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Wilsonian renormalization group equation for nuclear current operators
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We present the solution to the recently derived Wilsonian renormalization group (RG) equation for nuclear
current operators. To eliminate the present ambiguity in the RG equation itself, we introduce a new condition
specifying the cutoff independence of the five-point Green function corresponding to the two-body propagator
with current operator insertion. The resulting effective current operator is then shown to obey a modified
Ward-Takahashi identity that differs from the usual one, but that nevertheless leads to current conservation.
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I. INTRODUCTION

The use of the Wilsonian renormalization group (RG)
method [1–3] to impose a cutoff � on the momenta of virtual
states is an important tool for studying various aspects of
nuclear effective field theory (EFT) [4–9]. In this context
it has mostly been used to study the strong interactions of
nonrelativistic two-nucleon systems where the central starting
point is the RG equation for the two-body effective potential
V� [4]. Recently, however, Nakamura and Ando (NA) [10]
have extended the scope of such studies by deriving the
RG equation for the two-body effective current operator
O

µ
�. The main purpose of the present article is to present

the unambiguous solution to this equation. As our solution
differs from the one given by NA, we have endeavored to
give a detailed account of both the solution and the RG
equation itself. In particular, we present an off-shell cutoff-
independence condition that leads necessarily to NA’s RG
equation. By contrast, NA derived their equation as only
a sufficient condition for an on-shell cutoff-independence
condition. In this way we eliminate the consequent ambiguity
of NA’s RG equation. Last, we examine the question of current
conservation for the derived effective current operator O

µ
�. We

find that even in the best case where O
µ
� is obtained (via the

RG equation) from the full field-theoretic current operator O
µ
∞

that satisfies the usual Ward-Takahashi (WT) identity [11], Oµ
�

will not obey this identity (it will instead satisfy a modified
WT identity). Nevertheless, the same operator O

µ
� is shown to

conserve current in matrix elements.

II. SOLUTION TO
THE CURRENT OPERATOR RG EQUATION

We consider a nonrelativistic two-body system for which
the RG method is used to introduce a momentum cutoff of
�. For this purpose it is convenient to use the projection
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operators [10]

η =
∫

d3k
(2π )3

|k〉〈k| θ (� − k), (1)

λ =
∫

d3k
(2π )3

|k〉〈k| θ (�̄ − k)θ (k − �), (2)

where �̄ > �. The RG equation for the reduced space effective
potential V� [4] can then be written as

∂V�

∂�
= V�G0

∂λ

∂�
V�, (3)

where G0 = (E − H0)−1 is the two-body free propagator and

∂λ

∂�
= −

∫
d3k

(2π )3
|k〉〈k| δ(k − �). (4)

Equation (3) can be derived from the reduced space Lippmann-
Schwinger equation

T = V� + V�ηG0T (5)

by using the fact that the off-shell scattering amplitude, T ,
does not depend on �.

Although Eq. (3) has been used to study nuclear EFT [4–9],
such investigations have been limited to the purely hadronic
sector. However, in a recent work NA have extended the scope
of such studies by deriving the corresponding RG equation for
the reduced space effective current operator O

µ
� [10]. Writing

this current operator as

O
µ
� = η�

µ
�η, (6)

the RG equation derived by NA can be expressed as

∂�
µ
�

∂�
= V�G0

∂λ

∂�
�

µ
� + �

µ
�

∂λ

∂�
G0V�. (7)

Here we provide the solution to Eq. (7), noting that the
solution given in Refs. [10,12,13] differs from ours. We find,
unambiguously, that

O
µ
� = η(1 − V�̄G0λ)−1O

µ

�̄
(1 − λG0V�̄)−1η

= η[1 + V�̄λG0(1 − V�̄G0λ)−1]Oµ

�̄
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× [1 + (1 − λG0V�̄)−1G0λV�̄]η

= η[1 + V�̄λ(E′ − H0 − V�̄λ)−1]Oµ

�̄

× [1 + (E − H0 − λV�̄)−1λV�̄]η, (8)

where O
µ
� is given at � = �̄ by its starting value O

µ

�̄
and V�̄

is the two-body interaction defined in the model space with the
cutoff �̄.1 The last line of Eq. (8) has been written in a form
that is most easily compared with Refs. [10,12,13].

To prove Eq. (8), we show explicitly that the corresponding
�

µ
�,

�
µ
� = (1 − V�̄G0λ)−1O

µ

�̄
(1 − λG0V�̄)−1, (9)

satisfies Eq. (7).2

We first use Eqs. (A2) to write Eq. (9) as

�
µ
� = (1 + V�G0λ)Oµ

�̄
(1 + λG0V�), (10)

and therefore

∂�
µ
�

∂�
= ∂V�G0λ

∂�
O

µ

�̄
(1 + λG0V�) + (1 + V�G0λ)

×O
µ

�̄

∂λG0V�

∂�
. (11)

The use of the RG equation for V�, Eq. (3), further gives

∂V�G0λ

∂�
= ∂V�

∂�
G0λ + V�G0

∂λ

∂�

= V�G0
∂λ

∂�
V�G0λ + V�G0

∂λ

∂�

= V�G0
∂λ

∂�
(V�G0λ + 1). (12)

Using this in Eq. (11) then gives the RG equation for the
current operator, Eq. (7).

Our solution, Eq. (8), should be compared with the solution
first given by NA in Ref. [10] and then used for RG analyses
in Refs. [10,12,13]:

O
µ
� = η[1 + V�̄λG0(1 − V�̄G0)−1λ]Oµ

�̄

× [1 + λ(1 − G0V�̄)−1G0λV�̄]η

= η[1 + V�̄λ(E′ − H0 − V�̄)−1λ]Oµ

�̄

× [1 + λ(E − H0 − V�̄)−1λV�̄]η. (13)

It is seen that our solution differs substantially from the one
of Ref. [10]; in particular, the interaction operator V�̄ in
the denominators (E′ − H0 − V�̄λ)−1 and (E − H0 − λV�̄)−1

of Eq. (8) is projected by λ, so that each intermediate
state in the perturbation series for (E′ − H0 − V�̄λ)−1 and
(E − H0 − λV�̄)−1 involves relative momenta restricted to
the interval � < k < �̄. By contrast, no such restriction on
momenta appears in the corresponding intermediate states of
Eq. (13).

1It is worth noting that Eq. (8) is just the expression for an
effective operator in the Bloch-Horowitz approach [14] or Feshbach’s
projection formalism [15] (with P = η and Q = λ).

2Equation (8) can also be derived directly from our definition of
�

µ

�, Eq. (22), by making use of Eqs. (A7) and Eqs. (A8).

III. UNAMBIGUOUS DERIVATION OF
THE CURRENT OPERATOR RG EQUATION

The RG equation for �
µ
�, Eq. (7), was derived in Ref. [10] as

only a sufficient condition for the � invariance of the physical
matrix element of O

µ
�:

∂
〈
O

µ
�

〉
∂�

= ∂

∂�
ψ̄βη�

µ
�(Eβ,Eα)ηψα = 0. (14)

That is, the equation used to define �
µ
� was chosen to be3

〈
O

µ
�

〉 ≡ ψ̄βη�
µ
�(Eβ,Eα)ηψα = ψ̄β�µ(Eβ,Eα)ψα, (15)

where

�µ(Eβ,Eα) ≡ O
µ

�̄
(Eβ,Eα) = η�

µ
�(Eβ,Eα)η

∣∣
�=�̄

(16)

can be identified with the current vertex function of the full
space [16] in the limit �̄ → ∞. The sandwiching two-body
wave functions ψ̄β and ψα include bound states and scattering
states whose relative momenta, p′ and p, respectively, are
smaller than the cutoff parameter: p′, p < �. Although not
emphasized in Ref. [10], this restriction is essential for the
derivation of Eq. (7) in the case of scattering states, and it also
prevents Eq. (15) from a possible mathematical inconsistency
of having more equations than the number of unknown
variables. This point is clarified under Eq. (22).

We stress that Eq. (7) is only a sufficient condition for
the � independence of ψ̄η�

µ
�ηψ , as expressed by Eq. (14),

even though this equation involves matrix elements between
all states ψ (bound and scattering). The exact nature of
this ambiguity can be illustrated by substituting either the
scattering state equation,

ψp(k) = (2π )3δ3(p − k) + G0(Ep, k)

×
∫

V�(Ep; k, k′)θ (� − k′)ψp(k′)
d3k′

(2π )3
, (17)

or the corresponding bound state equation, into Eq. (14) (here
Ep′ and Ep are the on-shell energies), thereby resulting in

ψ̄p′η
∂�

µ
�(Ep′ , Ep)

∂�
ηψp

= ψ̄p′ηV�(Ep′ )G0(Ep′ )
∂λ

∂�
�

µ
�(Ep′ , Ep)ηψp

+ ψ̄p′η�
µ
�(Ep′ , Ep)

∂λ

∂�
G0(Ep)V�(Ep)ηψp. (18)

Clearly Eq. (7) provides only a sufficient condition to guaran-
tee Eq. (18).

Here we eliminate the ambiguity in the validity of
Eq. (7) by showing that this RG equation is a sufficient and
necessary condition for � independence of the five-point
function ηGη�

µ
�ηGη. In other words, rather than basing

the RG approach to the current operator on the condition
[Eq. (15)]

ψ̄η�
µ
�ηψ = ψ̄�µψ (19)

3To save on notation we suppress total momentum variables from
the argument of �

µ

�.
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for all � < �̄, we suggest that it be based on the condition

ηGη�
µ
�ηGη = ηGµη (20)

for all � < �̄, where Gµ is the five-point function defined as

Gµ = Gη�
µ
�ηG

∣∣
�̄=�

= G�µG. (21)

We note that Gµ corresponds to the two-body Green function
G with all possible insertions of a current [16]. In the five-
point function ηGµη, neither the incoming nor the outgoing
two-body states are on the energy shell; by contrast, both
these states are on the energy shell in ψ̄�µψ . At the same
time, such five-point Green functions are necessary ingredients
for three-body currents where two-body subsystems are off-
shell. In this sense the use of ηGµη for the RG approach to
the current operator is naturally related to the RG approach
to the two-body interaction, where the cutoff independence
of the fully off-shell two-body scattering amplitude is used
[4]. Equation (20) thus defines the effective current vertex
�

µ
� so that the five-point Green function Gη�

µ
�ηG coincides

with the five-point Green function Gµ = G�µG if the relative
momenta of incoming and outgoing nucleons are below �.
Showing the two-body energy arguments, Eq. (20) is

ηG(E′)η �
µ
�(E′, E)ηG(E)η = ηGµ(E′, E)η

= ηG(E′)�µ(E′, E)G(E)η, (22)

where the external η’s ensure the above-mentioned restriction
on the relative momenta of incoming and outgoing particles.
Without this restriction, one would have the self-consistency
constraint �µ = η�

µ
�η, which would simply mean that the

model is cutoff by � from the very beginning, leaving us with
nothing further to be done.

The � independence specified by Eq. (22) leads to the RG
equation

ηG(E′)
∂η�

µ
�(E′, E)η

∂�
G(E)η = 0. (23)

The cutoff-independence condition of Eq. (15) differs
from the one of Eq. (22). It is also a weaker condition as
Eq. (15) follows from Eq. (22); i.e., Eq. (15) is a necessary
but not a sufficient condition for Eq. (22) to be satisfied.
The essential difference between these two conditions is that
Eq. (22) involves off-shell scattering amplitudes through
ηG(E)η, whereas Eq. (15) involves half-on-shell amplitudes
through the scattering states

ψp(k) = (2π )3δ(p − k) + G0(Ep, k)T (Ep; k, p). (24)

In this sense Eq. (15) looks more like an extension of the
RG approach discussed in Ref. [17] (which is based on the
independence of the half-on-shell scattering amplitude) to
the case of current operators. Moreover, Eq. (22) defines
�

µ
�(E′, E) unambiguously whereas there is an ambiguity in

its definition by Eq. (15) (this ambiguity has already been
pointed out in Ref. [10]).

To see the difference between these two conditions yet more
precisely, let’s write Eq. (23) in expanded form for the case of

scattering states:

∂

∂�

∫ [
(2π )3δ(p′ − k′) + T (E′; p′, k′)G0(E′, k′)

]

× d3k′

(2π )3
θ (� − k′)�µ

�(E′, E, k′, k)θ (� − k)
d3k

(2π )3

× [
(2π )3δ(k − p) + G0(E, k)T (E; k, p)

] = 0, (25)

where no restriction is put on E′ and E. Writing Eq. (14) in
a similar way, it becomes clear that only that part of Eq. (25)
corresponding to E = Ep, and E′ = Ep′ , reproduces Eq. (14).
With no restriction being put on the external relative momenta
p and p′ of Eq. (25) (apart from p′, p < �), one can invert the
external Green functions to obtain the RG equation for �

µ
�.

That is why the RG equation for �
µ
� is not only a sufficient

but also a necessary condition for Eq. (23), whereas it is only
a sufficient condition for Eq. (14).

To show explicitly how one obtains the RG equation
unambiguously, we use Eqs. (A6) and the shorthand notation
δ ≡ ∂η/∂� = −∂λ/∂� in the following:

0 = ηG
∂η�

µ
�η

∂�
Gη = ηG

(
η
∂�

µ
�

∂�
η + δ�

µ
�η + η�

µ
�δ

)
Gη

= ηGη
∂�

µ
�

∂�
ηGη + ηGδ�

µ
�ηGη + ηGη�

µ
�δGη

= ηGη
∂�

µ
�

∂�
ηGη + (ηG0 + ηGηV�G0)δ�µ

�ηGη

+ ηGη�
µ
�δ(ηG0 + G0V�ηGη)

= ηGη
∂�

µ
�

∂�
ηGη + ηGηV�G0δ�

µ
�ηGη

+ ηGη�
µ
�δG0V�ηGη + ηG0δ�

µ
�ηGη + ηGη�

µ
�δηG0

= ηGη

(
∂�

µ
�

∂�
+ V�G0δ�

µ
� + �

µ
�δG0V�

)
ηGη

+ ηG0δ�
µ
�ηGη + ηGη�

µ
�δηG0. (26)

Furthermore, as we are interested in external relative momenta
strictly below �, the last two terms of Eq. (26) are zero since
δη = 0. One can then invert ηGη in the reduced subspace by
acting on Eq. (26) with 1 − V�G0η from the right side and
with 1 − ηG0V� from the left:

0 = (1 − ηG0V�)ηGη

(
∂�

µ
�

∂�
+ V�G0δ�

µ
� + �

µ
�δG0V�

)

× ηGη(1 − V�G0η)

= G0η

(
∂�

µ
�

∂�
+ V�G0δ�

µ
� + �

µ
�δG0V�

)
ηG0, (27)

where Eqs. (A7) have been used. In this way we derive the RG
equation for the current operator, Eq. (7), unambiguously.

IV. CURRENT CONSERVATION

The question of how to properly implement current conser-
vation in EFT with a cutoff, so that gauge invariance is ensured
in practical calculations, is a subtle one [18]. Here we show
that the problem of current conservation in the RG approach is
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likewise not so simple (it is certainly not as simple as presented
in Ref. [10]).

To avoid the well-known problems of current conservation
in theories with a finite cutoff, we consider the simple case
where the starting cutoff is taken to infinity, �̄ = ∞. Then in
the best case we will have the usual two-body Ward-Takahashi
(WT) identities [11]

qµGµ(E′, E) = �0
0G(E) − G(E′)�0

0, (28a)

qµ�µ(E′, E) = G−1(E′)�0
0 − �0

0G
−1(E), (28b)

where �0
0 is the zero’th component of the current operator

�
µ

0 of two noninteracting particles and is specified for initial
(final) total four-momentum P = p1 + p2 (P ′ = p′

1 + p′
2)

and relative momentm p (p′) as

〈p′|�0
0(P ′, P )|p〉

= i(2π )3[e1δ(p′
2 − p2) + e2δ(p′

1 − p1)]

= i(2π )3[e1δ(p′ − p − q/2) + e2δ(p′ − p + q/2)]. (29)

It is important to realize that the WT identities of Eqs. (28) are
damaged after the introduction of a finite momentum cutoff
�. In particular, introducing the cutoff into Eq. (28a) gives

qµηGµ(E′, E)η = η�0
0G(E)η − ηG(E′)�0

0η. (30)

Because η�0
0G(E)η �= η�0

0ηG(E)η (the cutoff η does not
commute with �0

0), it is evident that Eq. (30) is not of the same
form as Eq. (28a), so it is not a usual WT identity. Similarly,
to see how the WT identity for current operator O

µ
� = η�

µ
�η

(which does depend on �) differs from the usual one, we use
Eq. (8) and Eq. (28b) to write

qµη�
µ
�(E′, E)η

= η[1 − V�̄G0(E′)λ]−1
[
G−1(E′)�0

0 − �0
0G

−1(E)
]

× [1 − λG0(E)V�̄]−1η

= η[1 + V�G0(E′)λ]
[
G−1(E′)�0

0 − �0
0G

−1(E)
]

× [1 + λG0(E)V�]η. (31)

This expression can be simplified using

G−1(1 + λG0V�) = G−1
0 − ηV� (32a)

(1 + V�G0λ)G−1 = G−1
0 − V�η, (32b)

which follow from the equations for G, Eqs. (A5a) and (A5b).
Thus,

qµη�
µ
�(E′, E)η

= η[G−1
0 (E′) − V�(E′)]η�0

0[1 + λG0(E)V�(E)]η

− η[1 + V�(E′)G0(E′)λ]�0
0η[G−1

0 (E) − V�(E)]η. (33)

Although Eq. (33) is not a usual WT identity, it still leads to
a conserved current due to the operators in the curly brackets,
[G−1

0 − V�]:

qµψ̄p′η�
µ
�(E′, E)ηψp = 0. (34)

Having derived the modified WT identity, Eq. (33),
it is easy to realize that there was no obligation of pushing the
starting cutoff to infinity. We could have started with a finite
cutoff �̄; however, our starting WT identities would then need
to be Eqs. (30) and (33) (with � replaced by �̄), instead of the

usual ones, Eqs. (28). In this way we would come to the same
result [Eqs. (30) and (33) for any � < �̄].

It is important to note that the modified WT identity,
Eq. (33), relates the reduced space effective current vertex
�

µ
�, only to the corresponding effective potential V� (V�̄

is not involved), and that it enters the WT identity only
with relative momenta below � for all physically interesting
low energy transitions. These properties are indispensable for
constructing a self-contained EFT in the reduced momentum
space [18].
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APPENDIX: USEFUL EQUATIONS

Here we gather together some standard equations of the RG
approach that are made use of in the main text. First, we note
that the solution of the RG equation for the effective potential,
Eq. (3), can be formally written in terms of the initial potential
V�̄ as

V� = (1 − V�̄G0λ)−1V�̄, (A1a)

= V�̄(1 − λG0V�̄)−1. (A1b)

These equations then give the useful relations

(1 − V�̄G0λ)−1 = 1 + V�G0λ, (A2a)

(1 − λG0V�̄)−1 = 1 + λG0V�. (A2b)

Second, we note that in this article we assume that a finite
value of �̄ defines the full model space. That is, all relative
momenta are assumed to lie within a sphere of radius �̄ so
that

η̄ ≡ η|�=�̄ = 1, λ̄ ≡ λ|�=�̄ = 0, (A3)

and

λ = 1 − η. (A4)

We also note that Eq. (5), and its reverse form T =
V� + T G0ηV�, implies that the two-body Green function
G ≡ G0 + G0T G0 satisfies the equations

G = G0 + (λG0 + Gη)V�G0, (A5a)

G = G0 + G0V�(λG0 + ηG), (A5b)

G = G0 + GV�̄G0, (A5c)

G = G0 + G0V�̄G. (A5d)

These then imply the following equations (together with their
reversed forms):

ηG = ηG0 + ηGηV�G0, (A6a)

ηG = ηG0 + ηGV�̄G0, (A6b)

ηGη = ηG0 + ηGV�̄G0η. (A6c)
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The first of these equations, and its reversed form, then
gives

ηGη(1 − V�G0η) = ηG0, (A7a)

(1 − ηG0V�)ηGη = G0η, (A7b)

while the last two equations of Eqs. (A6), and their reversed
forms, give

ηG = ηGη (1 − V�̄G0λ)−1 , (A8a)

Gη = (1 − λG0V�̄)−1 ηGη. (A8b)
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