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An exactly separable version of the Bohr Hamiltonian is developed using a potential of the form u(β) +
u(γ )/β2, with the Davidson potential u(β) = β2 + β4

0 /β2 (where β0 is the position of the minimum) and a stiff
harmonic oscillator for u(γ ) centered at γ = 0◦. In the resulting solution, called the exactly separable Davidson
(ES-D) solution, the ground-state, γ, and 0+

2 bands are all treated on an equal footing. The bandheads, energy
spacings within bands, and a number of interband and intraband B(E2) transition rates are well reproduced for
almost all well-deformed rare-earth and actinide nuclei using two parameters (β0, γ stiffness). Insights are also
obtained regarding the recently found correlation between γ stiffness and the γ -bandhead energy, as well as the
long-standing problem of producing a level scheme with interacting boson approximation SU(3) degeneracies
from the Bohr Hamiltonian.
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I. INTRODUCTION

The Bohr Hamiltonian [1] has been at the foundation
of the collective model description of nuclei for over
50 years. Numerous solutions have been proposed since its
derivation by choosing different forms of the potential V (β, γ )
and solving the corresponding eigenvalue equation either
analytically or approximately. Recently, this approach has
undergone renewed interest, due in part to the development
of the concept of critical point symmetries (CPS). These
models, E(5) [2] and X(5) [3], are special solutions of the
Bohr Hamiltonian designed to describe nuclei at the critical
point of the shape/phase transition between vibrational and
γ -soft or axially symmetric deformed structures, respectively.

In E(5) [2], a γ -independent potential of the form u(β) is
used, leading to exact separation of β from γ and the Euler
angles [4], while in X(5) [3] a potential of the form u(β) + u(γ )
is assumed, leading to an approximate separation of variables
in the special case of γ ≈ 0◦, achieved by u(γ ) being a stiff
harmonic oscillator centered at γ = 0◦. In both E(5) and X(5),
an infinite square well potential is used as u(β), in accordance
with growing evidence from microscopic calculations [5–7]
that the potential at the transition point between different
shapes should be flat. Model predictions for energy spectra and
B(E2) transition rates are parameter free (up to overall scale
factors) in E(5) [2], while in X(5) the predictions related to
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the ground-state band and the excited 0+ bands are parameter
free, but γ bands contain the stiffness parameter of the γ

oscillator [3,8].
It often happens that a successful, but simple, model or

approach spawns a new generation of related approaches. This
is especially the case if, despite its success, the data reveal
certain, albeit small, discrepancies with the simple approach.
A classic case of this is the simple formula for rotational
spectra [1], which led to a myriad of alternative formulas (see,
for example, Refs. [9–12]), usually more and more parameters
and, not surprisingly, better performance. Of course, each such
case ultimately entails a judgment as to whether the additional
complications are worth the improved descriptions they yield.

The case of critical point symmetries is no exception.
Despite their simplicity (square wells in β along with flat
or harmonic oscillator potentials in the γ degree of freedom)
and their success in describing transitional nuclei, it was im-
mediately recognized that there were important discrepancies
with the data as well. One, for example, occurs in X(5) where
the predicted energy spacings in the excited 0+

2 band are far
too large [13,14].

Since the advent of these CPS, a number of alternative
geometrical models have been proposed and their predictions
worked out. Some of these share with X(5) an extreme
economy of parameters, others have one additional parameter.
These models can all be solved exactly, either analytically
or numerically. Some are, in fact, essentially identical to the
CPS but are solved exactly; while others involve alternative,
presumably more realistic potentials. One example, which we
shall refer to occasionally, is the so-called confined β soft
(CBS) model [15,16] which takes as its starting point from
X(5) but allows the inner wall to move out to the radius of
the outer wall. As the inner wall moves, the spectra change
smoothly from X(5) to a pure rotor. Other potentials [17–19],
which we shall not consider, utilize triaxial shapes with
nonzero values for the minimum of the potential in γ .
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The purpose of this paper is to explore a few of the most
promising geometrical models, comparing their predictions
with each other and with the data. We deal only with the axially
symmetric case at present, that is, nuclei whose potentials in
γ are of harmonic oscillator type with a minimum at γ = 0◦.

These models can be grouped into three classes. One, called
Xex(5), is simply an exact numerical solution [20] of the
Hamiltonian of X(5), without the approximate separation of β

and γ variables used in Ref. [3]. This type of exact solution has
now become tractable, using the novel techniques introduced
in Refs. [21–23]. It is worth mentioning that in Xex(5), the
γ -stiffness parameter is involved in all bands, while in X(5)
the ground and β bands are independent of the γ -stiffness
parameter.

The other two classes each take advantage of a kind
of potential that is exactly separable from the start. Such
potentials have the form [4]

uES(β, γ ) = u(β) + u(γ )

β2
, (1)

where ES stands for exactly separable. The first of these uses
the same u(β) and u(γ ) as X(5) itself, that is, the square well in
β and a γ -dependent potential given by a harmonic oscillator
in γ . This is the so-called ES-X(5) solution [24].

The second group of the exactly separable class of potentials
uses the Davidson potential [25] in β, namely,

u(β) = β2 + β4
0

β2
, (2)

where β0 is the free parameter and gives the position of the
minimum of the potential in β. The use of the Davidson
potential with an approximate separation of variables has
been discussed in Refs. [26,27]. In the present work, we
examine the Davidson potential with an exactly separable
potential, which we call the exactly separable Davidson (ES-D)
solution. By including a harmonic oscillator potential in γ ,
analytic solutions can be derived in this form to describe
well-deformed, axially symmetric nuclei. These Davidson
potentials, along with the X(5) potential, are illustrated in Fig.
1(a) for both the approximate separation of variables (left) and
the exactly separable cases (right). In Fig. 1(b), the Davidson
potential in just the β degree of freedom is illustrated for a few
values of the β0 parameter.

Before proceeding to a detailed discussion of the present
solution of the Bohr Hamiltonian, it is useful to put the
present work in a context of other solutions to the Bohr
Hamiltonian. This Hamiltonian has been solved analytically
in the γ -unstable case [u(β, γ ) = u(β)] using the Davidson
potential of Eq. (2) as the β potential [28], showing that
with increasing values of the β0 parameter, a transition occurs
from the spherical vibrator to a rigid nonspherical γ -unstable
structure. The link provided by O(5) between the γ -unstable
geometrical model and the O(6) limit of the interacting boson
approximation (IBA) model [29] has also been previously
studied [30]. Later, it was shown [31] that the above-mentioned
γ -unstable Bohr Hamiltonian with the Davidson potential is
characterized by the symmetry SU(1,1)×SO(5), with SO(5)
due to rotational invariance in the five-dimensional collective
space, and with SU(1,1) due to the Davidson potential. If
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FIG. 1. (Color online) (a) Potentials in both the β and γ

degrees of freedom for X(5) (top) and the Davidson potential with
β0 = 0 (middle) and β0 = 2 (bottom). Potentials are shown for the
approximate separation of variables (left) and the exact separation
of the variables (right). (b) Davidson potential in the β degree of
freedom for a few values of the parameter β0.

the potential is allowed to also depend on γ , no algebraic
solution has been found, but it has been shown that numerical
calculations converge much more rapidly in an SO(5) basis
with β0 �= 0 than in the usual spherical basis with β0 = 0
[21–23], the relevant SO(5) spherical harmonics having been
calculated in Ref. [22]. The correspondence between this
approach, called the algebraic collective model [23], and the
different limiting symmetries of the IBA model [29] has been
studied in Refs. [32,33]. This powerful method has been
recently extended [34] to the SU(1,1)×SO(N) case.

In view of the above, the present work is an analytic, special
solution of the Bohr Hamiltonian with a Davidson β potential
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appropriate for axially symmetric prolate deformed nuclei
(since the γ potential is taken to possess a steep minimum
at γ = 0), while the earlier solutions of Refs. [28,31] refer
to a Davidson β potential in a γ -unstable framework. As a
result, the present solution will turn out to be appropriate for
the description of well-deformed axially symmetric nuclei,
which comprise the bulk of well-deformed nuclei, while the
solution of Refs. [28,31] is appropriate for those γ -unstable
nuclei between spherical and moderately deformed cases.

There are several advantages in the present ES-D solution
which we will consider in detail. As mentioned above, no
approximation is involved in the separation of variables. As
a result, all bands (ground, γ , and β) are treated on an equal
footing depending on two parameters: the Davidson parameter
β0 (which is the location of the minimum of the potential) and
the stiffness c of the γ oscillator. Finally, the β2 term in the
potential solves the spacing problem in the β band that plagues
the infinite square well solutions. Of course, with a minimum
in γ at 0◦ and a relatively steep potential in γ , the model is
applicable only to axially deformed rotational nuclei.

Despite this constraint, it will be shown that the present
solution provides good results for the spectra and B(E2)
transition rates of almost all well-deformed rare-earth and
actinide nuclei. Furthermore, it provides insights regarding
the recently found correlation [35] between γ stiffness and the
γ -bandhead energy, as well as the long-standing problem of
producing an IBA SU(3) degenerate level scheme [29] within
the framework of the Bohr Hamiltonian.

II. THE ES-D MODEL

Our starting point is the original Bohr Hamiltonian [1]

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4β2

×
∑

k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
]

+ V (β, γ ), (3)

where β and γ are the usual collective coordinates, while
Qk(k = 1, 2, 3) are the components of angular momentum in
the intrinsic frame, and B is the mass parameter.

We assume that the reduced potential, u = 2BV/h̄2, can be
separated into two terms of the form

u(β, γ ) = u(β) + u(γ )

β2
, (4)

as in Refs. [4,17–19], where the Schrödinger equation can then
be separated exactly into two equations.

For the potential in γ, we use a harmonic oscillator

u(γ ) = (3c)2γ 2, (5)

and u(β) is taken as the Davidson potential [25,28,31]

u(β) = β2 + β4
0

β2
, (6)

where β0 denotes the position of the minimum of the potential.
As described in Appendix A, the resulting energy eigenvalues

are given by

En,L = 2n+1 +
√

L(L + 1) − K2

3
+ 9

4
+ β4

0 + 3C(nγ + 1),

n = 0, 1, 2, . . . (7)

For K = 0, one has L = 0, 2, 4, . . . ; while for K �= 0, one
obtains L = K,K + 1,K + 2, etc.

Bands occurring in this solution, characterized by (n, nγ ),
include the ground-state band (0, 0), the β1 band (1, 0), the
γ1 band (0, 1), and the first K = 4 band (0, 2). The relative
position of all levels depends on the parameters β0 and C. (C =
2c is used to keep the equations similar to those in Refs. [3]
and [24].) All bands are treated on an equal footing [36], in
analogy with the SU(3) limit of the interacting boson model
[29].

Details on the calculation of B(E2) transition strengths are
described in Appendix B. We note that the u(γ ) potential
used in the Bohr equation has to be periodic because of
coordinate symmetry constraints [1]. In Ref. [20], both the
proper periodic potential (1 − cos 3γ ) and the approximate
form γ 2, appropriate for small γ , have been used, yielding
similar results. A more detailed study of this issue has been
recently carried out [37], leading to the use of spheroidal
or Mathieu functions. Periodic γ potentials involving cos 3γ

have been used in an early solution involving a harmonic
oscillator for the β potential [38], as well as more recently
in the framework of the algebraic collective model [21,32,33],
where their treatment is tractable because cos 3γ is, within a
constant, an SO(5) spherical harmonic with v = 3 and L = 0
(where v the seniority and L the angular momentum) [21].
The potential csc2 3γ , which is the partner of the infinite well
potential in supersymmetric quantum mechanics [39], has also
been used recently [40] in the Bohr Hamiltonian for triaxial
nuclei. It is certainly of interest to examine the consequences
of the use of periodic γ potentials in the present approach in
subsequent work.

In the present paper, we are going to follow Ref. [8],
normalizing �K = 0 transitions to 2+

1 → 0+
1 , and �K = 2

transitions to 2+
γ → 0+

1 . In this way, normalization difficulties
vanish.

The spectrum and B(E2) transition strengths of ES-X(5)
are described for completeness in Appendix C.

III. NUMERICAL RESULTS AND COMPARISON
TO EXPERIMENT

A. Energy ratios

In Fig. 2(a), the R4/2 = E(4+
1 )/E(2+

1 ) ratio as a function
of the parameter C is shown for the ES-D solution (for
a few values of the Davidson parameter β0) and ES-X(5),
as well as for the exact numerical solution [Xex(5)] of
Ref. [20]. The parameter C is connected to the parameter
a of the exact numerical solution [20] through C = 2

3

√
a.

In Figs. 2(b) and 2(c), the ratios R0/2 = E(0+
β )/E(2+

1 ) and
R2/2 = E(2+

γ )/E(2+
1 ), corresponding to the normalized β and

γ bandhead energies, respectively, are shown for the same
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FIG. 2. (Color online) (a) R4/2 = E(4+
1 )/E(2+

1 ) ratio as a function
of the parameter C for the ES-D solution (for different values of the
Davidson parameter β0), the ES-X(5) solution, and for the Xex(5)
solution [20]. The Xex(5) parameter a is connected to parameter C

of the present solution through the relation C = (2/3)
√

a. (b) Same
as (a), but for R0/2 = E(0+

β )/E(2+
1 ), corresponding to the normalized

β bandhead energy. (c) Same as (a), but for R2/2 = E(2+
γ )/E(2+

1 ),
corresponding to the normalized γ bandhead energy. See Sec. III A
for further discussion.

solutions. The ES-D solution with β0 = 0 corresponds to the
ES-X(5)-β2 solution of Ref. [24].

From Fig. 2(a), it is clear that the ES-D and ES-X(5)
solutions are appropriate mostly for well-deformed nuclei,
while the exact numerical solution [20] is also applicable to
less deformed nuclei, including the a = 200 case (C = 9.428)
which gives results similar to the original X(5) model [3]. This
difference is due to the β2 term in the potential u(β) + u(γ )/β2

used in the exactly separable cases. Within the ES-D solution,
the rotational limit of R4/2 = 10/3 is closely approached
already for β0 = 4.

As seen in Fig. 2(b), the normalized β bandhead energy,
R0/2, has a large dependence on the parameter β0 and shows
less variation with the stiffness parameter C, particularly for
large β0 values. This dependence is reversed for the normalized
γ bandhead energy, R2/2, which varies only slightly for
different β0 values, but has a large dependence on the C

parameter. As a result, the R2/2 and R0/2 lines cross in ES-D
at values of C increasing with β0. These lines also cross in the
numerical solution [20], but they do not cross in ES-X(5). This
point will be further discussed in the next subsection.

Concerning the results of the exact numerical solution
Xex(5) of Ref. [20] used for comparisons in this and in
subsequent sections, our assignment of levels to a particular
band follows the same as given in Ref. [20]. In particular, 2+

γ

corresponds to 2+
2 for a = 0–450 and to 2+

3 for a = 500–1000,
while 2+

β corresponds to 2+
3 for a = 0–450 and to 2+

2 for
a = 500–1000. Similarly, 4+

γ corresponds to 4+
2 for a = 0–650

and to 4+
3 for a = 700–1000, while 4+

β corresponds to 4+
3 for

a = 0–650 and to 4+
2 for a = 700–1000. These assignments

are related to avoided crossings, as explained in Ref. [20].

B. Relative spacings within different bands and relative
positions of bandheads

In Fig. 3(a), the energy ratio

R2β = E(2+
β ) − E(0+

β )

E(2+
1 )

(8)

is shown for the solutions under discussion. The ratio is exactly
unity in the case of ES-D, irrespective of the value of the
Davidson parameter β0. This is due to the oscillator term in
the Davidson potential which gives equal rotational spacings
in the ground-state band and the β band. Thus, the same holds
for the energy ratio

R4β = E(4+
β ) − E(2+

β )

E(4+
1 ) − E(2+

1 )
, (9)

shown in Fig. 3(b). In Fig. 3(c), the energy ratio

Rγ = E(4+
γ ) − E(2+

γ )

E(4+
1 ) − E(2+

1 )
(10)

is shown; while in Fig. 3(d), the energy ratio

Rβγ = R0/2 − R2/2 = E(0+
β ) − E(2+

γ )

E(2+
1 )

(11)

is given. Abrupt changes in the predictions of Xex(5) are due
to the avoided crossings of (2+

2 , 2+
3 ) and (4+

2 , 4+
3 ).

Experimental data for the energy ratios shown in Fig. 3 are
exhibited in Fig. 4. Since the current solution is only applicable
to well-deformed nuclei, the data included in Fig. 4 are limited
to A > 100 and R4/2 > 3.00. Comparing Figs. 3(a) and 4(a),
we see that in terms of the energy ratio R2β , which compares
the level spacing within the β band to the level spacing within
the ground-state band, most nuclei exhibit a ratio slightly less
than 1.0. This feature is most closely reproduced by the ES-D
solution which predicts a ratio of exactly 1.0, independent of
the value of the Davidson parameter β0. The predictions of the
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FIG. 3. (Color online) Energy ratios (a) R2β [Eq. (8)], (b) R4β

[Eq. (9)], (c) Rγ [Eq. (10)], and (d) Rβγ [Eq. (11)] as functions of the
parameter C, for the same solutions shown in Fig. 2. See Sec. III B
for further discussion.

ES-X(5) solution for R2β are higher by 50% or more, and the
predictions of Xex(5) are even higher. [This is the well-known
problem of overprediction of the spacing of the β band in
the X(5) model by a factor close to 2 [13,14], which can be
resolved by replacing the infinite well potential by a potential

with linear sloped walls [42].] The same is seen for the energy
ratio R4β in Figs. 3(b) and 4(b).

From Fig. 4(c), it is clear that the majority of the data
for the energy ratio Rγ , which compares the level spacing
within the γ band to the level spacing within the ground-state
band, is centered around values of 1.0. The predictions for Rγ

from each of the solutions overlap and are consistent with the
range observed in the data. The ES-D solution gives the largest
range of predictions, since this is a more flexible model (two
parameters) compared with the single-parameter Xex(5) and
ES-X(5) solutions. Overall, all three solutions yield reasonable
predictions for the γ -band spacings in deformed nuclei.

The experimental energy ratio Rβγ , which is related to the
relative positioning of the β and γ bandhead energies, exhibits
a wide range of values spanning positive to negative, as shown
in Fig. 4(d). As a result, we expect that the solutions exhibiting
both positive and negative values for this ratio, namely, the ES-
D solution for not very high values of the Davidson parameter
β0 and Xex(5), should better reproduce this feature.

Summarizing the above observations, all three solutions
under consideration, ES-D, ES-X(5), and Xex(5), are found to
give reasonable predictions for the γ -band spacing, while the
ES-D solution yields predictions which most closely reproduce
the β-band spacing of most deformed nuclei. The ES-D
solution (for not very high values of the parameter β0) and
the Xex(5) solution appear to reproduce the relative positions
of the β and γ bandhead energies in a number of nuclei. Thus,
the ES-D solution provides the flexibility to describe a wide
range of observables (spacings within the β and γ bands,
relative position of the β and γ bandheads) with not very large
values of the Davidson parameter β0.

C. B(E2) ratios

Having examined the main features of the energy spectra,
we turn now to the study of the characteristics of the B(E2)
transition rates. As mentioned in Sec. II, to avoid normalization
problems, �K = 0 transitions will be normalized to the 2+

1 →
0+

1 transition, while �K = 2 transitions will be normalized to
the 2+

γ → 0+
1 transition, as in Ref. [8]. We include in this

comparison the predictions of the original X(5) solution as
well as the U(5) and SU(3) limits of the IBA. X(5) predictions
for ground → ground, β → β, and β → ground transitions are
taken from Ref. [3], while X(5) predictions for γ → γ, γ →
ground, and γ → β transitions are taken from Ref. [8]. SU(3)
predictions for the ground→ ground and β → β transitions
are obtained with the standard quadrupole operator of the
IBA [29], while predictions for β → ground and γ → ground
transitions are obtained with the extended quadrupole operator
containing the extra term (d† × s̃ + s† × d̃)(2) [29].

Intraband transitions within the ground-state and β bands
are shown in Fig. 5. Within the ground-state band, Fig. 5(a),
the ES-D predictions lie in between X(5) and SU(3) for
most values of C. Again, for β0 values of 4 and larger, the
SU(3) limit is almost exactly achieved. For the transitions
within the β band, shown in Figs. 5(b) and 5(c), the ES-D
predictions lie between U(5) and SU(3), approaching the
latter with increasing values of β0. In the case of the ratio
B(E2; 2+

β → 0+
β )/B(E2; 2+

1 → 0+
1 ), the X(5) predictions lie
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FIG. 4. Experimental data for the same energy ratios shown in Fig. 3 . For each ratio, all nuclei with A > 100 and R4/2 > 3.0 for which
sufficient experimental data (taken from Ref. [41]) exist have been taken into account. The predictions for ES-D, ES-X(5), and Xex(5) are
indicated in (a), (b), and (c). The Xex(5) predictions lie off scale to the right in (a) and (b). See Sec. III B for further discussion.

below the SU(3) values, and not between the U(5) and
SU(3) values, as might have been expected, since they are
related to the transition between U(5) and SU(3). As with the
energy spectra, the β-band predictions again exhibit the largest
differences between ES-D and X(5).

Transitions from the γ band are shown in Fig. 6. The ES-D
predictions are consistently close to X(5) or intermediate be-
tween X(5) and the SU(3) limit. This is particularly true for the
branching ratios from the γ band given in Figs. 6(b) and 6(c).

The β-band to ground-band transitions are shown in
Fig. 7. For the transition from the 0+

2 state to the ground
state 2+

1 , the predictions of ES-D are intermediate between
X(5) and SU(3) for most values of C. The decay from the 2+

β

state to the ground-state band, Figs. 7(b) and 7(c), shows some
variation between the models, but all are similar in magnitude.
These small differences become more evident when branching
ratios are considered, as in Fig. 7(d). For the ratio B(E2; 2+

β →
4+

1 )/B(E2; 2+
β → 0+

1 ), the X(5) predictions are nearly an order
of magnitude larger than the SU(3) ratio (also the Alaga ratio)
of 2.6. The ES-D predictions are again intermediate between
X(5) and SU(3).

The γ -band to β-band transitions are shown in Fig. 8. The
predictions of ES-D for growing β0 approach X(5).

In summary, in (almost) all cases, the ES-D predictions lie
in general between the X(5) and SU(3) predictions, with SU(3)
already approached at β0 = 4.

D. Fits to specific nuclei

A search has been made to find nuclei for which the
ground-state, β, and γ bands (up to the point of backbending
or upbending in each band) can be well reproduced by the
ES-D solution. Since the ES-D solution is appropriate only
for deformed nuclei, the search was constrained to nuclei with
R4/2 > 3.00. Considering all such nuclei in the rare-earth and
actinide regions, we find that almost all nuclei with a known
0+

2 and 2+
γ state can be well described in terms of energies by

ES-D, as shown in Table I. The quality measure

σ =
√∑n

i=1(Ei(exp) − Ei(th))2

(n − 1)E(2+
1 )

, (12)

used for evaluating the rms fits performed, remains less than
unity in most cases. Of the ∼ 60 nuclei which meet the above
criteria, there are only two cases for which the ES-D solution
does not provide a good description of all the bandhead
energies, namely, 152Sm and 154Gd. These exceptions are not
surprising, since these nuclei are well described by the X(5)
model, which uses a “flat-bottomed” potential in the β degree
of freedom. The ES-D solution, on the other hand, incorporates
a potential which is much “stiffer” in the β degree of freedom.
Thus, discrepancies between the data and the ES-D solution
are expected in transitional nuclei and, indeed, may be used to
point to nuclei with flat potentials in the β degree of freedom.
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TABLE I. Comparison of theoretical predictions of the ES-D solution to experimental data [41] of rare-earth and actinide nuclei with
R4/2 > 3.0 and known 0+

2 and 2+
γ states. Shown are the R4/2 = E(4+

1 )/E(2+
1 ) ratios, as well as the β and γ bandheads normalized to the 2+

1 state
and labeled as R0/2 [=E(0+

β )/E(2+
1 )] and R2/2 [=E(2+

γ )/E(2+
1 )], respectively. The angular momenta of the highest levels of the ground-state,

β, and γ bands included in the rms fit are labeled as Lg, Lβ , and Lγ , respectively, while n indicates the total number of levels involved in the
fit and σ is the quality measure of Eq. (12). See Sec. III D for further discussion.

Nucleus R4/2 exp R4/2 th R0/2 exp R0/2 th R2/2 exp R2/2 th β0 C Lg Lβ Lγ n σ

154Sm 3.25 3.26 13.4 14.1 17.6 18.8 1.26 14.6 16 6 7 17 1.025
156Gd 3.24 3.23 11.8 11.9 13.0 13.9 0.0 10.7 14 10 8 19 1.044
158Gd 3.29 3.27 15.0 14.8 14.9 15.3 2.05 11.3 12 6 6 14 0.624
160Gd 3.30 3.29 17.6 18.3 13.1 13.4 2.69 9.4 16 4 8 17 0.962
162Gd 3.29 3.30 19.8 20.2 12.0 12.0 2.93 8.2 14 0 4 10 0.335
158Dy 3.21 3.20 10.0 10.4 9.6 10.5 0.0 8.0 14 8 8 18 0.928
160Dy 3.27 3.27 14.7 15.8 11.1 12.1 2.40 8.6 28 4 23 38 0.633
162Dy 3.29 3.29 17.3 17.7 11.0 11.4 2.68 7.9 18 6 11 22 1.109
164Dy 3.30 3.30 22.6 22.5 10.4 10.3 3.18 6.9 20 0 10 19 0.089
166Dy 3.31 3.27 15.0 14.9 11.2 11.4 2.30 8.1 6 2 5 8 0.166
160Er 3.10 3.15 7.1 8.7 6.8 7.0 0.0 5.2 14 2 5 12 0.815
162Er 3.23 3.23 10.7 11.6 8.8 10.1 1.68 7.4 12 4 11 18 0.942
164Er 3.28 3.26 13.6 13.9 9.4 10.3 2.19 7.3 14 6 11 20 0.937
166Er 3.29 3.28 18.1 17.3 9.8 9.9 2.68 6.8 16 8 13 24 0.397
168Er 3.31 3.27 15.3 15.0 10.3 10.8 2.34 7.6 12 6 8 16 0.892
170Er 3.31 3.23 11.3 11.7 11.9 12.8 1.09 9.8 10 4 7 13 0.978
164Yb 3.13 3.20 7.9 10.1 7.0 7.5 1.58 5.4 18 0 5 13 0.807
166Yb 3.23 3.20 10.2 10.5 9.1 9.8 1.18 7.4 12 6 7 15 0.774
168Yb 3.27 3.25 13.2 13.5 11.2 11.6 2.03 8.4 14 4 7 15 0.532
170Yb 3.29 3.25 12.7 13.2 13.6 15.0 1.56 11.4 12 6 11 19 1.168
172Yb 3.31 3.26 13.2 13.8 18.6 19.0 0.0 14.8 12 8 5 14 1.078
174Yb 3.31 3.30 19.4 20.0 21.4 21.7 2.66 15.7 16 4 5 14 0.956
176Yb 3.31 3.30 21.7 22.4 15.4 15.4 3.08 10.6 18 0 2 10 0.386
178Yb 3.31 3.27 15.7 15.5 14.5 14.6 2.24 10.6 6 4 2 6 0.128
168Hf 3.11 3.16 7.6 9.0 7.1 7.5 0.0 5.6 14 2 4 11 0.814
170Hf 3.19 3.20 8.7 10.2 9.5 10.0 0.0 7.6 14 2 4 11 0.835
172Hf 3.25 3.22 9.2 11.1 11.3 11.9 0.0 9.1 12 2 6 12 1.142
174Hf 3.27 3.23 9.1 11.6 13.5 13.2 0.0 10.2 10 2 4 9 1.471
176Hf 3.28 3.25 13.0 13.1 15.2 16.6 0.99 12.9 12 6 8 16 1.040
178Hf 3.29 3.25 12.9 13.3 12.6 13.1 1.86 9.7 14 6 6 15 1.099
180Hf 3.31 3.23 11.8 12.0 12.9 13.2 1.26 10.1 10 4 5 11 0.830
176W 3.22 3.20 7.8 10.1 9.6 9.9 0.0 7.5 12 2 5 11 1.281
178W 3.24 3.19 9.4 9.8 10.5 9.1 0.0 6.9 12 8 2 11 1.260
180W 3.26 3.27 14.6 14.7 10.8 11.4 2.27 8.1 12 0 7 12 0.313
182W 3.29 3.24 11.3 12.4 12.2 12.8 1.60 9.6 12 4 6 13 1.136
184W 3.27 3.18 9.0 9.7 8.1 8.6 0.98 6.4 10 4 6 12 0.928
186W 3.23 3.14 7.2 8.4 6.0 6.5 0.0 4.8 10 4 6 12 1.142
180Os 3.09 3.15 5.6 8.6 6.6 6.9 0.0 5.1 14 6 7 16 1.348
184Os 3.20 3.21 8.7 10.6 7.9 8.5 1.58 6.2 12 0 6 11 0.918
186Os 3.17 3.14 7.7 8.3 5.6 6.3 0.0 4.6 10 10 9 18 0.982
188Os 3.08 3.13 7.0 8.1 4.1 4.5 1.42 3.1 12 2 7 13 0.571
228Ra 3.21 3.23 11.3 11.5 13.3 13.0 0.0 10.0 6 4 3 7 0.447
228Th 3.24 3.26 14.4 14.5 16.8 17.1 1.79 12.9 18 2 5 14 0.240
230Th 3.27 3.24 11.9 12.3 14.7 14.7 0.0 11.4 12 4 4 11 0.864
232Th 3.28 3.27 14.8 15.0 15.9 17.2 1.95 12.9 14 20 12 28 1.030
232U 3.29 3.26 14.5 14.6 18.2 18.5 1.67 14.1 14 10 4 15 0.910
234U 3.30 3.29 18.6 19.0 21.3 21.8 2.50 16.0 18 8 7 19 0.634
236U 3.30 3.30 20.3 20.8 21.2 21.4 2.77 15.4 18 4 5 15 0.686
238U 3.30 3.30 20.6 21.7 23.6 24.8 2.79 18.0 18 4 15 25 0.845
238Pu 3.31 3.30 21.4 22.0 23.3 23.5 2.86 16.9 16 2 4 12 0.839
240Pu 3.31 3.30 20.1 20.5 26.6 26.8 2.56 19.8 16 4 4 13 0.878
242Pu 3.31 3.30 21.5 21.9 24.7 24.7 2.82 17.9 16 2 2 10 0.740
248Cm 3.31 3.31 25.0 25.4 24.2 24.2 3.21 17.1 20 4 2 13 0.520
250Cf 3.32 3.31 27.0 26.9 24.2 24.1 3.36 16.9 8 2 4 8 0.067
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FIG. 5. (Color online) Intraband B(E2) ratios for the ground-state
and β bands vs the parameter C as predicted by the ES-D model
(labeled by the value of the β0 parameter), compared with U(5) [29],
X(5) [3,8], and SU(3) [29] predictions, as described in Sec. III C.

Several B(E2) ratios obtained with ES-D using the same
parameters as given in Table I are shown in Table II, which
includes all nuclei of Table I for which nontrivial information
on relevant B(E2) is experimentally known [41]. More
detailed level schemes for 156Gd and 232Th are shown in
Fig. 9, as examples of the quality of the ES-D solution to
reproduce detailed spectra.

As seen in Table II, the intraband B(E2) ratios within the
ground-state bands are reproduced quite well for a majority of
the nuclei, despite the fact that B(E2) values have not been
taken into account in the fitting procedure. Also, the theoretical
γ → ground B(E2) ratios are in very good agreement with
the experimental values. However, the theoretical γ → ground
B(E2) strengths, when normalized to the 2+

1 → 0+
1 transition,

are much lower than the experimental ones. This could be
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FIG. 6. (Color online) B(E2) ratios from the γ band vs the
parameter C as predicted by the ES-D model (labeled by the value
of the β0 parameter), compared with the X(5) [3,8] and SU(3) [29]
predictions, as described in Sec. III C.

due to the normalization difficulties mentioned at the end of
Sec. II, which disappear if ratios of γ → ground transitions are
used. Moreover, the theoretical interband β → ground B(E2)
values are consistently an order of magnitude higher than the
experimental values.

E. Bandheads

The ability of the present model to reproduce the general
experimental trends of R0/2 = E(0+

β )/E(2+
1 ) and of R2/2 =

E(2+
γ )/E(2+

1 ) as a function of R4/2 = E(4+
1 )/E(2+

1 ) is shown
in Figs. 10(a) and 10(b). Predictions of the ES-X(5), CBS
[15,16], and Xex(5) solutions are also shown for comparison.
From Eq. (7), it is clear that the energy levels of the ground-
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TABLE II. Comparison of several B(E2) ratios predicted (lower line) by the ES-D solution, for the parameter values shown in Table I, to
experimental data [41] (upper line) of several nuclei for which the relevant data are known. See Sec. III D for further discussion.

Nucleus 41→21
21→01

61→41
21→01

81→61
21→01

101→81
21→01

2β→01

21→01
×103 2β→21

21→01
×103 2β→41

21→01
×103 2γ →21

2γ →01

2γ →41
2γ →01

154Sm 1.40(5) 1.67(7) 1.83(11) 1.81(11) 5.4(13) 25(6) 0.21(5)
1.47 1.69 1.88 2.06 22.7 44.5 142 1.47 0.08

156Gd 1.41(5) 1.58(6) 1.71(10) 1.68(9) 3.4(3) 18(2) 22(2) 1.55(7) 0.16(1)
1.48 1.73 1.95 2.18 24.6 52 179 1.48 0.08

158Gd 1.46(5) 1.67(16) 1.72(16) 1.6(2) 0.4(1) 7.0(8) 1.77(26) 0.079(14)
1.46 1.68 1.86 2.03 22.1 42.5 133 1.46 0.077

158Dy 1.45(10) 1.86(12) 1.86(38) 1.75(28) 12(3) 19(4) 66(16) 3.22(94) 0.36(15)
1.49 1.77 2.02 2.29 26 58 215 1.49 0.08

160Dy 1.46(7) 1.23(7) 1.70(16) 1.69(9) 3.4(4) 8.5(10) 1.89(18) 0.13(1)
1.46 1.67 1.84 2.00 21.3 40.2 122 1.45 0.08

162Dy 1.45(7) 1.51(10) 1.74(10) 1.76(13) 1.67(20) 0.14(1)
1.45 1.65 1.80 1.94 19.8 36.2 104 1.45 0.07

164Dy 1.30(7) 1.56(7) 1.48(9) 1.69(9) 2.00(30) 0.24(3)
1.45 1.62 1.75 1.86 16.9 29.2 77 1.44 0.07

162Er 8(7) 170(90) 2.37(25) 0.29(21)
1.48 1.74 1.97 2.20 24.9 52.8 190 1.48 0.08

164Er 1.18(13) 1.57(9) 1.64(11) 2.19(35) 0.33(5)
1.47 1.69 1.88 2.07 22.9 45.0 145 1.46 0.08

166Er 1.45(12) 1.62(22) 1.71(25) 1.73(23) 1.76(18) 0.12(1)
1.46 1.65 1.81 1.95 20.1 36.9 107 1.45 0.07

168Er 1.54(7) 2.13(16) 1.69(11) 1.46(11) 1.77(10) 0.129(9)
1.46 1.68 1.85 2.03 21.9 42.1 131 1.46 0.076

170Er 1.78(15) 1.54(11) 1.4(1) 0.2(2) 6.8(12) 0.079(19)
1.48 1.73 1.96 2.20 24.8 52.3 184 1.48 0.080

166Yb 1.43(9) 1.53(10) 1.70(18) 1.61(80)
1.49 1.77 2.02 2.29 25.8 57.4 215 1.49 0.081

168Yb 8.6(9) 2.09(50) 0.39(10)
1.47 1.70 1.89 2.09 23.2 46.2 151 1.47 0.08

170Yb 1.79(16) 1.77(14) 5.4(10) 1.78(50) 0.18(5)
1.47 1.70 1.90 2.11 23.5 47.1 156 1.47 0.08

172Yb 1.42(10) 1.51(14) 1.89(19) 1.77(11) 1.1(1) 3.7(6) 12(1) 0.097(11)
1.47 1.69 1.88 2.08 22.9 45.2 146 1.48 0.079

174Yb 1.39(7) 1.84(26) 1.93(12) 1.67(12)
1.45 1.64 1.77 1.89 18.3 32.4 89 1.45 0.075

176Yb 1.49(15) 1.63(14) 1.65(28) 1.76(18) 1.58(11)
1.45 1.62 1.75 1.86 17.0 29.3 77 1.44 0.073

174Hf 14(4) 9(3) 1.54(76)
1.48 1.74 1.96 2.20 24.8 52.5 185 1.49 0.0801

176Hf 5.4(11) 31(6)
1.47 1.71 1.91 2.11 23.5 47.4 157 1.48 0.0791

178Hf 1.38(9) 1.49(6) 1.62(7) 0.4(2) 2.4(9) 1.13(17) 0.066(10)
1.47 1.70 1.90 2.10 23.3 46.7 153 1.47 0.078

180Hf 1.48(20) 1.41(15) 1.61(26) 1.55(10) 1.34(28)
1.48 1.73 1.95 2.17 24.5 51.1 177 1.48 0.0795

182W 1.43(8) 1.46(16) 1.53(14) 1.48(14) 6.6(6) 4.6(6) 13(1) 1.98(7) 0.010(1)
1.48 1.72 1.93 2.15 24.1 49.6 169 1.48 0.0787

184W 1.35(12) 1.54(9) 2.00(18) 2.45(51) 1.8(3) 24(3) 1.91(13) 0.109(9)
1.50 1.79 2.07 2.37 26.5 61.4 240 1.50 0.0814

186W 1.30(9) 1.69(12) 1.60(12) 1.36(36) 2.18(15)
1.52 1.85 2.18 2.53 27.3 69.0 294 1.51 0.0829

186Os 1.45(7) 1.99(7) 1.89(11) 2.06(44) 2.33(12) 0.12(4)
1.52 1.86 2.19 2.55 27.3 70.0 301 1.51 0.0830

188Os 1.68(11) 1.75(11) 2.04(15) 2.38(32) 3.20(6) 6.8(13)
1.53 1.86 2.20 2.56 27.4 70.7 307 1.50 0.0810

230Th 1.36(8) 5.7(26) 20(11) 1.8(8) 0.12(8)
1.48 1.72 1.94 2.16 24.3 50.2 172 1.48 0.0797
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TABLE II. (Continued.)

Nucleus 41→21
21→01

61→41
21→01

81→61
21→01

101→81
21→01

2β→01

21→01
×103 2β→21

21→01
×103 2β→41

21→01
×103 2γ →21

2γ →01

2γ →41
2γ →01

232Th 1.44(15) 1.65(14) 1.73(12) 1.82(15) 14(6) 2.6(13) 17(8) 2.48(42) 0.045(20)
1.46 1.68 1.85 2.03 21.9 42.0 130 1.46 0.0770

234U 1.69(40) 0.097(24)
1.45 1.64 1.78 1.91 19.0 34.0 95 1.45 0.0751

236U 1.42(11) 1.55(11) 1.59(17) 1.46(17)
1.45 1.63 1.76 1.88 17.8 31.3 85 1.45 0.0743

238U 1.45(23) 1.71(22) 1.4(6) 3.6(14) 12(5) 1.74(17) 0.108(12)
1.45 1.63 1.75 1.87 17.3 30.1 95 80 1.45 0.0743

238Pu 14(4) 11(4)
1.45 1.63 1.75 1.86 17.2 29.8 79 1.45 0.0741

250Cf 1.61(27) 0.092(16)
1.44 1.61 1.72 1.81 14.8 24.7 61 1.44 0.0730

state and β bands depend only on the parameter combination
β4

0 + 3C, thus in Fig. 10(a) only one curve appears for ES-D,
with β4

0 + 3C increasing from left to right. From the same
equation, it is also clear that the levels of the γ band depend
on the parameter combination β4

0 + 6C. As a result, different
curves are obtained for ES-D in Fig. 10(b) by fixing β0 to
different values and varying the C parameter.

The predictions for R0/2 as a function of R4/2 are more or
less the same for the ES-D, ES-X(5), and CBS solutions. The
Xex(5) predictions for R0/2 are slightly higher and above the
overall trend of the data.

As discussed previously, in the CBS solution and other
X(5)-related solutions, the bandhead energy of the γ band
depends on a free parameter. In the present exactly separable
(ES) solutions, it is treated on an equal footing with the β

bandhead energy. The plot of R2/2 vs R4/2 reveals that a large
set of data corresponds to the ES-D region with β0 between 2
and 4. The same set is also described quite well by the ES-X(5)
curve. Figure 10(b) also reveals that the predictions of the ES-D
solution for the γ -bandhead energy are only in agreement with
the data for R4/2 values larger than 3.0. This is again related to
the present solution being applicable only to axially symmetric
well-deformed nuclei, since when the parameter C becomes
too small, the approximation of an axially symmetric potential
is no longer valid. On the other hand, Xex(5) provides a better
description of R2/2 for R4/2 values between 2.6 and 3.0.

F. γ stiffness

In Ref. [35], a correlation has been found between the γ

stiffness of the potential and the ratio R2/2 = E(2+
γ )/E(2+

1 ),
with the γ stiffness increasing stronger than linearly as
a function of R2/2. In the present model, the γ -stiffness
coefficient (3c)2 is shown as a function of R2/2 in Fig. 11(a).
It is evident that a stronger than linear increase is seen, which
varies little with β0, at least for reasonable values of the latter,
as indicated from Table I. The specific points corresponding
to the rare-earth and actinide nuclei of Table I are shown in
Fig. 11(b), exhibiting the same trend.

A short discussion is now appropriate on the qualitative
correspondence between the two parameters (β0, C) of the

present solution and those of the usual two-parameter IBA-1
Hamiltonian [44,45]

H (ζ, χ ) = C

[
(1 − ζ )n̂d − ζ

4NB

Q̂χ · Q̂χ

]
, (13)

where n̂d = d† · d̃, Q̂χ = (s†d̃ + d†s) + χ (d†d̃)(2), NB is the
number of valence bosons, and C is a scaling factor. This
Hamiltonian contains two parameters, ζ and χ , with ζ ranging
from 0 to 1, and χ ranging from 0 to −√

7/2 = −1.32. The
IBA dynamical symmetries are given by ζ = 0, any χ for
U(5); ζ = 1, χ = −√

7/2 for SU(3); and ζ = 1, χ = 0 for
O(6). As remarked in Ref. [35], stiffness is proportional to
the IBA parameter χ . Thus, in the present case, (3c)2 roughly
corresponds to |χ |. On the other hand, we have already seen
that increasing β0 leads to the SU(3) limit, thus β0 is in
qualitative correspondence to ζ . It should be emphasized,
however, that while the IBA Hamiltonian of Eq. (13) can cover
the whole region from U(5) (R4/2 = 2) to SU(3) (R4/2 = 3.33),
the ES-D solution provides reasonable results only in the
narrow region of R4/2 between 3.0 and 3.33.

G. Occurrence of SU(3) degeneracy

Deriving from the Bohr Hamiltonian a spectrum similar to
that of the SU(3) limit of the IBA model [29] has been a long-
standing problem. The main features of the spectrum should be
that (a) the energy spacings among the 2+, 4+, 6+, . . . levels
within the ground, β, and γ bands are identical and (b) the
2+, 4+, 6+, . . . levels of the β and γ bands are degenerate.

In the present model, the spacings within the ground and β

bands are identical, because of the oscillator term in the u(β)
potential, as already seen in Sec. III B. It is therefore sufficient
to examine the conditions under which the 2+, 4+, 6+, . . .

levels of the β and γ bands are degenerate.
From Eq. (7), it is trivial to see that the energy spacings in

the β and γ bands become equal for any L if C = 4/9 (since
in this case the 3C term in the β band is counterbalanced
by the −K2/3 + 6C term in the γ band, which has K = 2).
However, this observation is of little physical significance,
since the values of C appropriate for actual nuclei, appearing
in Table I, are considerably higher.

064312-10



EXACTLY SEPARABLE VERSION OF THE BOHR . . . PHYSICAL REVIEW C 76, 064312 (2007)

5 10 15 20
0

4

8

12

16

(d)

 

B
(E

2;
 2

+ β 
 4

+ 1)
 / 

B
(E

2;
 2

+ β →
→

 0
+ 1)

C

0.0

0.4

0.8

(a)  β
o
 = 0

 β
o
 = 2

 β
o
 = 4

 X(5)
 SU(3)

B
(E

2;
 0

+ β →
 2

+ 1)
 / 

B
(E

2,
 2

+ 1 →
 0

+ 1)

0.00

0.01

0.02

0.03

(b)

 

B
(E

2;
 2

+ β →
 0

+ 1)
 / 

B
(E

2;
 2

+ 1 →
 0

+ 1)

0.00

0.02

0.04

0.06

0.08

0.10 (c)

B
(E

2;
 2

+ β 
→

 2
+ 1)

 / 
B

(E
2;

 2
+ 1 →

 0
+ 1)

FIG. 7. (Color online) B(E2) ratios from the β band vs the
parameter C as predicted by the ES-D model (labeled by the value
of the β0 parameter), compared with the X(5) [3,8] and SU(3) [29]
predictions, as described in Sec. III C.

Figures 3(b) and 3(c) indicate that in general the spacings
within the γ band are lower than the spacings within the β

band by about 20% for most β0 and C values of interest. Thus
within the present solution, one can only hope to reproduce a
situation with approximate degeneracy for the first few even
levels of the β and γ bands.
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FIG. 8. (Color online) B(E2) ratios between the γ band and β

band vs the parameter C as predicted by the ES-D model (labeled
by the value of the β0 parameter), compared with the X(5) [3,8]
predictions, as described in Sec. III C.

From Eq. (7), the requirement E(2+
β ) = E(2+

γ ) leads to
the condition 9C2 − 80C − 16β4

0 − 356/9 = 0, while the
requirement E(4+

β ) = E(4+
γ ) leads to the condition 9C2 −

80C − 16β4
0 − 1028/9 = 0. Similar conditions occur from the

requirement E(L+
β ) = E(L+

γ ) for higher L. These conditions
can be approximately satisfied simultaneously only for very
large values of β0, which are outside the region of physical
interest according to the β0 values appearing in Table I, since
too high β0 would result in too high a 0+

β bandhead energy.
In this way, one is led to consider what happens for a fixed

value of R0/2 = E(0+
β )/E(2+

1 ). In this case, Eq. (7) easily leads
to

3C =
(

R0/2

2
− 1

R0/2

)2

− β4
0 − 9

4
. (14)
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FIG. 9. (Color online) Experimental [41]
level schemes (left) compared to ES-D predic-
tions (right) for 156Gd (top) and 232Th (bottom)
using the parameter sets given in Table I. �K =
0 transitions are normalized to 2+

1 → 0+
1 , while

�K = 2 transitions are normalized to 2+
γ → 0+

1 .

Thus for a given R0/2, one can minimize with respect to β0 the
rms deviation between the even levels of the β and γ bands,

σβ,γ (Lmax) =
√√√√ 1

Lmax/2 − 1

Lmax∑
L=2

(
E(L+

β ) − E(L+
γ )

E(2+
1 )

)2

, (15)

and the value of C is obtained for each β0 from Eq. (14).
Numerical results shown in Table III indicate that a reasonable
degree of degeneracy is obtained for Lmax = 10 and R0/2 � 15,
which is of physical interest, since the R0/2 values in Table I
extend up to 27. Table IV gives the results of the fit to 232Th,
corresponding to the values reported in Table I. For the case
of 232Th, which is very close to the R0/2 = 15 case reported
in Table III, one can see that σ th

β,γ (Lmax = 10) = 1.142, while
σ

exp
β,γ (Lmax = 10) = 0.593. Therefore, although the overall fit

is quite good, the degree of degeneracy obtained from theory is

less than the one indicated by experiment. One could conclude
that the present solution does contain parameter pairs which
correspond to an approximate degeneracy of the low-lying
even levels of the β and γ bands, while at the same time the
spacings within the β band are identical to the spacings within
the ground band; however the problem of reproducing a SU(3)
spectrum from the Bohr Hamiltonian remains conceptually
open.

H. Alhassid-Whelan arc of regularity

It has been recently suggested that an experimental con-
firmation [46] of the Alhassid-Whelan arc of regularity [47],
connecting the U(5) and SU(3) symmetries in the symme-
try triangle [48] of the IBA model [29], is manifested in
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TABLE III. Values of β0 (determined
through minimization of σβ,γ [Eq. (15)]) and C

[determined through Eq. (14)] corresponding to
minimum rms deviation σβ,γ [Eq. (15)] between
the β1 and γ1 bands of the ES-D solution for
fixed value of R0/2, when the even levels of
both bands up to Lmax are taken into account.
See Sec. III G for further discussion.

R0/2 Lmax β0 C σβ,γ

5 10 0.00 1.0 5.026
10 10 0.00 7.3 3.072
15 10 1.94 12.9 1.141
20 10 2.64 16.1 0.993
25 10 3.12 19.4 0.907
30 10 3.53 22.2 0.855
5 20 0.00 1.0 4.890

10 20 0.00 7.3 4.528
15 20 1.73 14.7 2.611
20 20 2.57 17.7 2.531
25 20 3.09 20.6 2.371
30 20 3.50 23.9 2.197

nuclei in which the β and γ bandheads, 0+
β and 2+

γ , are
nearly degenerate. From Eq. (7), the requirement E(0+

β ) =

0
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FIG. 10. (Color online) (a) Experimental data [41] for the
normalized β bandhead energies R0/2 = E(0+

β )/E(2+
1 ) vs the energy

ratio R4/2 = E(4+
1 )/E(2+

1 ), compared with predictions of the the
ES-D and ES-X(5) solutions, as well as the predictions of the confined
β soft (CBS) solution [15,16]. (b) Same as (a), but for the normalized
γ bandheads R2/2 = E(2+

γ )/E(2+
1 ). See Sec. III E for further discus-

sion.

TABLE IV. Theoretical predictions of the ES-D solution for β0 =
1.95 and C = 12.9 compared with experimental data for 232Th [41];
gsb = ground-state band. See Sec. III G for further discussion.

L gsb exp gsb th β1 exp β1 th L γ1 exp γ1 th

0 0.000 0.000 14.794 15.021 2 15.907 17.210
2 1.000 1.000 15.680 16.021 3 16.804 17.978
4 3.284 3.268 17.683 18.288 4 18.030 18.989
6 6.749 6.665 20.724 21.686 5 19.454 20.234
8 11.280 11.021 24.754 26.042 6 21.266 21.701

10 16.751 16.161 29.762 31.182 7 23.213 23.379
12 23.033 21.931 35.549 36.952 8 25.496 25.254
14 30.035 28.200 42.138 43.221 9 27.750 27.313
16 49.438 49.887 10 30.624 29.542
18 57.356 56.868 11 33.219 31.929
20 65.811 64.102 12 36.484 34.461

E(2+
γ ) leads to the condition 9C2 − 68C − 16β4

0 − 224/9 =
0. Given that C has to be nonnegative, this condition

leads to C = (34 +
√

1380 + 144β4
0 )/9. Among the nuclei

listed in Table I, the ones satisfying the condition |E(2+
γ ) −

E(0+
β )|/E(2+

γ ) � 0.05 [46] are 158Gd, 158Dy, 170Er, 178Hf, 236U,
and 248Cm.
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FIG. 11. (Color online) (a) γ -stiffness coefficient (3c)2 is shown
as a function of the normalized γ bandhead energy R2/2 =
E(2+

γ )/E(2+
1 ) predicted by the ES-D solution for different values

of the Davidson parameter β0. (b) Same as (a), but for the rare-earth
and actinide nuclei appearing in Table I. See Sec. III F for further
discussion.
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From the β0 and C values listed in Table I, one can see that
the above condition is closely fulfilled. However, since the
ES-D solution is applicable mostly to nuclei with R4/2 � 3.0,
the above-mentioned condition describes only a small part of
the arc of regularity close to the SU(3) limit.

IV. CONCLUSIONS

The present paper developed an exactly separable version
of the Bohr Hamiltonian, called ES-D, which uses a potential
of the form u(β) + u(γ )/β2, with a Davidson potential
β2 + β4

0/β2 in the place of u(β), and a harmonic oscillator
with a minimum at γ = 0◦ as u(γ ). All bands (e.g., ground,
β, and γ ) in this solution are treated equally, depending
on two parameters, the Davidson parameter β0 and the
stiffness c of the γ potential. The solution is found to be
applicable only to well-deformed nuclei (with R4/2 � 3.0)
due to the β2 denominator in the u(γ ) term. Nevertheless,
it reproduces very well the bandheads and energy spacings
within bands of almost all rare-earth and actinide nuclei with
R4/2 � 3.0, for which available data exist, as well as most
of the inter-ground-band and intra-γ -band B(E2) transition
rates. The most glaring discrepancy concerns B(E2) values
for the β-band to ground-band transitions which are typically
overpredicted by an order of magnitude. The two exceptions
for which ES-D does not provide a good description of energy
spectra are 152Sm and 154Gd, which have previously been
shown to be well reproduced with the infinite square well
potential of the critical point symmetry X(5). Furthermore, the
ES-D solution provides insights regarding the recently found
correlation between the γ stiffness and the γ -bandhead energy,
as well as the long-standing problem of producing a level
scheme with IBA SU(3) degeneracies within the framework
of the Bohr Hamiltonian.

However, several open questions remain, in particular,
concerning the discrepancies in the B(E2) predictions. The
underprediction of the γ → ground and γ → β B(E2)s can be
attributed to two reasons. First, the β2 denominator in the u(γ )
term “pushes” the nucleus to more rigid axial behavior. This
can be investigated through a detailed comparison of B(E2)
predictions by ES-X(5) and the exact numerical solution of
Ref. [20], since the same u(β) and u(γ ) potentials are used in
both cases. Work in this direction is in progress. The second
reason is the use of a harmonic oscillator potential for u(γ )
as an approximation valid for small γ instead of a potential
periodic in γ . This can be studied through the use of a periodic
γ potential [37] in ES-D, since no approximations will be
present in this case.

Furthermore, an exact numerical solution parallel to
Ref. [20] utilizing a u(β) + u(γ )/β2 potential with a Davidson
potential as u(β) should demonstrate the degree of importance
of the β-γ coupling when compared to the present results.
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APPENDIX A: SPECTRUM OF ES-D

One seeks [3] solutions of the relevant Schrödinger equa-
tion having the form 	(β, γ, θi) = φL

K (β, γ )DL
M,K (θi), where

θi(i = 1, 2, 3) are the Euler angles, D(θi) denote their Wigner
functions, and L are the eigenvalues of angular momentum,
while M and K are the eigenvalues of the projections of angular
momentum on the laboratory-fixed z axis and the body-fixed
z′ axis, respectively.

As pointed out in Ref. [3], when the potential has a
minimum around γ = 0, one can write the angular momentum
term of Eq. (3) in the form∑

k=1,2,3

Q2
k

sin2
(
γ − 2π

3 k
) ≈ 4

3

(
Q2

1 + Q2
2 + Q2

3

)

+Q2
3

(
1

sin2 γ
− 4

3

)
. (A1)

Using this result in the Schrödinger equation corresponding
to the Hamiltonian of Eq. (3), introducing [3] reduced
energies ε = 2BE/h̄2 and reduced potentials u = 2BV/h̄2,
and assuming that the reduced potential can be separated
into two terms of the form u(β, γ ) = u(β) + u(γ )/β2, as in
Refs. [4,17–19], the Schrödinger equation can be separated
into two equations:[

− 1

β4

∂

∂β
β4 ∂

∂β
+ L(L + 1)

3β2
+ u(β) + λ

β2

]
ξL(β)

= εξL(β), (A2)

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ K2

4

(
1

sin2 γ
− 4

3

)
+ u(γ )

]
ηK (γ )

= ληK (γ ). (A3)

Equation (A3) for γ ≈ 0 can be treated as in Ref. [3],
considering a potential of the form u(γ ) = (3c)2γ 2 and
expanding in powers of γ . Then Eq. (A3) takes the form[

− 1

γ

∂

∂γ
γ

∂

∂γ
+ K2

4γ 2
+ (3c)2γ 2

]
ηK (γ ) = εγ ηK (γ ), (A4)

with εγ = λ + K2

3 . The solution is given in terms of Laguerre
polynomials [3]

εγ = (3C)(nγ + 1), C = 2c, nγ = 0, 1, 2, . . . ,

(A5)

nγ = 0, K = 0; nγ = 1, K = ±2;

nγ = 2, K = 0, ±4; . . . , (A6)

ηnγ ,|K|(γ ) = Cnγ ,|K|γ |K/2|e−(3c)γ 2/2L
|K/2|
ñ (3cγ 2),

ñ = (nγ − |K/2|)/2. (A7)

Equation (A2) is then solved exactly for the case in which u(β)
is a Davidson potential [25,28,31]

u(β) = β2 + β4
0

β2
, (A8)

064312-14



EXACTLY SEPARABLE VERSION OF THE BOHR . . . PHYSICAL REVIEW C 76, 064312 (2007)

where β0 denotes the position of the minimum of the potential.
In this case, the eigenfunctions are [49]

FL
n (β) =

[
2n!

�
(
n + a + 5

2

)
]1/2

βaL
a+ 3

2
n (β2)e−β2/2, (A9)

where �(n) stands for the � function, La
n(z) denotes the

Laguerre polynomials, and

a = −3

2
+

√
L(L + 1) − K2

3
+ 9

4
+ β4

0 + 3C(nγ + 1),

(A10)

while the energy eigenvalues are

En,L = 2n + a + 5

2
= 2n + 1

+
√

L(L + 1) − K2

3
+ 9

4
+ β4

0 + 3C(nγ + 1),

n = 0, 1, 2, . . . (A11)

For K = 0, one has L = 0, 2, 4, . . . ; while for K �= 0, one
obtains L = K,K + 1,K + 2, etc.

In the above, n is the usual oscillator quantum number. A
formal correspondence between the energy levels of X(5) and
the present solution can be established through the relation

n = s − 1. (A12)

It should be remembered, however, that the origin of the two
quantum numbers is different, s labeling the order of a zero
of a Bessel function and n labeling the number of zeros of a
Laguerre polynomial. In the present notation, the ground-state
band corresponds to n = 0 (s = 1). For the energy states, the
notation Es,L = En+1,L of Ref. [3] will be kept.

The full wave function reads

	(β, γ, θi) = FL
n (β)ηnγ ,|K|(γ )DL

MK (θi) (A13)

and should be properly symmetrized as [50]

	(β, γ, θi) = FL
n (β)ηnγ ,|K|(γ )

√
2L + 1

16π2(1 + δK,0)

× (
DL

M,K + (−1)LDL
M,−K

)
. (A14)

Notice at this point that Eq. (A2) for λ = 0 takes the form
appearing in the framework of an X(5) solution with the infinite
well potential replaced by a Davidson potential, called X(5)-D,
in the usual terminology. From the expression for λ given
below Eq. (A4), it is clear that λ = 0 is achieved for K = 0 and
εγ = 0, i.e., C = 0. It is therefore proved that the numerical
results of the ES-D solution for the K = 0 bands (ground-state
and β bands) will coincide with the corresponding results
of X(5)-D. This result should be considered as a numerical
coincidence, because C = 0 is not acceptable in the framework
of ES-D, since the approximation of γ being close to zero
collapses in this case. The lowest R4/2 value within the present
model is obtained for β0 = 0 and C = 0, which corresponds
to the X(5)-β2 solution [51], giving R4/2 = 2.646. Thus,
while β0 suggests a spherical shape, the contribution from
the centrifugal term in the potential results in a nonzero value
for the average deformation.

APPENDIX B: B(E2) VALUES OF ES-D

B(E2) transition rates

B(E2; LK → L′K ′) = 5

16π

|〈L′K ′||T (E2)||LK〉|2
2L + 1

(B1)

can be calculated using the quadrupole operator [3]

T (E2) = tβ

[
D(2)

µ,0 cos γ + 1√
2

(
D(2)

µ,2 + D(2)
µ,−2

)
sin γ

]
, (B2)

where t is a scale factor, and the Wigner-Eckart theorem in the
form

〈L′M ′K ′|T (E2)
µ |LMK〉

= 1√
2L′ + 1

〈L2L′|MµM ′〉〈L′K ′||T (E2)||LK〉. (B3)

In ground → ground, β → ground, β → β, and γ → γ

transitions, only the first term of Eq. (B2) contributes, since the
relevant angular momentum coupling coefficients involving
the second term vanish; while in γ → ground and γ → β

transitions, only the second term of Eq. (B2) contributes,
since the relevant angular momentum coupling coefficients
involving the first term vanish. The final result reads

B(E2; nLnγ K → n′L′n′
γ K ′)

= 5

16π
t2(〈L2L′|K,K ′ − K,K ′〉)2B2

n,L,n′,L′C
2
nγ ,K,n′

γ ,K ′ ,

(B4)

where

Bn,L,n′,L′ =
∫

βFL
n (β)FL′

n′ (β)β4 dβ (B5)

is the integral over β, while Cnγ ,K,n′
γ ,K ′ is the integral over

γ , in agreement with Ref. [8]. In ground → ground, β →
ground, β → β, and γ → γ transitions (�K = 0 transitions),
the integral over γ becomes Cnγ ,K,n′

γ ,K ′ = δnγ ,n′
γ
δK,K ′ , since

(considering cos γ ≈ 1) it corresponds to the relevant or-
thonormality condition of the γ wave functions; while in
γ → ground and γ → β transitions (�K = 2 transitions),
this integral has the form

Cnγ ,K,n′
γ ,K ′ =

∫
sin γ ηnγ ,|K|ηn′

γ ,|K ′||sin3γ |dγ, (B6)

since the volume element is [1]

dτ = β4|sin3γ | sin θdβ dγ dθ dφdψ. (B7)

For the bands considered here, one needs the special cases of
Eq. (A7)

η0,0 = C0,0e
−(3c)γ 2/2, η1,2 = C1,2γ e−(3c)γ 2/2, (B8)

where the Laguerre polynomials are unity since ñ = 0 in
both cases, as seen from Eq. (A7), the relevant normalization
conditions being

(C0,0)2
∫

e−(3c)γ 2 |sin3γ |dγ = 1,

(B9)

(C1,2)2
∫

γ 2 e−(3c)γ 2 |sin3γ |dγ = 1.
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Then Eq. (B6) takes the form

C1,2,0,0 = C0,0 C1,2

∫
γ 2 e−(3c)γ 2 |sin3γ |dγ, (B10)

in which the integral is the same as the one appearing in the
second normalization condition in Eq. (B9), resulting in

C1,2,0,0 = C0,0

C1,2
. (B11)

Using the approximation |sin3γ | ≈ 3|γ | and the integral∫ ∞

0
xme−ax2

dx = �
(

m+1
2

)
2a

m+1
2

, (B12)

the normalization conditions give (C0,0)2 = 2c, (C1,2)2 =
6c2,

C0,0

C1,2
= 1√

3c
. The normalization is consistent with the one

used by Bohr [1]. The same approximations are also used in
Ref. [43].

APPENDIX C: ES-X(5)

In the case of the ES-X(5) solution [24], in which u(β) is
an infinite well potential

u(β) =
{

0 if β � βW ,

∞ for β > βW,
(C1)

the β equation becomes a Bessel equation with energy
eigenvalues [3]

εβ;s,L = (ks,L)2, ks,L = xs,L

βW

, (C2)

where xs,L is the s-th zero of the Bessel function Jν(ks,Lβ),
with

ν =
√

L(L + 1) − K2

3
+ 9

4
+ 3C(nγ + 1), (C3)

while the relevant eigenfunctions are

ξs,L(β) = Cs,Lβ−3/2Jν(ks,Lβ), (C4)

where Cs,L are normalization constants, determined from the
condition ∫ βW

0
β4ξ 2

s,L(β)dβ = 1, (C5)

leading to

1

C2
s,L

= β2
W

2
J 2

ν+1(xs,L). (C6)

The full wave function reads

	(β, γ, θi) = Cs,Lβ−3/2Jν(ks,Lβ)ηnγ ,|K|(γ )DL
MK (θi), (C7)

and should be properly symmetrized as [50]

	(β, γ, θi) = Cs,Lβ−3/2Jν(ks,Lβ)ηnγ ,|K|(γ )

×
√

2L + 1

16π2(1 + δK,0)

(
DL

M,K + (−1)LDL
M,−K

)
.

(C8)

In calculating B(E2), the integrals over γ and the Euler angles
remain the same as in Appendix B, while the integrals over β

take the form

Bs,L,s ′,L′ = Cs,LCs ′,L′

∫
βJν(ks,Lβ)Jν ′ (ks ′,L′β)β dβ, (C9)

where the formal correspondence n = s − 1 holds.
Notice that for C = 0, the numerical results of ES-X(5)

for the ground-state band and the β bands coincide with
the results of X(5), as it can be seen from Eq. (C3).
As discussed at the end of Appendix A, this should be
considered as a numerical coincidence, because C = 0 is not
allowed in the X(5) framework, since it destroys the γ ≈ 0
approximation.
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