ(r, q)

∂q

)
q=0

≈ −RYL0(r̂)

(
δV

δρ

∂ρ

∂r

)
q=0

= RK

9ρ
YL0(r̂)

(
∂ρ

∂r

)
q=0

, (A6)

up to relatively small corrections of the order of 6bs/KA1/3

to the “volume” particle density variations in Eq. (A4), see
Eq. (35). To evaluate the variational derivative δV/δρ in
Eq. (A6), we used the thermodynamical relation (energy
conservation equation), dλ = −S dT + dP/ρ + dV, where
S is the nuclear entropy, P the pressure, and V a quasistatic
external field [4]. Then, the conservation of particle number
at constant temperature T (constant chemical potential λ

and T ≡ 0) and the definition of incompressibility, K =
9(∂P/∂ρ)q=0, were taken into account in the third equation of
Eq. (A6). Substituting Eqs. (A6) and (A4) into (A3) and taking
smooth r-dependent quantities, as compared to the sharp radial
derivatives of particle density at q = 0 off the integral over
r , we may use the ENS approximation for surface tension
bs/4πr2

0 [25,26], i.e.,

bs ≈ 8πβr2
0

∫ ∞

0
dr

(
∂ρ(r)

∂r

)2

. (A7)

With this expression for bs , up to small terms of the relatively
high order in A−1/3 [in particular, those of Eq. (32)], and
small “volume” particle density terms, ∼(6bs/KA1/3)2, one
approximately obtains

κFF ≈ −R

∫
drF̂ (r) YL0(r̂)

(
∂ρ

∂r

)
q=0

= − KbsR
4

72πρβr2
0

, (A8)

see Eq. (35) for the particle density ρ and Eq. (A5) for β. From
Eqs. (A8) and (A5) for the coupling constant κFF , one arrives
at Eq. (34).

Similarly, from the consistency condition (2), one may write

δ〈Q̂〉 =
∫

dr Q̂(r) δρ(r, q) = κQQ δq, (A9)

where δρ(r, q) is the particle density variation (A4) with the
same edgelike function y(ξ ) described above. Up to negligibly
small corrections in expansion over parameter a/R from

Eqs. (A9) and (A4), one finds

κQQ = ρRL+3

[
1 +

(
ξ0

R
− 1

)
(L + 2)

a

R

+ (L + 1)(L + 2)

(
ξ 2

0

2R2
− ξ0

R
+ log2

)
a2

R2

]
. (A10)

In these derivations, the boundary condition for pressures
of the ENS approach [25,26] was used to relate the slow
volume and surface vibration amplitudes in Eq. (A4). The
radial volume particle density dependence in (A4), δρvol(r),
is evaluated as in the macroscopic zero-sound Fermi-liquid
models [26,28–30] for nuclear low-lying excitations. It leads to
a negligibly small factor, 3(L − 1)(L + 2)bs/(2L + 3)KA1/3,
as compared to the dominating surface term of the sum
(A4). Other important corrections of Eq. (A10) were obtained
from expansion of the integral of the surface part of the
particle density variation in Eq. (A4) in the small parameter,
a/R ≈ 5bsr0/4bvR ≈ 1.4/A1/3, at second (curvature) order.
The analytical solution (A5) for y(ξ ) was explicitly used for
the integrations over the radial variable in Eq. (A9). Up to
relatively small volume corrections, ∼bs/KA1/3, and those of
Eq. (A10), one obtains Eq. (35).

APPENDIX B: CALCULATIONS OF THE INERTIA

For the integration over s in Eq. (25) within the nearly local
approximation (i), one may use the spherical coordinate system
with the center O ′ at the point r ≈ r1 for a given r and the polar
axis z′, see Fig. 1. The integration over r can be performed in
the usual spherical coordinate system with the symmetry center
O and axis z shown in this figure too. The approximation (i)
and these coordinate systems simplify the integration limits.
Introducing the dimensionless variables ℘ = r/R, σ = s/R,
and u = kR, we subtract and add identically the same local
part [Eq. (27)] with its nonlocal surface correction M̃

(0)
QQ(0),

M̃
(0)
QQ(0) = π

4

〈 ∫ 1

0
d℘ ℘2(L+1)

∫ 1+℘

0
dσ σ 2B̃(uF σ )

〉
av

. (B1)

Separating the correlationlike terms in the integrand of
Eq. (25), one has

M̃QQ(0) = M̃
(0)
QQ(0) + M̃

(1)
QQ(0) + M̃

(2)
QQ(0) + M̃

(3)
QQ(0), (B2)

where

M̃
(1)
QQ(0) =

〈 ∫ 1

0
d℘ ℘2(L+1)

×
∫ 1+℘

0
dσ σ 2 �Q(℘, σ ) B̃(uF σ )

〉
av

, (B3)

M̃
(2)
QQ(0) =

〈 ∫ 1

0
d℘ ℘2(L+1)

×
∫ 1+℘

0
dσ σ 2�B(uF σ )

〉
av

, (B4)
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M̃
(3)
QQ(0) =

〈 ∫ 1

0
d℘ ℘2(L+1)

×
∫ 1+℘

0
dσ σ 2 �Q(℘, σ ) �B(uF σ )

〉
av

. (B5)

Here, we introduced several helpful functions. Namely,

B(w) = I
∫ w

0
dx sin(x) j1(x)

= I
2

{
Si(w) − 1

w
[1 − cos(2w)]

}

→ I
[
π

4
− 1

2w
+ 1

4w
cos(2w)

− 1

8w2
sin(2w) + · · ·

]
, (B6)

with w = kF Rσ and I = dsm
3R2L+6/π2h̄4; jn(x) (n =

0, 1, . . .) is the spherical Bessel function, and Si(x) is the
integral sine. The correlationlike functions denoted by � in
Eqs. (B3)–(B5) are defined by �B = B − B̃ with the SCM
energy spectrum averaging over kF R, B̃(uF σ ), and

�Q

(
σ

℘

)
= 1

4πr2L

∫
d�

∫
d�s

[
Q̂

(
r + s

2

)
Q̂

(
r − s

2

)

−r2LY 2
L0(cos θ )

]

= c
(2)
L

(
σ

℘

)2

+ c
(4)
L

(
σ

℘

)4

+ c
(6)
L

(
σ

℘

)6

+ · · · ,
(B7)

where c
(2)
2 = −5/6, c

(4)
2 = 1/16, c

(n� 6)
2 = 0 at L = 2, and

c
(2)
3 = −7/4, c

(4)
3 = 7/16, c

(6)
3 = −1/64, c

(n� 8)
3 = 0 at L =

3, etc. The integrals (B7) were evaluated over all possible
spherical angles of the vectors r and s in the nearly lo-
cal approximation (i), where the only small s/R <∼ 1/kF R,
give the leading contributions; d� = sin θdθ dϕ, and d�s =
sin θs dθsdϕs . The integration over the modulus of vector s
was extended approximately to the maximal one for a given
r ≈ r1. Then, we integrated over all such modules of vector r
within the approximation mentioned above.

The phase-space averaging in Eqs. (B1)–(B5) are ex-
changed with the integrations over the spatial coordinates.
For calculations of the inertia component M̃QQ(0) [Eq. (25)],
the function B(kF Rσ ) in Eq. (B6) (shown in Fig. 8) can be
expanded in the small semiclassical parameter 1/kF R; see the
asymptotics in Eq. (B6) for large arguments. As seen from this
asymptotics, its oscillating terms are removed by Strutinsky
averaging in uF = kF R [9–12,24],

B�(uF σ ) =
∫ ∞

−∞
dxB[(uF + x�)σ ](1 + x�/uF )2(L+3)

× f (2ν)
av (x), f (2ν)

av (x) = 1√
π

e−x2
P2ν(x). (B8)

The correction polynomial of the order of 2ν, P2ν(x) =∑2ν
τ=0,2,... vτ Hτ (x), is defined through the recurrence re-

lations vτ = −vτ−2/2τ and v0 = 1; Hτ (x) is the standard
Hermite polynomial. The second multiplier in the integrand of
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FIG. 8. Function B(kF Rσ ) of Eq. (B6) (short-dashed and thin
solid lines) in units of asymptotic constant B̃(∞) at the two
characteristic values of σ = s/R = 0.1 and 0.5, respectively, vs kF R,
and the analytical asymptotics for its average B̃(kF Rσ ) [Eq. (B9)].

Eq. (B8) takes into account that we average really in R [or
particle number A, according to Eq. (20)] in variable kF R for
a fixed kF by the phenomenological value of the infinite-matter
particle density; see the main text after Eq. (22). Figure 9 shows
a study of the so-called plateau condition for the averaged
function B�(uF σ ) from Eq. (B8) at several small enough
σ = s/R, i.e., the condition that the value B̃ of B�(uF σ ) is
almost independent of the Gaussian width � and the correction
polynomial degree 2ν in the SCM procedure within their rather
wide intervals, � ≈ 1–3 and 2ν ≈ 6, 8.

Figure 10 shows the same averaged quantity B�(uF σ ) from
Eq. (B8) at several values of averaging parameters � and ν for
which one finds good plateau condition from Fig. 9 versus
the variable σ at characteristic values of the two large enough
kF R, as examples. The plateau condition (see Figs. 9 and 10)
is better with smaller σ and larger semiclassical parameter
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FIG. 9. Study of the plateau condition for the SCM averaged
function B�(kF Rσ ) [Eq. (B8)] in the same units of B̃(∞) as in
Fig. 8 for some characteristic values of σ (numbers on left) vs
averaging parameter � for several degrees of correction polynomials
2ν (on right); kF R = 10.
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FIG. 10. Averaged function B�(kF Rσ ) [Eq. (B8)] in the same
units as in Figs. 8 and 9 vs σ at several characteristic averaging
parameters � = 0, 1, 3 and ν = 6, 8 found from the plateau condition
in Fig. 9 at two values of kF R = 10 and 20; thick solid lines are its
analytical asymptotics from Eq. (B9). The dotted line for � = 1 at all
ν and σ coincides with the nonaveraged (� = 0, thin solid) B(kF Rσ )
[Eq. (B6)] of Fig. 8 within the precision of lines.

kF R. As shown in Fig. 10, the function B(uF σ ) has a sharp
minimum at zero value of σ with the width of the order of a few
relative wave lengths, 1/kF R, with respect to the asymptotics
for a large argument of B(uF σ ). Therefore, the integrals (B4)
and (B5) containing �B = B − B̃ converge in small interval
σ <∼ (1–3)/kF R.

The asymptotics of B̃(uF σ ) in Eq. (B9) at its large argument
can be found analytically from Eq. (B8), because the averaging
of a polynomial expression in uF is the same polynomial one if
we choose 2ν larger than or equal to the degree of the original
polynomial [9,10,12]. In this way, from Eqs. (B8) and (B6),
we end at a smooth quantity

B̃(uF σ ) = I
(

π

4
− 1

2uF σ

)
, (B9)

shown in Fig. 8 by the thick frequent dashed and solid curves
at σ = 0.1 and 0.5, respectively (see also thick solid curves
in Fig. 10). On other hand, expanding the function B(uF σ )
from Eq. (B6) [shown in Figs. 8 and 10 (� = 0)] in the small
semiclassical parameter 1/uF = 1/kF R, one performs then
the SCM energy spectrum averaging [9–12,24]. This averaging
in kF R removes oscillating terms proportional to sines and
cosines, see Eq. (B6) and Figs. 8–10. Thus, finally, for large
enough kF R from Eqs. (B6) and (B8), one finds a smooth
asymptotics B̃(uF σ ) [Eq. (B9)]. As seen from Figs. 8 and 10,
this analytical asymptotics (B9) of the averaged quantity B̃

is in good agreement with the numerical average B�(uF σ ) of
Eq. (B8) near the plateau values of the averaging parameters
� and ν for large enough kF R.

According to Eqs. (B4), (B5), and (B9), the SCM average
of the correlationlike terms M̃

(2)
QQ(0) [Eq. (B4)] and M̃

(3)
QQ(0)

[Eq. (B5)] are zeros, because these quantities are linear
in �B ; i.e., by definition, �̃B = 0. The part of M̃

(1)
QQ(0)

[Eq. (B3)] related to the constant π/4 in B̃(uF σ ) [Eq. (B9)]

can be neglected as expressed through the linear correla-
tion function 〈Q̂(r + s/2)Q̂(r − s/2) − Q̂2(r)〉av averaged in
phase-space variables [8,28,35,36], as explained in Sec. III.

Integrating now analytically the remaining integrals over σ

and ℘ in both Eq. (B1) for M̃
(0)
QQ(0) and the nonzero component

of Eq. (B3) for M̃
(1)
QQ(0), corresponding to the second term in

asymptotics (B9) of B̃, with the help of Eqs. (B9) and (B7),
one arrives at

M̃
(0)
QQ(0) ≈ M̃

(vol)
QQ (0) + M̃

(S1)
QQ (0), M̃

(1)
QQ(0) ≈ M̃

(S2)
QQ (0),

(B10)

where M̃
(vol)
QQ (0) is the local-volume inertia part [Eq. (27)]. The

latter is related to the first constant term of the macroscopic
(kF R → ∞) asymptotics (B9) in Eq. (B1) [the upper index
“vol” is omitted in the left-hand side of Eq. (27)]. For the two
surface corrections in Eq. (B10), one obtains

M̃
(S1)
QQ (0) = I ζ

(1)
L

12 uF

, M̃
(S2)
QQ (0) = I ζ

(2)
L

12 uF

, (B11)

where ζ
(1)
L and ζ

(2)
L are number constants given immediately

after Eq. (39).
Collecting all the volume (local) [Eq. (27)], surface

[∼1/kF R, see Eq. (B11) of Eq. (B10)], and curvature
[∼1/(kF R)2] corrections from Eq. (A8) for κFF and
Eq. (A10) for κQQ, as well as originated by means of
Eq. (33) as consistency corrections [∝ γ 2

QQ(0)] in Eq. (10),
one finally arrives at the complete ETF inertia MFF [Eq. (39)].

APPENDIX C: FRICTION

Using the approximation (24) for G0 in the friction γ̃QQ(0)
of Eq. (26) and the same coordinate systems as in the
derivations of the inertia M̃QQ(0), in the nearly local case
(i), one obtains

γ̃QQ(0) = γ̃
(0)
QQ(0) + γ̃

(1)
QQ(0) + γ̃

(2)
QQ(0), (C1)

where γ̃
(0)
QQ(0) is the volume local part [Eq. (28)],

γ̃
(1)
QQ(0) = Ih̄

mR2

〈 ∫ 1

0
d℘ ℘2(L+1)

×
∫ 1+℘

0
dσ

[
sin2(uF σ ) − 1

2

] 〉
av

, (C2)

γ̃
(2)
QQ(0) = Ih̄

mR2

〈 ∫ 1

0
d℘ ℘2(L+1)

∫ 1+℘

0
dσ �Q(σ/℘)

×
[

sin2(uF σ ) − 1

2

] 〉
av

. (C3)

We neglected the linear correlation function 〈Q̂(r +
s/2)Q̂(r − s/2) − Q̂2(r)〉av, averaged in phase-space vari-
ables, as in the derivations of the inertia [8,35,36].

The phase-space averaging in Eqs. (C2) and (C3) can be
exchanged with the integrations over the spatial coordinates.
As far as 〈sin2(uF σ ) − 1

2 〉av = 0, the corrections (C2) for

γ̃
(1)
QQ(0) and (C3) for γ̃

(2)
QQ(0) are zeros. Therefore, we are left

with the single local term within the approximation (i).
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APPENDIX D: ISOLATED SUSCEPTIBILITY

As in the case of inertia and friction derivations, for the
averaged isolated susceptibility

χ̃QQ(0) = 2ds

π

〈 ∫
dr

∫
ds Q̂

(
r + s

2

)
Q̂

(
r − s

2

)

×
∫ ∞

0
dε n(ε)Im G0

(
r + s

2
, r − s

2
, ε

)

× Re G0

(
r + s

2
, r − s

2
, ε

) 〉
av

, (D1)

one finds

χ̃QQ(0) = χ̃
(0)
QQ(0) + χ̃

(1)
QQ(0) + χ̃

(2)
QQ(0), (D2)

where χ̃
(0)
QQ(0) is the volume local part [Eq. (29)],

χ̃
(1)
QQ(0) = − I yF h̄2

2 m2 R4

×
〈∫ 1

0
d℘ ℘2(L+1) j0(uF (1 + ℘))

〉
av

, (D3)

χ̃
(2)
QQ(0) = I y2

F h̄2

m2 R4

〈∫ 1

0
d℘ ℘2(L+1)

×
∫ 1+℘

0
dσ �Q(σ/℘)j1(uF σ )

〉
av

. (D4)

We removed again the zero linear correlation function
〈Q̂(r + s/2)Q̂(r − s/2) − Q̂2(r)〉av, averaged in phase-space
variables. Note that the splitting into the two terms, the local
χ̃

(0)
QQ(0) [Eq. (29)] and its correction χ̃

(1)
QQ(0), was found after

the integration of j1(w) over its argument w = 2uF σ , in
Eq. (D1), as integrand values at lower and upper limits of
the integral over w.

The phase-space averaging in Eqs. (D3) and (D4) can
be again exchanged with the integration over the spatial
coordinate ℘. Therefore, the leading term of the average
〈j1(uF σ )〉av at large kF R is vanishing due to its SCM part
and the corrections (D3) for χ̃

(1)
QQ(0) and (D4) for χ̃

(2)
QQ(0) are

approximately zero. Thus, within approach (i), we are left with
the only local term χ

(0)
QQ(0) of Eq. (29).
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