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Relativistic mean-field models of nuclear structure have been enormously successful at reproducing ground-
state properties of finite nuclei throughout the periodic table using a handful of accurately calibrated parameters.
In this contribution, we use powerful theoretical, experimental, and observational constraints on the equation of
state of asymmetric nuclear matter—not employed in the calibration procedure—to validate two such models:
NL3 and FSUGold. It is observed that FSUGold is consistent with all these constraints, except perhaps for a
high-density equation of state that appears mildly softer than required by astronomical observations. It is argued
that incorporating such constraints goes a long way in removing much of the ambiguity left over from the standard
calibrating procedure.
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I. INTRODUCTION

Mean-field descriptions of the ground-state properties of
medium to heavy nuclei have enjoyed enormous success.
These highly economical descriptions encode a great amount
of physics in a handful of model parameters that are calibrated
to a few ground-state properties of a representative set of
medium to heavy nuclei. An example of such a successful
paradigm is the relativistic NL3 parameter set of Lalazissis,
Ring, and collaborators [1,2].

Yet by their mere nature, such mean-field models are
untested away from their narrow window of applicability.
Whereas models fitted to the ground-state properties of finite
nuclei all tend to agree on the saturation properties of
symmetric nuclear matter, they widely disagree on its density
and isospin dependence [3,4]. To resolve this ambiguity,
an effort has been made to incorporate into the calibration
procedure breathing-mode energies of heavy nuclei with
neutron-proton asymmetries [b ≡ (N − Z)/A] ranging from
b = 0.11 to b = 0.21 [5,6]. Although these approaches—
combined with improved experimental data and analyses—
have helped narrow the range of acceptable values of the
incompressibility coefficient of symmetric nuclear matter to
K = 230 ± 10 MeV [7–9], the density dependence of both
symmetric-nuclear and pure-neutron matter remains largely
undetermined. Thus, it is the aim of this contribution to test
the validity of two accurately calibrated relativistic mean-
field models—NL3 [1,2] and FSUGold [5]—against recent
theoretical, experimental, and observational constraints not
employed in the calibration procedure. In this manner, we aim
to establish the extent to which models that were accurately
calibrated around nuclear saturation density may be reliably
extrapolated to the low- and high-density regimes.

From the theoretical perspective, powerful arguments have
provided critical insights into the behavior of pure neutron
matter at low densities. Indeed, the low-density behavior of
dilute Fermi gases with very large scattering lengths is univer-
sal, in that its energy equals that of the free Fermi gas up to a
dimensionless universal constant of the order of 1/2 [10,11].
Yet pure neutron matter deviates from unitarity because of

its relatively large effective range. Fortunately, effective-range
corrections to unitarity were recently computed by Schwenk
and Pethick [12]. Such a model-independent approach will
be used to test the validity of mean-field models away from
their region of applicability. Moreover, it will be shown how
such powerful theoretical constraints may be used to rule out
a variety of accurately calibrated models [3,4].

Laboratory experiments with heavy ions have played a
critical role in constraining the nuclear equation of state. By
tuning the energy of the colliding beams and the neutron-
proton asymmetry, heavy-ion collisions probe vast regions
of the phase diagram. For example, by compressing nuclear
matter to pressures never before attained under laboratory
conditions, the equation of state of symmetric nuclear matter
was determined up to densities of about four to five times
that of normal nuclear matter [13]. Moreover, low-density
constraints on the equation of state of neutron-rich matter
are starting to emerge from the distribution of fragments
in medium-energy collisions. In particular, by plotting the
data in an ingenious manner, a powerful scaling relation—
known as isoscaling [14,15]—was uncovered and shown to
be sensitive to the low-density behavior of the symmetry
energy [16]. Note that the symmetry energy equals, to an
excellent approximation, the difference between the energy
of pure neutron matter and that of symmetric matter.

Finally, enormous advances in both land- and spaced-based
observatories have brought the fields of nuclear physics and
astrophysics closer than ever before. In the particular case
of neutron star structure and its intimate connection to the
equation of state of dense matter, a few recent developments
are worth mentioning. Among these, observations of neutron-
star–white-dwarf binaries with the Arecibo radio telescope
have resulted in the largest neutron-star mass ever reported
M(PSRJ0751 + 1807) = (2.1 ± 0.2)M� [17]. The limiting
mass of a neutron star represents the optimal (and perhaps
unique) way of constraining the high-density component
of the equation of state. If the above error bars can be
narrowed any farther, a significant number of (soft) models
of the equation of state will be ruled out [18,19]. Moreover,
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transient phenomena—such as x-ray bursts powered by the
nuclear burning of H/He in low-mass x-ray binaries—provide
a powerful observational constraint on the long-sought mass-
vs-radius relationship of a neutron star. For example, the
mass-to-radius ratio of the neutron star in the low-mass
x-ray binary EXO 0748–676 has been recently constrained by
detecting the gravitational redshift of certain absorption lines
[20]. More recently, by combining this result with additional
observational constraints, both the mass and radius of the
neutron star in EXO 0748–676 were individually determined
to be M � (2.10 ± 0.28)M� and R � 13.8 ± 1.80 km [21]—an
interpretation that appears to rule out all soft equations of
state. For a comprehensive recent account on constraints on the
equation of state from neutron-star observations, see Ref. [18].

The manuscript has been organized as follows. In Sec. II
a brief review of the relativistic formalism will be provided.
Particular emphasis will be placed on those model parameters
that are loosely constrained by existing ground-state observ-
ables and the extent to which they may be firmly determined
by the various constraints discussed above. Next, in Sec. III
results will be presented for a variety of low- and high-density
observables that will be compared against available theoretical,
experimental, and observational results. Finally, we will offer
a summary and conclusions in Sec. IV.

II. FORMALISM

The Lagrangian density employed in this work is rooted
on the seminal work of Walecka, Serot, and their many
collaborators (see Refs. [22–24] and references therein). Since
the model was first published by Walecka more than three
decades ago [24], several refinements have been implemented
to improve the quantitative standing of the model. In the
present work, we employ an interacting Lagrangian density
of the following form [5,25,26]:

� int = ψ̄
[
gsφ −

(
gvVµ + gρ

2
τ · bµ + e

2
(1 + τ3)Aµ

)
γ µ

]
ψ

− κ

3!
(gsφ)3 − λ

4!
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4!

(
g2

vVµV µ
)2

+	v
(
g2

ρ bµ · bµ
)(

g2
vVµV µ

)
. (1)

The original Lagrangian density of Walecka consisted of
an isodoublet nucleon field (ψ) together with neutral scalar
(φ) and vector (V µ) fields coupled to the scalar density
(ψ̄ψ) and conserved nucleon current (ψ̄γ µψ), respectively
[24]. In spite of its simplicity (the model contains only two
dimensionless coupling constants), symmetric nuclear matter
saturates even when the model is solved at the mean-field
level [24]. By adding additional contributions from a single
isovector meson (bµ) and the photon (Aµ), Horowitz and
Serot [27] obtained results for the ground-state properties
of finite nuclei that rivaled some of the most sophisticated
nonrelativistic calculations of the time. However, whereas
the two dimensionless parameters in the original Walecka
model could be adjusted to reproduce the nuclear saturation
point, the incompressibility coefficient (now a prediction of the
model) was too large (K >∼ 500 MeV) when compared with
existing data on breathing-mode energies [28]. To overcome

this problem, Boguta and Bodmer introduced cubic (κ) and
quartic (λ) scalar meson self-interactions that accounted for
a significant softening of the equation of state (K = 150 ±
50 MeV) [29]. Two parameters of the Lagrangian density of
Eq. (1) remain to be discussed, namely, ζ and 	v. Both of
these parameters are set to zero in the enormously successful
NL3 model, suggesting that the experimental data used in the
calibration procedure is insensitive to the physics encoded in
these parameters. Indeed, Müller and Serot found it possible
to build models with different values of ζ that reproduce
the same observed properties at normal nuclear densities,
but which yield maximum neutron star masses that differ
by almost one solar mass [25]. This result indicates that
observations of massive neutron stars—rather than laboratory
experiments—may provide the only meaningful constraint on
the high-density component of the equation of state. Finally,
the isoscalar-isovector coupling constant 	v was added in
Ref. [26] to modify the density dependence of the symmetry
energy. It was found that models with different values of 	v re-
produce the same exact properties of symmetric nuclear matter
but yield vastly different values for the neutron skin thickness
of heavy nuclei and for the radii of neutron stars [30]. The
Parity Radius Experiment (PREX) at the Jefferson Laboratory
promises to measure the skin thickness of 208Pb accurately and
model independently via parity-violating electron scattering
[31,32]. PREX will provide a unique experimental constraint
on the density dependence of the symmetry energy due to its
strong correlation to the neutron skin of heavy nuclei [3].

III. RESULTS

In this section, we compare the predictions from NL3 [1,2]
and FSUGold [5] against the theoretical, experimental, and
observational constraints discussed in the Introduction. The
effective parameters of the two models are listed in Table I,
and their predictions for several bulk properties of nuclear
matter are tabulated in Table II. Note that ρ0, ε0, and K denote
the density, binding energy per nucleon, and incompressibility
coefficient of symmetric nuclear matter, while J and L denote
the value and slope of the symmetry energy, all at saturation
density. In particular, the pressure of pure neutron matter
at saturation density is related to L through the following
expression:

PPNM(ρ0) ≈ 1
3ρ0L. (2)

A. Theoretical constraints

Perhaps surprisingly, one of the most stringent constraints
on the equation of state of low-density neutron-rich matter
emerges from theoretical considerations, namely, from the
universality of dilute Fermi gases with an “infinite” scattering
length (a). In this limit the only energy scale in the problem is
the Fermi energy (εF ), so the energy per particle is constrained
to be that of the free Fermi gas up to a dimensionless universal
constant (ξ ) that is independent of the details of the two-body
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TABLE I. Model parameters used in the calculations. The parameter κ and the inverse scalar range ms are
given in MeV. The nucleon, ω, and ρ masses are kept fixed at M = 939 MeV, mω = 782.5 MeV, and mρ =
763 MeV, respectively.

Model ms g2
s g2

v g2
ρ κ λ ζ 	v

NL3 508.1940 104.3871 165.5854 79.6000 3.8599 −0.0159 0.0000 0.0000
FSUGold 491.5000 112.1996 204.5469 138.4701 1.4203 +0.0238 0.0600 0.0300

interaction [10]. That is,

E

N
= ξ

3

5
εF . (3)

To date, the best theoretical estimates place the value of the
universal constant around ξ ≈ 0.4 [10,11,33,34].

While the neutron-neutron scattering length is large indeed
(ann = −18.5 fm), pure neutron matter deviates from unitarity
because of a nonnegligible value of the effective range of the
neutron-neutron interaction (re = +2.7 fm). Thus, corrections
to the low-density equation of state of pure neutron matter
must be computed for kF ∼ r−1

e � 0.4 fm−1. Such corrections
have been recently computed by Schwenk and Pethick [12],
with their results displayed as the red cross-hatched region in
Fig. 1. Also shown are the predictions of two microscopic mod-
els based on realistic two-body interactions, one of them being
the venerated equation of state of Friedman and Pandharipande
[35]. Finally, the predictions of NL3 and FSUGold are also
shown. It is gratifying that the softening of the symmetry
energy of FSUGold—caused by incorporating constraints
from breathing-mode energies [5]—appears consistent with
the physics of resonant Fermi gases. Such a powerful universal
constraint should be routinely and explicitly incorporated into
future determinations of density functionals. Indeed, such a
constraint appears to rule out many of the models displayed in
Fig. 2 of Ref. [3].

B. Experimental constraints

Laboratory experiments place important constraints on the
equation of state of hadronic matter. Indeed, a variety of
ground-state properties (primarily masses and charge radii)
of finite nuclei are routinely incorporated into the calibration
procedure of the models. However, the impact of heavy-ion
experiments on these models is just starting to emerge. A
particularly relevant example involves the distribution of
fragments in medium-energy heavy-ion collisions. It has been
shown that the ratio of isotopic yields [R21(N,Z)] obeys
a powerful scaling relation [14,15] that is sensitive to the

TABLE II. Bulk parameters characterizing the energy of
symmetric nuclear matter (ρ0, ε0, and K) and the symmetry
energy (J and L) at saturation density.

Model ρ0(fm−3) ε0

(MeV)
K

(MeV)
J

(MeV)
L

(MeV)

NL3 0.148 −16.24 271 37.3 118.4
FSUGold 0.148 −16.30 230 32.6 60.5

low-density behavior of the symmetry energy [16]. It is
observed, quite naturally, that the reaction with neutron-rich
nuclei (e.g., 124Sn+124Sn) produces more neutron-rich and less
proton-rich fragments relative to the neutron-deficient reaction
(e.g., 112Sn+112Sn). This makes the reaction yields particularly
sensitive to the density dependence of the symmetry energy.
For example, a stiff symmetry energy (such as the one
displayed by NL3 in Fig. 2) imposes a stiff penalty on the
system at high density for departing from the symmetric
(N = Z) limit. It is, however, the softer symmetry energy
(such as FSUGold in Fig. 2) that imposes the stiffer penalty at
the low densities relevant to the multifragmentation process.
As such, one expects more neutron-rich fragments to be
produced by a stiff rather than by a soft equation of state [36].
The experimental signature of this behavior is imprinted in
a parameter than controls the variation of R21(N,Z) with
N for fixed Z (a parameter usually denoted by α). Using
general thermodynamic arguments, the value of α was related
to the change of the neutron chemical potential with the
neutron-proton asymmetry [14,15]. Note that it was precisely
the study of the neutron chemical potential of neutron-rich
nuclei at zero temperature (i.e., the neutron Fermi energy) that
led to the conclusion that models with a soft symmetry energy
reach the neutron drip line before those with a stiffer symmetry
energy [37].

FIG. 1. (Color online) Equation of state of pure neutron matter
as a function of the Fermi momentum. Predictions are shown for
the accurately calibrated NL3 [1,2] (green line) and FSUGold [5]
(blue line) parameter sets. Shown also are various microscopic
descriptions—including a model-independent result based on the
physics of resonant Fermi gases by Schwenk and Pethick [12] (red
cross-hatched region).
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FIG. 2. (Color online) Symmetry energy as a function of the
baryon density (expressed in units of the saturation density ρ0 =
0.148 fm−3). Predictions are shown from the NL3 [1,2] (green line)
and FSUGold [5] (blue line) models. Shown also are the results from
Li and Chen [39] (maroon line) and the experimental analysis of
Shetty and collaborators [38] (red symbols).

In a recent study, Shetty, Yennello, and Souliotis [38]
used the scaling behavior of the fragment yields—coupled
to a molecular dynamics simulation—to extract the density
dependence of the symmetry energy. In the low-density
regime probed in the collisions, the density dependence of
the symmetry energy may be parametrized according to the
following simple formula:

S(ρ) = S(ρ0)

(
ρ

ρ0

)γ

. (4)

To make contact with this approach, our theoretical results
were fitted to the above formula in the ρ = (0.3 − 1.0)ρ0

range, yielding values for the symmetry energy at saturation
[S(ρ0)] and for the exponent γ as displayed in Eq. (5).
This same information is depicted in graphical form in
Fig. 2. As in the case of pure neutron matter (see Fig. 1),
it appears that the density dependence of the symmetry energy
predicted by FSUGold—at least at low densities—is consistent
with this experimental analysis. However, the experimental
determination is not without controversy [40,41]. Moreover,
one should be aware that the connection between the collision
of heavy ions and the zero-temperature equation of state is
model dependent.

S(ρ0)

=




31.6 MeV, Ref. [38],
31.6 MeV, Ref. [39],
32.7 MeV, FSUGold,
36.9 MeV, NL3;

γ =




0.69, Ref. [38],
0.69, Ref. [39],
0.64, FSUGold,
0.98, NL3.

(5)

Nuclear collisions may also be used to constrain the
high-density behavior of nucleonic matter. To illustrate this
point, we display in Fig. 3 the binding energy per nucleon

FIG. 3. (Color online) Binding energy per nucleon as a function
of baryon density (expressed in units of the saturation density ρ0 =
0.148 fm−3) for symmetric nuclear matter. Theoretical predictions
are shown for the NL3 [1,2] (green line) and FSUGold [5] (blue line)
models. Shown in the inset is a comparison between the equation
of state extracted from energetic nuclear collisions [13] and the
predictions of these two models.

of symmetric nuclear matter as a function of the baryon
density as predicted by both the NL3 and FSUGold models.
Note that both models reproduce the equilibrium properties
of symmetric nuclear matter and display the same quantitative
behavior at densities below the saturation point. Yet their high-
density predictions are significantly different. This emerges
from a combination of two factors. First, FSUGold predicts
an incompressibility coefficient K considerably lower than
NL3, namely, 230 vs 271 MeV (see Table II). Second, and
more importantly, FSUGold includes a self-energy coupling
[denoted by ζ in Eq. (1)] that is responsible for a significant
softening at high density. Note that the mixed isoscalar-
isovector coupling (	v) plays no role in symmetric nuclear
matter. We now compare the predictions of these two models
against results obtained from energetic nuclear collisions that
can compress baryonic matter to densities as high as those
predicted to exist in the core of neutron stars. The inset in
Fig. 3 provides us with such a comparison. By analyzing
the manner in which matter flows after the collision of two
energetic gold nuclei, the equation of state of symmetric
nuclear matter was extracted up to densities of four to five times
the saturation density [13]. Figure 3 seems to rule out overly
stiff equations of state (such as NL3). And while it continues
to be gratifying that FSUGold is consistent with this analysis,
one should reiterate that the connection between energetic
nuclear collisions and the equation of state of cold nuclear
matter is model dependent. Yet within these limitations, the
same analysis [13] has been used to impose constraints on
the equation of state of pure neutron matter by assuming
two models—one soft and one stiff—for the unknown density
dependence of the symmetry energy. The resulting equations
of state are displayed in Fig. 4 alongside the predictions of both
theoretical models. The FSUGold parametrization appears
consistent with a relatively soft symmetry energy.

We conclude this section with a brief comment on the
low-density behavior of symmetric nuclear matter (see Fig. 3).
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FIG. 4. (Color online) Pressure as a function of baryon density
(expressed in units of the saturation density ρ0 = 0.148 fm−3) for pure
neutron matter as extracted from energetic nuclear collisions [13]
by assuming soft (maroon) and stiff (red) symmetry energies. Also
shown are the theoretical predictions from the NL3 [1,2] (green line)
and FSUGold [5] (blue line) models.

Clearly, the theoretical assumption of a uniform ground state
must break down as the uniform system becomes unstable
against cluster formation [42,43]. Indeed, at subthreshold
densities of ρ <∼ ρ0/3 a nonuniform system composed of (for
example) α particles will have a lower energy than the putative
uniform ground state [42]. And while relativistic mean-field
models have been employed to predict the transition density
to the nonuniform system [26], their impact on the equation of
state in the nonuniform phase is just starting to emerge [44].
Using a single underlying model to describe the equation of
state of neutron-rich matter over 11 orders of magnitude in
density—as required for the description of the structure of
neutron stars—should be an important and active area of future
research.

C. Observational constraints

Ultimately, the most reliable constraints on the high-
density component of the equation of state will come from
astronomical observations. Indeed, important constraints are
starting to emerge from the combination of a large number of
observations [18]. Here we limit ourselves to only two of them
for their significant impact on the present analysis. For other
studies similar in spirit to the present one, see Refs. [45–47].

The first observation that impacts significantly on the
present work is the one by Nice and collaborators at the
Arecibo radio telescope [17]. Such observation of a neutron-
star–white-dwarf binary system appears to suggest a neutron-
star mass of M(PSR J0751 + 1807) = (2.1 ± 0.2)M� (this
is denoted by the red region in Fig. 5). This appears to be
the largest neutron-star mass ever reported, and one that is
significantly larger than those most accurately determined
from double neutron-star binaries that display a mean of only

about (1.35–1.40)M� with a very small dispersion. If the
limits on the mass of PSR J0751+1807 can be tightened any
further [after all, at the 2σ level the observation accommodates
the rather wide range of (1.6–2.5)M�], it would practically
pin down the high-density component of the equation of
state. Indeed, in the particular case of the FSUGold model
with a prediction of only 1.72M� for the limiting mass, this
observation would demand a mild hardening of the equation
of state at high densities. As first observed by Müller and Serot
[25], in relativistic mean-field models this may be efficiently
achieved by simply tuning the nonlinear coupling ζ , while
leaving intact all other parameters of the model.

The second observation that seems to suggest a hard
equation of state is that of the low-mass x-ray binary EXO
0748–676. The first constraint on the equation of state from
such an object came from the detection of gravitationally
redshifted absorption lines in oxygen and iron by Cottam
and collaborators [20]. By measuring a gravitational red-
shift of z = 0.35, the mass-to-radius ratio of the neutron
star gets fixed at M/R � 0.15 (with M expressed in solar
masses and R in kilometers). By incorporating additional
constraints arising from Eddington and thermal fluxes, a
recent analysis by Özel seems to place simultaneous limits
on the mass and radius of the neutron star in EXO 0748–676;
that is, M � (2.10 ± 0.28)M� and R � 13.8 ± 1.80 km [21].
These limits are indicated by the thick black solid line in
Fig. 5. An earlier determination of the spin frequency of the
same neutron star by Villarreal and Strohmayer [48], when
combined with the rotational broadening of surface spectral
lines, yields an independent determination of the stellar
radius of R ≈ 11.5+3.5

−2.5 km. This estimate, when combined
with the gravitational redshift, yields the orange line in
Fig. 5. Note, however, that the use of rotational broadening
to constrain the stellar radius has been put into question in

FIG. 5. (Color online) Constraints on the mass-vs-radius rela-
tionship of neutron stars. Displayed in red is the allowed region as
determined by the analysis of Nice and collaborators [17]. The black
and orange solid lines result from the analyses of EXO 0748–676 by
Özel [21] and by Villarreal and Strohmayer [48], respectively. Also
shown are the theoretical predictions from the NL3 [1,2] (green line)
and FSUGold [5] (blue line) models.
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Ref. [21]. Finally, mass-vs-radius predictions from the NL3
and FSUGold models are displayed in Fig. 5. The results
clearly indicate the significantly harder character of the
equation of state predicted by NL3 relative to FSUGold. This,
even when both models predict practically identical properties
for existing ground-state observables of finite nuclei. Based
solely on these observations, NL3 with its stiff equation of
state appears to fair far better than FSUGold, despite the fact
that both breathing-mode energies and heavy-ion experiments
seem to suggest that the NL3 equation of state is overly stiff.

IV. CONCLUSIONS

Accurately calibrated relativistic models of nuclear struc-
ture have been enormously successful at describing a variety
of ground-state properties throughout the periodic table by
employing a relatively small number of effective parameters.
Chief among these is the NL3 parameter set of Lalazissis,
Ring, and collaborators [1,2]. Yet under closer scrutiny, it
was revealed, perhaps not surprisingly, that the properties
employed in the calibration procedure of such models are
insufficient to firmly pin down the equation of state even
around saturation density. In an effort to lift this “degeneracy”
the FSUGold model was conceived [5]. Relative to NL3,
FSUGold includes two additional effective parameters. One of
them [denoted by 	v in Eq. (1)] is responsible for a softening
of the symmetry energy and should be firmly constrained
by the pioneering Parity Radius Experiment at the Jefferson
Laboratory that is scheduled to run in the early part of
2009 [32]. The other parameter [denoted by ζ in Eq. (1)]
controls the high-density component of the equation of state
and may be tuned to generate maximum neutron star masses
that differ by almost one solar mass without significantly
affecting the behavior of the equation of state near saturation
density [25]. These two parameters—which are set to zero in
the NL3 model—have a particularly dramatic impact on two
observables: (a) the neutron-skin thickness of 208Pb and (b)
the limiting mass of a neutron star. In both cases, NL3 predicts
significantly larger values than FSUGold, namely, 0.28 vs
0.21 fm for the former and 2.78M� vs 1.72M� for the latter.
The main goal of this contribution was to test the validity of
these models away from their region of applicability.

The validation of the asymmetric nuclear matter equation
of state predicted by FSUGold—a model calibrated to various
ground-state properties and collective excitations of finite

nuclei—was implemented through a detailed comparison
against recent theoretical, experimental, and observational
constraints. These constraints emerged from the universal
behavior of dilute Fermi gases with large scattering lengths
[12], heavy-ion experiments that probe both the low- and
high-density domain of the equation of state [13–15,38], and
astronomical observations that place limits on masses and radii
of neutron stars [17,21]. On the basis of these comparisons,
it was concluded that FSUGold meets all the challenges,
even when no attempt was ever made to incorporate these
constraints into the calibration procedure. If at all, only the
observational data seems to call FSUGold into question by
suggesting a slightly harder equation of state. The promise of
improved observations and analyses with current and future
missions, such as Constellation X, offers the greatest hope for
determining the high-density component of the equation of
state.

The response to such future achievements should not be
limited to an indiscriminate adjustment of parameters. After
all, “knobs” can always be turned to reproduce a particular
set of experiments and/or observations. Rather, models should
aim at reproducing simultaneously a myriad of observables
that probe the equation of state over a wide dynamic range.
This should be one of the primary missions of all modern
theoretical approaches. Only by adopting such strict standards
can one test the validity and applicability of such models. Only
then can one ensure the emergence of exotic phenomena.

Note added in proof. After this work was submitted for
publication, we became aware of a significant revision to
the M(PSR J0751+1807) = 2.1 ± 0.2M� result by Nice and
collaborators. At a conference celebrating the 40th anniversary
of the discovery of pulsars in Montreal, Canada in August of
2007, David Nice reported the significantly lower values of
M(PSR J0751+1807) ≈ 1.3 ± 0.2M�. This revised estimate
for the pulsar mass results in no significant constraint on the
high density component of the equation of state (see Fig. 5).
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