
PHYSICAL REVIEW C 76, 064306 (2007)

Particle-number conservation in static-path approximation for thermal superfluid systems
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By applying particle-number projection to the static-path approximation (SPA), the heat capacity and the
breakdown of pairing correlations are investigated in the thermally excited, superfluid systems 172Yb, 94Mo, and
56Fe. For the heavy nucleus 172Yb, the heat capacities in both the SPA and the number-projected SPA (NPSPA)
exhibit an S shape; the difference between the SPA and NPSPA heat-capacity curves is not very large and the
particle-number projection thereby enhances the S shape already seen in the SPA. The temperature at which
the S-shape of heat capacity curve occurs parallels the temperature of the breakdown of pairing correlations as
indicated by the effective pairing gap. However, for the comparatively lighter nuclei 94Mo and 56Fe, the SPA does
not produce an S-shaped heat capacity on its own; only after particle-number projection the S shape appears in
the heat-capacity curve. For 94Mo, we compare the NPSPA result with thermal odd-even mass differences, which
are regarded as a direct measure of the pairing gap.
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I. INTRODUCTION

Pairing correlations are of special importance for many-
fermion systems such as electrons in superconducting metals,
nucleons in the nucleus, and quarks in color superconductivity.
The Bardeen-Cooper-Schrieffer (BCS) theory [1] of supercon-
ductivity has successfully described the sharp superfluid-to-
normal phase transition connected to the breakdown of pairing
correlations for an infinite Fermi system. Such a second-order
phase transition is characterized by a discontinuity of the
second derivative of the partition function with respect to some
order parameter, e.g., in the present case, a jump of the heat
capacity at a critical temperature. For finite Fermi systems,
however, recent theoretical approaches [2–5] demonstrate that
thermal and quantal fluctuations are important; they wash out
the discontinuity of the heat capacity which is obtained in
the BCS approximation, and instead produce a continuous
S-shape around the critical temperature. Such an S-shape
has been found experimentally by the Oslo group [6,7], and
interpreted as a signature of the pairing phase transition.
Another fingerprint of this transition is the local decrease of
thermal odd-even mass differences [8–10] extracted from the
observed level densities of a triplet of isotopes with neutron
number N − 1, N , and N + 1, which yields a temperature
corresponding to the one obtained from the S shape of the
heat capacity curve.

In finite Fermi systems such as nuclei, the BCS theory alone
fails to provide a good approximation of thermal properties.
This comes because particle number is not a good quantum
number in the BCS description of the superfluid phase.
Indeed, a BCS treatment with rigorous number projection [11]
such as the variation after projection (VAP) method [11,12]
smooths out the sharp phase transition and hence gives a
more realistic picture, while the discontinuity in the heat
capacity remains in, e.g., the projection after variation (PAV)
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method [11,13–15]. Exact number projection is also essential
for an accurate description of odd-even effects seen in the
heat-capacity curves of small superfluid systems. It is therefore
desirable to investigate how the number projection affects
thermal properties such as the S shape in heat capacity of
nuclei [12,16]. In particular, it has been recently demonstrated
[16], that particle-number projection within the BCS theory
by the PAV scheme can produce an S-shaped heat capacity
even in the absence of a pairing-phase transition, i.e., when
assuming a constant pairing gap at all temperatures due to
the effect of particle-number conservation on quasiparticle
excitations. In general, this method produces both anS-shaped
heat capacity due to the effect of particle-number projection
and a discontinuity in the heat capacity related to the pairing
phase transition.

Inclusion of fluctuations and correlations beyond the BCS
theory as induced by, e.g., exact particle number projection,
can be done starting with the path-integral representation
of the partition function. A direct approach to evaluate the
path integral is the shell-model Monte Carlo method [3–5].
However, the computational effort is quite large, and it cannot
be applied to the large shell-model spaces typical for heavy
nuclei. The static-path approximation (SPA) [13,17–19] is
therefore a useful treatment to evaluate approximately the
partition function in finite systems with separable interactions.
In recent theoretical approaches, also small-amplitude fluctua-
tions around the static path have been taken into account. These
fluctuations give corrections to the partition function similar
to the standard random-phase approximation around the mean
field. Thus, the static-path plus random-phase approximation
(SPA+RPA) method for interactions and temperature regions
applied in [2,20–22] gives excellent agreement with exact
results [2]. In this paper, we will perform the exact number
projected SPA (NPSPA), since the SPA results for theS-shaped
heat capacity qualitatively agree with the SPA+RPA ones [23].
For this, we employ thermofield dynamics (TFD) [24,25],
which is a powerful tool for describing many-body systems
at finite temperature.
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II. METHOD

In this work, we consider a monopole pairing Hamiltonian

Ĥ =
∑
k,τ

εk,τ (ĉ†k,τ ĉk,τ + ĉ
†
k̄,τ

ĉk̄,τ ) −
∑

τ

Gτ P̂
†
τ P̂τ , (1)

with the time reversed states k̄, and the pairing force strength
Gτ , where τ = π, ν stands for protons and neutrons, respec-
tively. Here, εk,τ are the single-particle energies and P̂τ is the
pairing operator P̂τ = ∑

k ĉk̄,τ ĉk,τ .1

By means of the number-projected SPA [2,13] based on
the Hubbard-Stratonovich transformation [26], the canonical
partition function is given by

ZN = Tr[P̂Ne−βĤ ′
]SPA

= 2

GT

∫ ∞

0
d��e−�2/GT ZN (�), (2)

with

ZN (�) = Tr[P̂Ne−βĥ(�)], (3)

ĥ(�) =
∑

k

ε′
k(ĉ†kĉk + ĉ

†
k̄
ĉk̄) − �(P̂ † + P̂ ) + G�

2
, (4)

where Ĥ ′ = Ĥ − µN̂, N̂ = ∑
k ĉ

†
kĉk is the particle-number

operator, and µ is the chemical potential. Furthermore, P̂N is
the exact number projection defined by

P̂N = 1

2π

∫ 2π

0
dϕ e−iϕ(N̂−N), (5)

and we define for later λk = √
ε′2
k + �2 with ε′

k = εk − µ −
G/2. Then, the thermal energy can be calculated from E =
−∂ ln ZN/∂β. It is now convenient to introduce quasiparticles
by diagonalizing the Hamiltonian of Eq. (4)(

âk

â
†
k

)
= W†

(
ĉk

ĉ
†
k

)
=

(
u∗

k v∗
k

vk uk

) (
ĉk

ĉ
†
k

)
, (6)

where the matrix satisfies unitarity W†W = 1. The matrices
u and v in Eq. (6) diagonalize the pairing term of Eq. (4).
They are diagonal and determined by solving the Hartree-
Fock-Bogoliubov (HFB) equations(

ε′
k �

� −ε′
k

) (
uk

vk

)
= λk

(
uk

vk

)
, (7)

where λk is the quasiparticle energy.
To evaluate the partition function ZN (�) in Eq. (3), we

employ the treatment of number projection [14] using the
TFD formalism [24,25]. The TFD is known to be a powerful
tool for a perturbative treatment within thermal mean-field
theory [27]. The thermal expectation value of an observable is
thereby expressed in terms of a vacuum expectation value
in an enlarged space. The advantage of the TFD is that
the thermal average of an arbitrary operator can be easily
handled in a similar manner as the expectation value in
the zero-temperature formalism. In TFD, the Hilbert space
spanned by the quasiparticle operators is doubled by including

1Hereafter, the index τ is dropped for convenience.

a fictitious (tilde) operator { ˆ̃ak, ˆ̃a
†
k}. Then, the quasiparticle

vacuum is doubled by the corresponding vacuum |0〉 defined
as âk|0〉 = ˆ̃ak|0〉 = 0. Next, we introduce the temperature-
dependent operators and vacuum by the unitary transformation

âk(β) = e−iĜâke
iĜ, (8)

ˆ̃ak(β) = e−iĜ ˆ̃ake
iĜ, (9)

|0(β)〉 = e−iĜ|0〉, (10)

where the generator Ĝ is given by

Ĝ = i
∑

k

θk(â†
k

ˆ̃a
†
k − ˆ̃akâk). (11)

Here, θk is the angle of the transformation. The Fock space is
spanned by the set of operators {â†

k(β), ˆ̃a
†
k(β)} and the vacuum

|0(β)〉. The transformations in Eqs. (8) and (9) can also be
rewritten as(

âk

ˆ̃a
†
k

)
=

(
cosh θk sinh θk

sinh θk cosh θk

) (
âk(β)
ˆ̃a
†
k(β)

)
. (12)

With this, the thermal average of an arbitrary operator Â

is expressed as the expectation value with respect to the
temperature-dependent vacuum |0(β)〉 by

〈Â〉 = Tr(Âe−βĤ )/Tr (e−βĤ )

= 〈0(β)|Â|0(β)〉, (13)

where Ĥ is the full Hamiltonian of the system. To determine
the angle parameter θk , we evaluate the thermal average of the
number operator â

†
kâk with respect to |0(β)〉 as

〈0(β)|â†
kâk|0(β)〉 = sinh2 θk. (14)

Since the left-hand of Eq. (14) should give the Fermi
distribution function, the angle is chosen as

fk = sinh2 θk = 1

eβλk + 1
. (15)

Using the definition of the thermal average from Eq. (13),
the partition function ZN (�) in Eq. (3) can be rewritten as

ZN (�) = Tr[P̂Ne−βĥ(�)]

= Tr(e−βĥ(�))〈0(β)|P̂N |0(β)〉, (16)

with

Tr (e−βĥ(�)) = 1

2

∏
k

e−(εk−µ−λk )/T (1 + e−λk/T )2. (17)

The expectation value 〈0(β)|P̂N |0(β)〉 can be evaluated using
the TFD technique [14] in a way similar as in the zero-
temperature formalism [28]. For instance, by applying the
general formalism of projection [14], we can obtain the
expectation value of the operator e−iŜ by

〈0(β)|e−iŜ |0(β)〉 = (det U )
1
2 exp

[ − i
(
S(0) + 1

2 Tr S(1)
)]

, (18)

where Ŝ is defined as the one-body operator Ŝ = ϕN̂ in the
quasiparticle representation

Ŝ = S(0) +
∑
kk′

S
(1)
kk′ â

†
kâk′ + 1

2

∑
kk′

[
S

(2)
kk′ â

†
kâ

†
k′ + h.c.

]
, (19)
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with

S(0) = 〈0(β)|Ŝ|0(β)〉, (20)

S
(1)
kk′ = 〈0(β)|[âk, Ŝ]â†

k′ |0(β)〉, (21)

S
(2)
kk′ = 〈0(β)|âk[âk′ , Ŝ]|0(β)〉, (22)

and where U is given by the transformation

exp(−iŜ)âk exp(iŜ) =
∑
kk′

(Ukk′ âk′ + Vkk′ â
†
k′). (23)

As mentioned above, the SPA can avoid the sharp phase
transition, which appears in the simple BCS approximation.
To explain this, we use the saddle-point approximation for the
integral of Eq. (2), where we take into account the measure �

when the maximum of the integrand is determined. Neglecting
the number projection for the sake of simplicity, the effective
BCS approximation (EBCS) [30] is obtained in this way. This
leads to an effective value �0 which is determined by

�0 = G〈0(β)|P̂ |0(β)〉 + 1
2GT/�0, (24)

together with the condition for the particle number

N =
∑
k>0

[
1 − (

u2
k − v2

k

)
tanh(βλk/2)

]
. (25)

These equations are nonlinear and have to be solved by
iteration in a similar way as the usual BCS equations. The
solution of the above equations is a smooth, nonvanishing
function of T . The second term in Eq. (24) prevents the solution
from falling into the normal phase. Now, we introduce the
effective pairing gap as

�E(T ) = G〈0(β)|P̂ |0(β)〉 = �0 − GT/2�0. (26)

Here, one can see that if one neglects the second term in
Eq. (24), the EBCS equation is reduced to the usual BCS
equation. In this sense, the second term in Eq. (24) washes out
the discontinuity of the heat capacity and avoids the vanishing
pairing gap at the critical temperature in the BCS theory. Such
a behavior is similar to the one seen in the BCS treatment with
number projection using the VAP scheme, where the sharp
phase transition at the critical temperature is smoothed out.

The expectation value 〈0(β)|PN |0(β)〉 in Eq. (16) can now
be evaluated using the M-point formula

〈0(β)|P̂N |0(β)〉 = 1

2π

∫ 2π

0
d ϕeiϕN 〈0(β)|e−iϕN̂ |0(β)〉

∼= 1

M + 1

M∑
m=0

eiϕmN 〈0(β)|e−iϕmN̂ |0(β)〉, (27)

where ϕm = 2πm/(M + 1) and M is the number of single
particle states [28]. In the case M = 1, the number projection
is reduced to the number-parity projection [2,16].

III. RESULTS AND DISCUSSION

In this work, we consider 172Yb, 94Mo, and 56Fe for
numerical calculations. For these calculations, we use the
single-particle energies εk given by a deformed Woods-Saxon
potential with spin-orbit interaction [31]. The Woods-Saxon
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FIG. 1. (Color online) Heat capacity as a function of temperature
for 172Yb. The dashed and solid curves denote results from the SPA
and NPSPA, respectively, the dash-dotted line gives the result for
the independent-particle model, i.e., for G = 0. Experimental data
(dotted line) are taken from [6], Good qualitative agreement between
the experiment and the calculations is achieved. The temperature
around the local maximum of the CV curve coincides well between
the experiment and the NPSPA.

parameters are chosen such as to approximately reproduce
the experimental single-particle energies extracted from the
energy levels of 133Sn (132Sn core plus one neutron) for 172Yb,
where V0 = 51.0 MeV, a = 0.67 fm, κ = 0.67, λ = 22.0,
and r0 = 1.27 fm. For 94Mo and 56Fe, we adopt the same
parameters as ones used in Ref. [10]. The doubly-degenerate
single-particle levels with negative energies are taken outside
of the 132Sn core for 172Yb, and outside of the 40Ca core for
94Mo and 56Fe. The pairing force strengths are chosen such
as to reproduce the experimental odd-even mass differences at
zero temperature.

Figure 1 shows the heat capacities calculated in the SPA and
number-projected SPA (NPSPA) for 172Yb. This heat capacity
is obtained by ∂E/∂T where E is the thermal energy given
by E = −∂ ln ZN/∂β. One can see that the heat capacity
exhibits an S shape around T = 0.5 MeV [6]. The number
projection decreases the SPA heat capacity for T < 0.35 MeV
and increases it in the region of 0.35 MeV< T < 0.7 MeV,
and hence enhances the S shape. It is important to note
that an S-shaped heat capacity is already obtained within the
SPA, without any number projection. To emphasize this point,
we also show in Fig. 1 the heat capacity obtained from an
independent-particle model without pairing, i.e., for G = 0. As
it should for a non-interacting Fermi gas, this heat capacity de-
pends almost linearly on temperature. The difference between
the heat-capacity curves of the independent-particle model and
the full model treated within the SPA is large and qualitative.
On the other hand, the difference between the SPA and NPSPA
results is relatively smaller and quantitative in nature. When
compared to experiment, the NPSPA can describe well the
S-shape of the data, while the calculated Cv curve deviates
from the experimental one for temperatures below 0.5 MeV.
This difference may be a drawback of the SPA approximation
and of the simple model used with only a monopole pairing
interaction and without any other interaction. As shown in
Fig. 2 for 94Mo and in Fig. 3 for 56Fe, however, the SPA does
not produce an S-shaped heat capacity by itself in those cases;
the S shape appears only in the NPSPA. A recent analysis of
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FIG. 2. (Color online) Heat capacity as a function of temperature
for 94Mo. Solid and dashed curves as in Fig. 1. Experimental
data (dotted line) are taken from [29]. There is good qualitative
agreement of the experimental data with the NPSPA. In particular,
the temperatures of maximum local enhancement of the CV curves
over a Fermi gas agree well between the experiment and the NPSPA.

poles in the complex temperature plane [32] suggests that the
pairing phase transition exists for mass A > 100 but not for
A < 100. This interpretation seems to be consistent with the
results obtained here.

The S shape has also been discussed to be correlated
with the breaking of nucleon Cooper pairs [4,9]. Therefore,
we further investigate the neutron pairing properties in the
calculations.2 In Fig. 4, we show the neutron effective pairing
gap �n

E in the SPA and �̃n
E = G〈0(β)|P̂N P̂ |0(β)〉 in the

NPSPA, relative to their values at T = 0. The suppression of
�n

E is well correlated in temperature with the presence of the S
shape of the heat capacity in Fig. 1, consistent with the results
of Refs. [4,9]. Thus, the S shape in Figs. 1, 2, and 3 can be
understood in terms of the suppression of the effective pairing
gap and the effects of number projection. Previously, we
have identified the inflection point of the effective pairing-gap
curve as the temperature at which the pairing transition takes
place [8]. As seen from the respective curves for 172Yb in
Fig. 4, this inflection point is close to the temperature 0.5 MeV

2The neutron pairing properties are very similar to the ones of proton
pairing, therefore, proton pairing is not discussed separately in this
work.
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FIG. 3. (Color online) Heat capacity as a function of temperature
for 56Fe. Solid and dashed curves as in Fig. 1.
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FIG. 4. (Color online) Effective pairing gap as a function of
temperature for 172Yb, 94Mo, and 56Fe. Solid and dashed curves as in
Fig. 1.

at which the heat-capacity curves peak.3 For 94Mo and 56Fe,
the respective inflection points of 0.65 MeV and 0.9 MeV
are also close to the local maxima of their CV curves.

As the experimental counterpart of the effective pairing gap,
we have proposed in our previous work thermal odd-even mass
differences (TOEMD) as a direct measure of the size of pairing
correlations [8], and we have used them as indicators in our
study of pairing phase transitions in 184W [9] and 94−97Mo [10].
We obtained in the one case a drastic in the other case a gradual
decrease of the TOEMD, and we found that this signal is well
correlated with the S shape of the heat capacity. According
to Ref. [8], the sudden decrease of the thermal odd-even mass
differences is interpreted as a rapid breaking of nucleon Cooper
pairs. Figure 5 shows the comparison between the effective

3To obtain a precise estimate of the inflection point, we differentiate
the effective pairing-gap curves with respect to temperature.

FIG. 5. (Color online) Comparison between the experimental
TOEMD (solid line) extracted according to Eq. (28) and the effective
neutron pairing gap (dashed line) as a function of temperature for
94Mo.
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pairing gap and the TOEMD defined as

�(3)
n (Z,N, T ) = (−1)N

2
[Bt (Z,N + 1, T )

− 2Bt (Z,N, T ) + Bt (Z,N − 1, T )], (28)

where the thermal energy Bt is defined by Bt (Z,N, T ) =
E(Z,N, T ) + B(Z,N ), B(N,Z) is the binding energy at zero
temperature, and E(Z,N, T ) is evaluated from experimental
level densities [9,10]. The agreement between theory and
experiment is satisfying.

It is now interesting to discuss the significance of the S
shape of the heat capacity. For this reason, we would like to
recall all the available facts. In the present work, the S shape is
obtained for A > 100 already within the SPA, while for lighter
nuclei, to reproduce the S shape, the NPSPA (corresponding
to a VAP scheme) is needed. Interestingly, in the work of
Esashika et al. [16], an S shape could also be obtained (within
a PAV scheme) when keeping the pairing gap � artificially
constant. The latter two observations seem to indicate that the
presence of the S shape is not necessarily related to the pairing
phase transition, and might be connected more to the particle-
number projection. However, one should remember that in
calculations without a distinct pairing force G, no S-shaped
heat capacity has been observed. Moreover, the temperature for
a potential pairing phase transition derived from the S-shaped
heat capacity agrees very well with the temperature where
pairing correlations are being suppressed (as indicated by the
effective pairing gap [8]), such that a simple coincidence of
the two phenomena can likely be ruled out. At present, we
leave the question of the significance of the S-shaped heat

capacity somewhat open, while we would like to point out
that the NPSPA is certainly an important tool to investigate
this problem, since it enables us to obtain an S-shaped heat
capacity for lighter nuclei in the first place.

IV. CONCLUSION

In conclusion, we have investigated effects of particle-
number conservation in the SPA for 172Yb, 94Mo, and
56Fe. The particle-number projection affects the S shape of
the heat capacity in all of these nuclei. The S shape in
the heat capacity of 172Yb is produced by a cooperation of the
quantum effects in the SPA with the effects of particle-number
projection. For 94Mo and 56Fe, however, theS shape of the heat
capacity appears only in the calculation with particle-number
projection, but not in the SPA alone. This observation is
consistent with nuclear size effects on the existence of a
pairing transition. The S-shaped heat capacity from NPSPA
calculations correlates well in temperature with the reduction
of the effective pairing gap. The effective neutron pairing gap
in 94Mo is in good agreement with experimental thermal odd-
even mass differences. Our treatment of the particle-number
projection can be applied together with the angular-momentum
projection in order to study the spin distribution of nuclear
levels in such a formalism as suggested in [14]. Calculations
are now in progress.
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