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Low energy proton-proton scattering in effective field theory
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Low energy proton-proton scattering is studied in pionless effective field theory. Employing the dimensional
regularization and MS and power divergence subtraction schemes for loop calculation, we calculate the scattering
amplitude in the 1S0 channel up to the next-to-next-to leading order and fix low-energy constants that appear in
the amplitude by effective range parameters. We study the regularization scheme and scale dependence in the
separation of the Coulomb interaction from the scattering length and effective range for the S-wave proton-proton
scattering.

DOI: 10.1103/PhysRevC.76.064001 PACS number(s): 11.10.Gh, 13.75.Cs, 25.40.Cm

I. INTRODUCTION

Effective field theories (EFTs), which provide us a system-
atic perturbative scheme and a model-independent calculation
method, have become a popular method to study hadronic
reactions with and without external probes at low and in-
termediate energies. (See, e.g., Refs. [1–5] for reviews.) At
very low energies, the Coulomb interaction becomes essential
for the study of reactions involving charged particles. The
first consideration of the Coulomb interaction in a pionless
EFT was done by Kong and Ravndal (KR) for low energy
S-wave proton-proton (pp) scattering [6,7]. They calculated
the pp scattering amplitude up to next-to leading order
(NLO). For loop calculations, they employed dimensional
regularization with the minimum subtraction (MS) scheme
and so-called power divergence subtraction (PDS) scheme
suggested by Kaplan, Savage, and Wise [8,9]. Then KR
estimated a scattering length a(µ) for the pp scattering after
separating off the Coulomb correction where µ is the scale for
dimensional regularization. The leading order (LO) result of
a(µ) was almost infinite at µ = mπ where mπ is the pion
mass [6]. In addition, the LO a(µ) was highly dependent
on the value of µ. Including the NLO correction, they
obtained a(µ = mπ ) = −29.9 fm [7] which is comparable
to the value of the scattering length anp in the np channel,
anp = −23.748 ± 0.009 fm.1

The value of a(µ) deduced after separating the Coulomb
and strong interactions is particularly important in the study of
isospin breaking effects in the S-wave NN interaction [11,12].
The accurate value of anp is well known as quoted above, while
the values of the scattering length in the nn channel (ann) and
in the pp channel (app) still have considerable uncertainties.

There exists no direct nn scattering experiment because
of the lack of a free neutron target. The values of ann have
been deduced from the experimental data of π−d → nnγ

and nd → nnp reactions. Recent publications suggest ann =
−18.50 ± 0.05(stat.) ± 0.44(syst.) ± 0.30(th.) fm from the
π−d → nnγ process [13], and ann = −18.7 ± 0.6 fm [14],
−16.06 ± 0.35 fm [15], and −16.5 ± 0.9 fm [16] from the
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1See, e.g., Table VIII in Ref. [10].

nd → nnp process. As seen, the values of ann have significant
errors compared to that of anp, and the center values do not
seem to converge yet.2

For the pp channel, a very accurate value of the scattering
length aC = −7.828 ± 0.008 fm [19] and aC = −7.8149 ±
0.0029 fm [20] are available from the low energy pp scattering
data. It contains, however, contributions from both strong and
electromagnetic interactions, and thus we need to disentangle
the strong interaction from the electromagnetic interaction.
It was pointed out in potential model calculations that
there is a considerable model dependence in deducing the
value of the strong scattering length app from aC [19,21].
Some literature shows app = −17.1 ± 0.2 fm [19], while
a heavy-baryon chiral perturbation theory results in app =
−17.51 ∼ −16.96 fm [22] with uncertainties slightly larger
than those from the potential models.

In this work, we employ the pionless EFT [23] including the
Coulomb interaction between two protons [6,7] and calculate
the pp scattering amplitude with the strong NN interactions up
to next-to-next-to leading order (NNLO). Our main motivation
of this study is to see how the value of strong scattering
length a(µ = mπ ) = −29.9 fm obtained by KR from NLO
calculations may be improved by the inclusion of a higher
order correction. We find that the NNLO corrections turn out
to be quite small, but there is a considerable dependence of the
scattering length a(µ) on the renormalization schemes and the
scale parameter µ.

This paper is organized as follows. In Sec. II, we briefly
review the effective range formalism for the pp scattering.
In Sec. III, the pionless strong effective Lagrangian up to
NNLO is introduced. In Sec. IV, we calculate the S-wave pp

scattering amplitude up to NNLO. In Sec. V, we discuss the
regularization method and renormalization schemes employed
in this work. We renormalize low energy constants (LECs)
that appear in the strong NN interaction up to NNLO by
effective range parameters employing MS-bar (MS) and PDS
schemes and obtain numerical results for the strong scattering
length a(µ) and strong effective range r(µ). Discussion and

2Recently, there were proposals to determine the value of ann more
precisely by employing a formalism of EFT, from the π−d → nnγ

reaction [17] and neutron-neutron fusion, nn → de−ν̄e [18].
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conclusions are given in Sec. VI. In Appendix A, we show
detailed expressions of the amplitudes in NNLO. Detailed
calculations of the loop functions employing the dimen-
sional regularization and MS and PDS schemes are given in
Appendix B.

II. PROTON-PROTON SCATTERING IN
EFFECTIVE RANGE THEORY

The amplitude of the pp scattering can be decomposed
as [24]

T = TC + TSC, (1)

where TC is the pure Coulomb part and TSC is the “modified”
strong amplitude whose S-wave channel we calculate up to
NNLO in pionless EFT below.

The incoming and outgoing scattering states |�(±)
�p 〉 with the

potential V̂ = V̂C + V̂S , where V̂C and V̂S are the Coulomb and
strong potentials, respectively, are represented in terms of the
Coulomb states |ψ (±)

�p 〉 as

∣∣�(±)
�p
〉 = ∞∑

n=0

(
Ĝ

(±)
C V̂S

)n∣∣ψ (±)
�p
〉
, (2)

where Ĝ
(±)
C is the incoming and outgoing Green’s function

Ĝ
(±)
C (E) = 1

E − Ĥ0 − V̂C ± iε
. (3)

Here Ĥ0 = p̂2/M is the free Hamiltonian of two protons
and VC = e2/(4πr) is the repulsive Coulomb potential. The
Coulomb state |ψ (±)

�p 〉 is obtained by solving the Schrödinger

equation (Ĥ − E)|ψ (±)
�p 〉 = 0 with Ĥ = Ĥ0 + V̂C , and thus

one has ∣∣ψ (±)
�p
〉 = [1 + Ĝ

(±)
C V̂C

]| �p〉, (4)

where | �p〉 is the free wave state. The normalization of |ψ (±)
�p 〉 is

such that 〈ψ (±)
�p |ψ (±)

�q 〉 = (2π )3δ(3)( �p − �q). The amplitude TSC

is thus obtained by

TSC( �p′, �p) =
∞∑

n=0

〈
ψ

(−)
�p′
∣∣V̂S(Ĝ(+)

C V̂S)n
∣∣ψ (+)

�p
〉
. (5)

For l = 0 state, one has the amplitude

T l=0
SC = −4π

M

e2iσ0

p cot δ0 − ip
, (6)

where σl is the Coulomb phase shift σl = arg 	(1 + l + iη)
with η = αM/(2p). In the effective range expansion with the
Coulomb interaction, the modified strong phase shift δl for
l = 0 in low energy pp scattering is represented by effective
range parameters [25]:

C2
ηp cot δ0 + αMh(η) = − 1

aC

+ 1

2
r0p

2 − Pr3
0 p4 + · · · ,

(7)

where C2
η = 2πη/(e2πη − 1) and

h(η) = Re ψ(iη) − ln η. (8)

The ψ function is the logarithmic derivative of the 	 function
and Re ψ(iη) = η2∑∞

ν=1
1

ν(ν2+η2) − CE ; CE is the Euler’s con-
stant, CE = 0.577 215 · · ·. Effective range parameters aC, r0,
and P , are the modified scattering length, effective range, and
effective volume, respectively.

III. EFFECTIVE LAGRANGIAN

Pionless effective Lagrangian for strong S-wave NN

interaction up to NNLO reads [23,26]

L = N †

(
iD0 +

�D2

2mN

)
N − C0

[
NT P (1S0)

a N
]†

NT P (1S0)
a N

+ 1

2
C2
[
NT P (1S0)

a

↔
D

2
N
]†

NT P (1S0)
a N + h.c.

− 1

2
C4
(
NT P (1S0)

a

↔
D

2
N
)†

NT P (1S0)
a

↔
D

2
N

− 1

4
C̃4
[(

NT P (1S0)
a

↔
D

4
N
)†

NT P (1S0)
a N + h.c.

]
, (9)

where Dµ is the covariant derivative,
↔
D = 1

2 (
→
D − ←

D), and

P (1S0)
a is a projection operator for the two-nucleon 1S0 states,

P (1S0)
a = 1√

8
σ2τ2τa . Note that we retain two low energy

constants, C4 and C̃4, in NNLO.
The strong NN potential is expanded in terms of small

momentum as

V̂S = V̂0 + V̂2 + V̂4 + · · · , (10)

where V̂0, V̂2, V̂4 are LO, NLO, NNLO potential, respectively,
and the matrix elements of them are obtained from the
Lagrangian in Eq. (9) as

〈�q|V̂0|�k〉 = C0, (11)

〈�q|V̂2|�k〉 = 1
2C2(�q2 + �k2), (12)

〈�q|V̂4|�k〉 = 1
2C4 �q2�k2 + 1

4 C̃4(�q4 + �k4), (13)

where |�q〉 and |�k〉 are the intermediate free two-nucleon
outgoing and incoming states, respectively; 2�q and 2�k are
the relative momenta for the two protons.

In this work, we employ the standard counting rules of the
strong NN interaction with the PDS scheme in Refs. [7,8].
(We will discuss the PDS scheme in detail later.) For the
strong potential, the LO term C0 is counted as Q−1 order,
where Q denotes the small expansion parameter, and is
summed up to an infinite order. The NLO (C2) and NNLO
(C4, C̃4) terms are counted as Q2 and Q4, respectively, and
expanded perturbatively.3 We treat the Coulomb interaction

3Note that by changing the LECs C4 and C̃4 in another linear
combination, e.g., C4 = C ′

4 + C̃ ′
4 and C̃4 = C ′

4 − C̃ ′
4, one can easily

see that the term proportional to C̃ ′
4 in Eq. (13) vanishes when

|�q| = |�k|. The C̃ ′
4 term, the so-called off-shell term, is redundant

and vanishes when the external legs of the potential go on mass-shell.
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FIG. 1. (Color online) NLO diagrams for the S-wave pp scat-
tering. Gray blobs denote the two-proton Coulomb Green’s function
G

(+)
C , and two nucleon contact vertices denote the strong potential: the

(black) circle and the (red) square represent LO (C0) and NLO (C2)
vertices, respectively. Small double dots stand for the summation of
C0 terms up to the infinite order.

nonperturbatively using Green’s function G
(±)
C in Eq. (3). We

do not include higher order QED corrections such as the
vacuum polarization effects reported in Ref. [27].

IV. AMPLITUDES

The amplitude T l=0
SC for the S-wave pp scattering can be

written as

T l=0
SC = T

(0)
SC + T

(2)
SC + T

(4)
SC + · · · , (14)

where T
(0)

SC , T
(2)

SC , T
(4)

SC are LO, NLO, NNLO amplitudes,
respectively. By inserting the strong LO potential V̂0 in Eq. (11)
into the amplitude TSC in Eq. (5), we obtain the LO amplitude
T

(0)
SC in terms of loop functions ψ0 and J0:

T
(0)

SC =
∞∑

n=0

〈
ψ

(−)
�p′
∣∣V̂0
(
Ĝ

(+)
C V̂0

)n∣∣ψ (+)
�p
〉 = C0ψ

2
0 (p)

1 − C0J0(p)
, (15)

where

ψ0(p) =
∫

d3�k
(2π )3

ψ
(+)
�p (�k) =

∫
d3�k

(2π )3
ψ

(−)∗
�p (�k), (16)

J0(p) =
∫

d3�k′

(2π )3

d3 �q
(2π )3

〈�q|Ĝ(+)
C |�k′〉. (17)

Detailed calculations for the functions ψ0 and J0 are given in
Appendix B. T

(0)
SC is the summation of the LO strong potential

V̂0, that is, the C0 terms summed up to the infinite order.

At NLO we have four diagrams shown in Fig. 1.4 They are
proportional to C2 coming from V̂2, whereas the C0 terms are
summed up to the infinite order. The NLO amplitude is written
in terms of the loop functions ψ0, ψ2, J0, and J2 as

T
(2,a−d)

SC = C2ψ0

(1 − C0J0)2
[ψ2 + C0(ψ0J2 − ψ2J0)] , (18)

with

ψ2(p) =
∫

d3�k
(2π )3

�k2ψ
(+)
�p (�k) =

∫
d3�k

(2π )3
�k2ψ

(−)∗
�p (�k), (19)

J2(p) =
∫

d3 �q
(2π )3

d3 �q ′

(2π )3
�q ′2〈�q ′|Ĝ(+)

C |�q〉 =
∫

d3 �q
(2π )3

d3 �q ′

(2π )3

×〈�q ′|Ĝ(+)
C |�q〉�q2. (20)

Details for ψ2 and J2 are given in Appendix B. The NLO
amplitude T

(2)
SC consists of one C2 and a summation of the C0

terms up to the infinite order. These LO and NLO amplitudes
have already been obtained by KR in Ref. [7].

At NNLO, we have three sets of diagrams shown in
Figs. 2–4. From the first and second sets of diagrams shown in
Figs. 2 and 3, respectively, we see two NLO corrections to
the amplitude, and thus the NNLO amplitudes obtained from
the first and second sets of diagrams in Figs. 2 and 3 are
proportional to C2

2 . The NNLO amplitudes corresponding to
the diagrams in Fig. 2 can be written in terms of the functions
ψ0, ψ2, J0, and J2; whereas to express the amplitudes for the
diagrams in Fig. 3, we need a new function J22 given below.
In the third set of diagrams shown in Fig. 4, we have one
NNLO correction to the amplitude, and the NNLO amplitudes
for the diagrams in Fig. 4 are proportional to C4 or C̃4.
Explicit expressions of the NNLO amplitude from each of
the diagrams are given in terms of ψi with i = 0, 2, 4 and Jj

with j = 0, 2, 22, 4 in Appendix A.
Summing up the amplitudes obtained from the diagrams (a)

to (h) in Figs. 2 and 3, we have

T
(4,a−h)

SC

= C2
2

4(1 − C0J0)3

{
ψ2

0 J22(1 − C0J0) + ψ2
2 J0(1 − C0J0)2

+ 2ψ0ψ2J2
(
1 − C2

0J
2
0

)+ ψ2
0 J2(C0J2)(3 + C0J0)

}
, (21)

where

J22 =
∫

d3 �q
(2π )3

d3 �q ′

(2π )3
�q ′2〈�q ′|Ĝ(+)

C |�q〉�q2, (22)

whose details are given in Appendix B.
Summing up the amplitudes for the diagrams (i) to (l) in

4Figures were prepared using the program JaxoDraw [28] provided
by L. Theussl.
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FIG. 2. (Color online) Set 1 of NNLO
diagrams. See the caption of Fig. 1 for
details.

Fig. 4 gives us

T
(4,i−l)

SC = 1

2

C4

(1 − C0J0)2

[
ψ2

2 (1 − C0J0)2

+ 2ψ0ψ2C0J2(1 − C0J0) + ψ2
0 C2

0J
2
2

]

+ 1

2

C̃4

(1 − C0J0)2
[ψ4 + C0(ψ0J4 − ψ4J0)] ψ0,

(23)

where

ψ4 =
∫

d3�k
(2π )3

ψ
(−)∗
�p (�k)�k4 =

∫
d3�k

(2π )3
�k4ψ

(+)
�p (�k), (24)

J4 =
∫

d3 �q
(2π )3

d3 �q ′

(2π )3
�q ′4〈�q ′|Ĝ(+)

C |�q〉

=
∫

d3 �q
(2π )3

d3 �q ′

(2π )3
〈�q ′|Ĝ(+)

C |�q〉�q4. (25)

Calculations of ψ4 and J4 are given in Appendix B.

FIG. 3. (Color online) Set 2 of NNLO
diagrams. See the caption of Fig. 1 for
details.
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(j)

(i)

(k)

(l)

FIG. 4. (Color online) Set 3 of NNLO diagrams. Two-proton
contact vertices represented by (blue) diamonds denote strong NNLO
potential V4. See the caption of Fig. 1 for details.

V. REGULARIZATION METHOD AND
RENORMALIZATION SCHEMES

In the calculation of the loop functions J0, J2, J22, and J4

in Eqs. (17), (20), (22), and (25), we encounter infinities and
employ the dimensional regularization. We also employ the
PDS scheme, suggested by Kaplan, Savage, and Wise [8,9],
in which one subtracts the poles in d = 3 as well as those in
d = 4 space-time dimensions so that one obtains an expected
perturbation series in the expansion of the NN potential in
Eq. (10) with a given scale µ of the theory. We may check
the convergence radius, e.g., for the C2 term (relative to the
C0 term) in Eq. (10) and have 20(µ) ≡ √

C0(µ)/C2(µ) =
147(30.6) MeV with (without) the PDS terms at µ = mπ .
Thus a formal convergence of the perturbative series of the
NN potential in Eq. (10) is improved thanks to the PDS term,
and the theory would be valid up to p ∼ 20  140 MeV,
which is the large scale we assumed in the pionless theory.

The loop functions can be decomposed into a finite term and
an infinite one, e.g., J0 = J fin

0 + J div
0 with J fin

0 = −αM2

4π
H (η)

[the definition of the H (η) function is given in Appendix B]
and

J div
0 = − M

4π
µ + αM2

8π

[
1

ε
− 3CE + 2 + ln

(
πµ2

α2M2

)]
,

(26)

where J div
0 is calculated by the dimensional regularization in

d = 4 − 2ε dimensions and the PDS scheme. The first term
proportional to the scale µ in the right-hand side of Eq. (26)
is the PDS term, and CE is the Euler’s constant mentioned
earlier. The scattering amplitudes should be identical after
renormalization even if another renormalization scheme such
as the off-shell momentum subtraction scheme discussed in
Refs. [26,29] is employed. However, a(µ) and r(µ) do depend

on the renormalization schemes along with the value of the
renormalization scale µ. So, to be consistent with KR, we
calculate all the loop functions Ji with i = 0, 2, 22, 4 and the
wave functions ψj with j = 0, 2, 4 by using the dimensional
regularization and the PDS scheme in Appendix B.

The S-wave pp scattering amplitude in terms of the
effective range parameters is given by

T l=0
SC = −4π

M

C2
ηe

2iσ0

−αMH (η) − 1
aC

+ 1
2 r0p2 − Pr3

0 p4 + · · · ,

(27)

and thus one has

− 1

aC

+ 1

2
r0p

2 − Pr3
0 p4 + · · ·

= αMH (η) − 4π

M
C2

ηe
2iσ0

1

T l=0
SC

= αMH (η) − 4π

M

ψ2
0

T
(0)

SC


1 − T

(2)
SC

T
(0)

SC

− T
(4)

SC

T
(0)

SC

+
(

T
(2)

SC

T
(0)

SC

)2

+ · · ·

 . (28)

Comparing the coefficients of the terms proportional to p0, p2,
and p4 in both sides of Eq. (28), we have

− 1

aC

= −4π

M

{
1

C0
− J div

0 + C2

C2
0

[
αMµ + 1

2
(αM)2

+C0
πM

48
(αM)2µ

]
−
(

1

2

C4

C2
0

− C2
2

C3
0

)
(αM)2µ2

}
+O(α3), (29)

+ 1

2
r0 = 4π

M

[
C2

C2
0

− 2

(
1

2

C4

C2
0

+ 1

3

C̃4

C2
0

− C2
2

C3
0

)

× (αM)µ

]
+ O(α2), (30)

−Pr3
0 = 4π

M

(
1

2

C4

C2
0

+ 1

2

C̃4

C2
0

− C2
2

C3
0

)
, (31)

where we have expanded the right-hand side of Eqs. (29) and
(30) in the order of the fine structure constant α and neglected
the α3 (α2) and higher order terms in Eq. (29) [Eq.(30)]. With
three effective range parameters, we cannot determine the four
LECs uniquely. There are some arguments which can constrain
the values of C4 and C̃4. The C4 contribution in Eq. (29) is of
the order of µ2, and thus the first C̃4 contribution term is of
the lower order of µ than the C4 term.5 For this reason, the
C̃4 term is treated as an order higher than the C4 one [23],
and consequently the C̃4 term does not appear (at NNLO) in
Eq. (29). The other argument is based on the offshell-ness of
a term proportional to C4 − C̃4 [26].6 In this case, the term
proportional to C4 − C̃4 is redundant and thus can be removed

5Note that µ is regarded as a large scale, i.e., µ = mπ .
6See footnote 3.
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by assuming C4 = C̃4. Because both arguments seem to have
some grounds, to check the dependency of the results on the
values of C4 and C̃4 we consider the three cases: (1) C̃4 = 0
(Ref. [23]), (2) C4 = C̃4 (Ref. [26]), and (3) C4 = 0.

In Eq. (29) there is the J div
0 term explicitly given in Eq. (26).

In the MS scheme used by KR [6,7] one subtracts the infinite
term αM2

8π
1
ε

from J div
0 . One can use another scheme called the

MS scheme, in which finite terms are subtracted together with
the infinite term so that αM2

8π
[ 1
ε

− CE + ln(4π )] is subtracted.
Then we have

JMS
0 = − M

4π
µ + αM2

4π

[
ln
( µ

2αM

)
+ 1 − CE

]
. (32)

This leads to a significant subtraction scheme dependence in
the scattering length a(µ).

VI. NUMERICAL RESULTS

We may define the strong scattering length and the effective
range, respectively, in the zeroth order of α as [7]

1

a(µ)
= 4π

M

1

C0(µ)
+ µ,

1

2
r(µ) = 4π

M

C2(µ)

C2
0 (µ)

. (33)

Inserting the expressions of a(µ) and r(µ) in Eq. (33) into
Eqs. (29) and (30), we have

1

a(µ)
=
[

1

a(µ)

]
LO

+
[

1

a(µ)

]
NLO

+
[

1

a(µ)

]
NNLO

, (34)

r(µ) = r0 − (αM)

[
D3Pr3

0 µ + D4
r2

0 µ
1
aC

− µ

]
, (35)

where[
1

a(µ)

]
LO

= 1

aC

+ αM
[
ln
( µ

2αM

)
+ 1 − CE

]
, (36)[

1

a(µ)

]
NLO

= −1

2
αMr0µ − (αM)2

×
[

1

4
r0 + π2

12

r0µ
1
aC

− µ

]
, (37)

[
1

a(µ)

]
NNLO

= (αM)2

[
D1Pr3

0 µ2 − D2r0µ

12

r0µ
1
aC

− µ

]
,

(38)

and the term linear in αM in Eq. (35) is the NNLO
correction to r(µ). We have three sets of coefficients,
Xx(=1,2,3) = {D1,D2,D3,D4}, because of the additional con-
straints imposed on the LECs C4 and C̃4 mentioned before
Eq. (32). X1 = {1, 0, 4, 0} corresponds to case (1) C̃4 = 0;
X2 = {7/6, 1, 10/3, 1/6} corresponds to case (2) C̃4 = C4;
and X3 = {4/3,−10, 8/3, 1/3} to case (3) C4 = 0. We use
the values of effective range parameters

aC = −7.82 fm, r0 = 2.78 fm, P  0.022. (39)

We can also have explicit expressions for the LECs
C0(µ), C2(µ), C4(µ), and C̃4(µ) from Eqs. (34), (35), and (31)
with the constraints for C4 and C̃4.

In Fig. 5, we plot our result of the strong scattering length
a(µ) as a function of the scale parameter µ. In the left panel,
we plot three curves for the strong scattering length a(µ) up to
LO, NLO, and NNLO with the constraint C̃4 = 0 [case (1)].
We find that the NLO correction significantly improves the
estimation of a(µ), as shown by KR.

If one looks into the details more closely, however, there
is a quantitative difference in the results of LO and NLO
between the MS and MS schemes. The value of the LO
scattering length aLO(µ) at µ = mπ in the MS scheme, which
is obtained from Eq. (36), is aMS

LO (µ = mπ ) = −30.72 fm. The
LO contributions to a(µ) can be divided into three terms: 1/aC ,
the term proportional to a log function, and the remaining
ones proportional to αM . Evaluating each contribution, we
obtain 1/aC = −0.1279, αM ln( mπ

2αM
) = 0.0807, and αM(1 −

CE) = 0.0147 in units of fm−1 in the MS scheme. There is
a strong cancellation between 1/aC and the log term which
has the order of αM . Consequently 1/a(µ = mπ ) becomes
a small value, making its inverse large. In the case of the
MS scheme, the cancellation is stronger, having the log term

αM ln( πm2
π

α2M2 ) = 0.1247 and αM(−3CE + 2)/2 = 0.0047 in
units of fm−1. The cancellation of 1/aC and the terms
proportional to αM makes the value of 1/a(µ = mπ ) two
orders of magnitude smaller than 1/aC . As a result, one
gets an unrealistically huge scattering length, aMS

LO (µ = mπ ) =
738.62 fm. The strong dependence on the renormalization
schemes of the LO contribution to a(µ) makes the EFT result
somehow arbitrary.

The NLO contribution, Eq. (37), can be divided into terms
linear in αM and those proportional to (αM)2. The term linear
in αM is comparable in magnitude with the LO contribution
because of the cancellation in LO, as discussed above. More
precisely, we have 1/aMS

LO = −0.0325 and −αMr0µ/2 =
−0.0343 in units of fm−1. On the other hand, the numerical
value of the contribution proportional to (αM)2 is 0.0015 in
units of fm−1, which is about 5% of the terms linear in αM .

The NNLO contribution is very small, as can be seen from
the left and right panels in Fig. 5 and in Table I. The reason can
be easily found from the expressions for the NNLO terms in
Eq. (38). These terms are proportional to (αM)2. We observed
in NLO that the (αM)2 term is smaller than the αM order term
by an order of magnitude. The magnitude of (αM)2 terms in
NNLO ranges from about 20% to 300% of (αM)2 terms in
NLO, depending on the choice of the assumptions on C4 and
C̃4. Consequently, the NNLO correction to 1/a(µ) is about
1 ∼ 6% of the contributions up to NLO, depending on the
constraints of C4 and C̃4.

In Table I we show the estimated values of the
strong scattering length a(µ) and effective range r(µ) at

TABLE I. Numerical estimations (in units of fm) of
scattering length a(µ) and effective range r(µ) up to NLO
and NNLO without Coulomb effect at µ = 140 MeV.

NLO NNLO-1 NNLO-2 NNLO-3

a(µ) −14.98 −15.11 −15.18 −14.62
r(µ) — 2.73 2.78 2.82
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NNLO-3 FIG. 5. Strong scattering length

a(µ) in functions of the scale
parameter µ. In the left panel, a(µ)
is plotted for up to LO, NLO, and
NNLO. In the right panel, a(µ)
calculated up to NNLO are plotted
for the three different constraints for
C4 and C̃4, which are explained in the
text.

µ = mπ .7 The NNLO term itself varies by an order of
magnitude depending on the choice of the constraints on C4

and C̃4. However, as discussed in a previous paragraph, its
contribution to a(µ) is suppressed due to a higher order of αM

factor. As a result, the different choice of the constraints on C4

and C̃4 affects little the final result, only a few percents at most.
The first correction to r(µ) appears at NNLO and is linear in
αM , whereas the NLO correction to 1/a(µ) does in the αM

order. Contrary to the case of 1/a(µ) where the αM correction
plays a crucial role, the αM contribution to r(µ) amounts
to only about 2% of r0. Though the αM order corrections
to 1/a(µ) and r(µ) are of the same order of magnitude, the
(αM)0 order contribution to 1/aC is smaller than that of r0 by
an order of magnitude. Consequently, we have very contrasting
behaviors of a(µ) and r(µ).

Thus our results of the strong pp scattering length and
effective range up to NNLO, which are estimated by employing
the dimensional regularization and the MS and PDS schemes
at µ = mπ , can be summarized as

a(µ = mπ ) = −14.9 ± 0.3 fm, (40)

r(µ = mπ ) = 2.78 ± 0.05 fm, (41)

where the error bars are estimated by the uncertainties due to
the constraints on C4 and C̃4, which could play a similar role
to that of the model dependence in deducing the values of the
strong scattering length app and effective range r0,pp in the
potential model calculations.

VII. DISCUSSION AND CONCLUSIONS

In this work, we calculated the S-wave pp scattering
amplitude up to NNLO in the framework of the pionless EFT.
The loop functions were calculated by using the dimensional
regularization with the MS and PDS schemes. After fixing the
LECs by using the effective range parameters, we estimated
the strong scattering length a(µ) and the strong effective range
r(µ) as functions of µ. The LO contributions to 1/a(µ) are
composed of 1/aC and the terms depending on αM arising
from the loop diagrams. The smallness of 1/aC makes it

7We find a minimum point for a(µ) at µ  2/r0  142 MeV, which
is very close to the pion mass, µ = mπ .

comparable in magnitude to the αM terms in the same order.
Furthermore, because of the opposite signs of 1/aC and
the αM terms, there is a strong cancellation among them
and thus it makes the LO result for 1/a(µ) suppressed and
sensitive to the renormalization schemes. The NLO correction,
expanded in powers of αM , begins with the linear order
of αM . The linear αM order correction to a(µ) is of the
same order of magnitude as the αM terms in LO and thus
makes the NLO contribution crucial in both the MS and MS
schemes. The higher αM order terms in NLO, e.g., the terms
proportional to (αM)2, are suppressed to a few percents of the
leading contribution, so they can be regarded as perturbative
corrections to both a(µ) and r(µ). The NNLO terms give us
only a fairly minor correction to the results up to NLO. The
reason is partly attributed to the additional order counting of
the NNLO terms in powers of αM: the αM order corrections
in NNLO begin with (αM)2. Similar to the (αM)2 contribution
in NLO, the terms in NNLO produce small corrections to the
results. In conclusion, we can say that our investigation reveals
both bright and shadowy aspects of studying the strong pp

scattering length in EFT. Convergence from NLO to NNLO
is satisfactory, but the LO and NLO results are significantly
dependent on the renormalization schemes.

Though the quantities of the strong scattering length and
effective range from the pp scattering could be regarded as
physical quantities, it is unlikely that they can be determined
unambiguously without the subtraction scheme and renor-
malization scale dependence within the present framework
of EFT. Similar arguments can be found in Refs. [30,31].
Nevertheless, the strong pp scattering length and effective
range are important ingredients for better understanding of
the isospin nature of the NN interaction. The problem of the
strong pp scattering length may have to be approached at
various levels, from “first principle calculations” like lattice
QCD to more complex systems in which a(µ) [or equivalently
C0(µ)] plays a nontrivial role.
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APPENDIX A: AMPLITUDES IN NNLO

In this Appendix we present expressions of each of the
amplitudes in NNLO in terms of functions ψ0,2,4 and J0,2,22,4.
Detailed calculations of the ψ and J functions are given in
Appendix B. From diagram (a) in Fig. 2, we have

T
(4,a)

SC = 〈ψ (−)
�p′
∣∣V̂2Ĝ

(+)
C

∞∑
n=0

(
V̂0Ĝ

(+)
C

)n
V̂0G

(+)
C V̂2

∣∣ψ (+)
�p
〉

= C0

1 − C0J0

∫
d3 �q ′

(2π )3

〈
ψ

(−)
�p′
∣∣V̂2Ĝ

(+)
C |�q ′〉

×
∫

d3 �q
(2π )3

〈�q|Ĝ(+)
C V̂2

∣∣ψ (+)
�p
〉

= 1

4

C0C
2
2

1 − C0J0
(ψ0J2 + ψ2J0)2. (A1)

From diagrams (b) and (c) in Fig. 2, we have

T
(4,b,c)

SC = 〈ψ (−)
�p′
∣∣ ∞∑

n=0

(
V̂0G

(+)
C

)n
V̂0Ĝ

(+)
C V̂2Ĝ

(+)
C

×
∞∑

m=0

(
V̂0G

(+)
C

)m
V̂0G

(+)
C V̂2

∣∣ψ (+)
�p
〉

+ 〈ψ (−)
�p′
∣∣V̂2Ĝ

(+)
C

∞∑
n=0

(
V̂0G

(+)
C

)n
V̂0Ĝ

(+)
C V̂2Ĝ

(+)
C

×
∞∑

m=0

(
V̂0G

(+)
C

)m
V̂0

∣∣ψ (+)
�p
〉

= C2
0ψ0

(1 − C0J0)2

∫
d3 �q

(2π )3

d3 �q ′

(2π )3
〈�q ′|Ĝ(+)

C V̂2Ĝ
(+)
C |�q〉

×
∫

d3�k
(2π )3

[〈�k|Ĝ(+)
C V̂2|ψ (+)

�p 〉 + 〈ψ (−)
�p′ |V̂2Ĝ

(+)
C |�k〉]

= C2
0C

2
2ψ0J0J2

(1 − C0J0)2
(ψ0J2 + ψ2J0). (A2)

From diagram (d) in Fig. 2, we have

T
(4,d)

SC = 〈ψ (−)
�p′ |

∞∑
l=0

(V̂0Ĝ
(+)
C )l V̂0Ĝ

(+)
C V̂2Ĝ

(+)
C

×
∞∑

m=0

(
V̂0Ĝ

(+)
C

)m
V̂0Ĝ

(+)
C V̂2Ĝ

(+)
C

×
∞∑

n=0

(
V̂0Ĝ

(+)
C

)n
V̂0

∣∣ψ (+)
�p
〉

= C3
0ψ

2
0

(1 − C0J0)3

[∫
d3 �q ′

(2π )3

d3 �q
(2π )3

〈�q ′|Ĝ(+)
C V̂2Ĝ

(+)
C |�q〉

]2

= C3
0C

2
2ψ

2
0

(1 − C0J0)3
J 2

0 J 2
2 . (A3)

From diagram (e) in Fig. 3, we have

T
(4,e)

SC = 〈ψ (−)
�p′
∣∣V̂2Ĝ

(+)
C V̂2

∣∣ψ (+)
�p
〉

= C2
2

4

(
ψ2

0 J22 + ψ2
2 J0 + 2ψ0ψ2J2

)
. (A4)

From diagrams (f) and (g) in Fig. 3, we have

T
(4,f,g)

SC = 〈ψ (−)
�p′
∣∣ ∞∑

n=0

(
V̂0Ĝ

(+)
C

)n
V̂0Ĝ

(+)
C V̂2Ĝ

(+)
C V̂2

∣∣ψ (+)
�p
〉

+ 〈ψ (−)
�p′
∣∣V̂2Ĝ

(+)
C V̂2Ĝ

(+)
C

∞∑
n=0

(
V̂0Ĝ

(+)
C

)n
V̂0

∣∣ψ (+)
�p
〉

= 1

2

C0C
2
2ψ0

1 − C0J0

(
ψ0J

2
2 + 2ψ2J0J2 + ψ0J0J22

)
. (A5)

From diagram (h) in Fig. 3, we have

T
(4,h)

SC = 〈ψ (−)
�p′
∣∣ ∞∑

m=0

(
V̂0Ĝ

(+)
C

)m
V̂0Ĝ

(+)
C V̂2Ĝ

(+)
C V̂2Ĝ

(+)
C

×
∞∑

n=0

(
V̂0Ĝ

(+)
C

)n
V̂0

∣∣ψ (+)
�p
〉

= 1

4

C2
0C

2
2ψ

2
0

(1 − C0J0)2

(
3J0J

2
2 + J 2

0 J22
)
. (A6)

From diagram (i) in Fig. 4, we have

T
(4,i)

SC = 〈ψ (−)
�p
∣∣V̂4

∣∣ψ (+)
�p
〉 = 1

2C4ψ
2
2 + 1

2 C̃4ψ0ψ4. (A7)

From diagrams (j) and (k) in Fig. 4, we have

T
(4,j,k)

SC = 〈ψ (−)
�p′
∣∣ ∞∑

n=0

(
V̂0Ĝ

(+)
C

)n
V̂0Ĝ

(+)
C V̂4

∣∣ψ (+)
�p
〉

+ 〈ψ (−)
�p′
∣∣V̂4Ĝ

(+)
C

∞∑
n=0

(
V̂0Ĝ

(+)
C

)n
V̂0

∣∣ψ (+)
�p
〉

= 1

2

C0ψ0

1 − C0J0

[
2C4ψ2J2 + C̃4(ψ0J4 + ψ4J0)

]
.

(A8)

From diagram (l) in Fig. 4, we have

T
(4,l)

SC = 〈ψ (−)
�p′
∣∣ ∞∑

m=0

(
V̂0Ĝ

(+)
C

)m
V̂0Ĝ

(+)
C V̂4Ĝ

(+)
C

×
∞∑

n=0

(
V̂0Ĝ

(+)
C

)n
V̂0

∣∣ψ (+)
�p
〉

= 1

2

C2
0ψ

2
0

(1 − C0J0)2

[
C4J

2
2 + C̃4J0J4

]
. (A9)

APPENDIX B: LOOP FUNCTIONS

In this Appendix, we present ψ functions (ψ0, ψ2, ψ4) and
J functions (J0, J2, J22, J4) employing dimensional regular-
ization and the power divergent regularization scheme [7,8].
We first show the calculations of the ψ0, ψ2, and ψ4 functions
in Eqs. (16), (19), and (24).
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(i) ψ0: The Fourier transformation of the Coulomb wave
function ψ

(±)
�p (�r) is

ψ
(±)
�p (�k) =

∫
d3 �rψ (±)

�p (�r) e−i�k·�r , (B1)

with

ψ
(±)
�p (�r) =

∞∑
l=0

(2l + 1)ilR(±)
l (pr)Pl(cos θ ), (B2)

where cosθ = p̂ · r̂ . One has the relation �k · �r =
kr[cos θ cos θ̂ + sin θ sin θ̂ cos(φ − φ̂)], where �r and �k
are represented by (r, θ, φ) and (k, θ̂ , φ̂), respectively.
Now we choose φ̂ = 0 and then have∫ 2π

0
dφ e−ikr sin θ sin θ̂ cos φ = 2πJ0(−kr sin θ sin θ̂),

(B3)

where Jn is a Bessel function, and we have used
Bessel’s first integral, Jn(z) = 1

2πin

∫ 2π

0 dφeiz cos φ einφ .
Using the relations,∫ π

0
dθ sin θPl(cos θ )J0(−kr sin θ sin θ̂)e−ikr cos θ cos θ̂

= il

√
2π

−kr
Pl(cos θ )Jl+ 1

2
(−kr), (B4)

Jl(−z) = (−1)lJl(z), and jl(z) =
√

π
2z

Jl+ 1
2
(z), where

Eq. (B4) is obtained from Eq. (15) in Ref. [32], we
have

ψ
(±)
�p (�k) = 4π

∞∑
l=0

(2l + 1)Pl(cos θ̂ )

×
∫ ∞

0
dr r2R

(±)
l (pr)jl(kr). (B5)

Now we calculate ψ0 by the dimensional regulariza-
tion. The angular integration will pick up the l = 0 part
of the wave function; thus, we have

ψ0(p) =
(µ

2

)4−d
∫

dd−1�k
(2π )d−1

ψ
(+)
�p (�k)

= 4π
(µ

2

)4−d �d−1

(2π )d−1

∫ ∞

0
dr r2R

(+)
0 (pr)

×
∫ ∞

0
dk kd−2j0(kr)

= (2π )3/2
(µ

2

)4−d �d−1

(2π )d−1

∫ ∞

0
dr r3−dR

(+)
0 (pr)

×
∫ ∞

0
dρ ρd− 5

2 J 1
2
(ρ) . (B6)

Using the relation
∫∞

0 dt tα−1Jν(t) = 2α−1

	( 1
2 (2−α+ν))

	( α+ν
2 ), we have∫ ∞

0
dρ ρd− 5

2 J 1
2
(ρ) = 2d− 5

2
	
(

d−1
2

)
	
(

4−d
2

) . (B7)

Furthermore, from Eq. (6.64) of Ref. [24], we
have R

(+)
0 (pr) = eiσ0Cη1F1(1 + iη, 2; −2ipr)eipr ,

where 1F1(a; b; z) is the confluent hypergeometric
function (or Kummer’s function of the first kind).
Using the relation

∫∞
0 e−t t b−1

1F1(a, c; tz) =
	(b)2F1(a, b, c; z), where 2F1(a, b; c; z) is the
first hypergeometric function, we have∫ ∞

0
eiprr3−d

1F1(1 + iη, 2,−2ipr)

= 	(4 − d)(−ip)d−4
2F1(1 + iη, 4 − d, 2; 2),

(B8)

and thus

ψ0 = (2π )3/2
(µ

2

)4−d �d−1

(2π )d−1
eiσ0Cη

×	(4 − d)(−ip)d−4
2F1(1 + iη, 4 − d, 2; 2)

× 2d− 5
2
	
(

d−1
2

)
	
(

4−d
2

) . (B9)

There are no poles at d = 3 and 4 in Eq. (B9).
Using the relation 2F1(1 + iη, 0, 2; 2) = 1 and �d =
2πd/2/	(d/2), we have

ψ0 = eiσ0Cη. (B10)

(ii) ψ2:

ψ2(p) =
(µ

2

)4−d
∫

dd−1�k
(2π )d−1

ψ
(+)
�p (�k)�k2

= (2π )3/2
(µ

2

)4−d �d−1

(2π )d−1

∫ ∞

0
dr r1−dR

(+)
0 (pr)

×
∫ ∞

0
dρ ρd− 1

2 J 1
2
(ρ)

= (2π )3/2
(µ

2

)4−d �d−1

(2π )d−1
eiσ0Cη(−ip)d−2

×2F1(1 + iη, 2 − d, 2; 2)2d− 3
2
	
(

d+1
2

)
3 − d

	(4 − d)

	
(

4−d
2

) .

(B11)

For d = 4, we have

ψ2 = eiσ0Cη

(
p2 − 1

2
α2M2

)
, (B12)

where we have used the relation 2F1(1 +
iη,−2, 2, 2) = 1

3 − 2
3η2. For d = 3, we have

ψ
(d=3)
2 = −eiσ0CηαMµ

1

3 − d
+ · · · , (B13)

where we have used the relation 2F1(1 +
iη,−1, 2; 2) = −iη, and thus we have

ψ2 = eiσ0Cη

[
p2 − αMµ − 1

2
(αM)2

]
. (B14)

(iii) ψ4:

ψ4 =
(µ

2

)4−d
∫

dd−1�k
(2π )d−1

ψ
(+)
�p (�k)�k4
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= (2π )3/2
(µ

2

)4−d �d−1

(2π )d−1

∫ ∞

0
dr r−1−dR

(+)
0 (pr)

×
∫ ∞

0
dρ ρd+ 3

2 J 1
2
(ρ)

= (2π )3/2
(µ

2

)4−d �d−1

(2π )d−1
eiσ0Cη(−ip)d

× 2F1(1 + iη,−d, 2; 2)
2d+ 3

2 	
(

d+3
2

)
4(1 − d)(3 − d)

	(4 − d)

	
(

4−d
2

) .

(B15)

For d = 4, we have

ψ4 = eiσ0Cη

(
p4 − 5

6
α2M2p2 + 1

24
α4M4

)
,

(B16)

where we have used the relation 2F1(1 +
iη,−4, 2; 2) = 1

15 (3 − 10η2 + 2η4). For d = 3,

we have

ψd=3
4 = −4

3
eiσ0CηαMµ

(
p2 − 1

8
α2M2

)
1

3 − d

+ · · · , (B17)

where we have used the relation 2F1(1 +
iη,−3, 2; 2) = i

3η(−2 + η2). Thus we have

ψ4 = eiσ0Cη

{
p4 −

[
4

3
αMµ + 5

6
(αM)2

]
p2

+ 1

6
(αM)3µ + 1

24
(αM)4

}
. (B18)

Now we calculate loop functions J0, J2, J22, and J4 in
Eqs. (17), (20), (22), and (25) by using the results of
the ψ functions obtained above.

(iv) J0: The function J0(p) is given by [7]

J0(p) = M

∫
d3�l

(2π )3

2πη(l)

e2πη(l) − 1

1

p2 − l2 + iε
, (B19)

where l = |�l|. We now separate J0 into two parts as [7]

J0(p) = J div
0 + J fin

0 , (B20)

where

J div
0 = −M

∫
d3�l

(2π )3

2πη(l)

e2πη(l) − 1

1

l2
, (B21)

J fin
0 = M

∫
d3�l

(2π )3

2πη(l)

e2πη(l) − 1

1

l2

p2

p2 − l2 + iε
. (B21)

As J fin
0 is already calculated in Ref. [7], by changing

the parameter x = 2πη(l) and using the relation∫ ∞

0
dx

x

(ex − 1)(x2 + a2)

= 1

2

[
ln

(
1

2π

)
− π

a
− ψ

(
1

2π

)]
, (B23)

where ψ is the logarithmic derivative of the 	 function,
we have

J fin
0 = −αM2

4π
H (η) = −αM2

4π
h(η) − C2

η

M

4π
(ip),

(B24)

where η = αM/(2p),H (η) = ψ(iη) + 1
2iη

− ln(iη),
and h(η) = Re H (η).

Next we calculate the divergence part J div
0 in d =

4 − 2ε dimension as

J div
0 = −M

(µ

2

)4−d
∫

dd−1 �q
(2π )d−1

2πη(q)

e2πη(q) − 1

1

q2
.

(B25)

Changing the variable x = 2πη(q) = παM/q, we
have

J div
0 = −M

(µ

2

)4−d 2π (d−1)/2

(2π )d−1	
(

d−1
2

) (απM)d−3

×
∫ ∞

0
dx

x3−d

ex − 1

= −M
(µ

2

)4−d 2π (d−1)/2

(2π )d−1	
(

d−1
2

) (απM)d−3

×	(4 − d)ζ (4 − d), (B26)

where we have used the relation �d = 2πd/2/	(d/2),
and ζ (z) is Riemann’s ζ function. For d = 4 − 2ε, we
have

J div
0 = αM2

8π

[
1

ε
− 3γ + 2 + ln

(
πµ2

α2M2

)]
. (B27)

We also consider the pole for d = 3, known as the power
divergence subtraction (PDS) scheme pole. Using the
relation lims→1[ζ (s) − 1

s−1 ] = γ , we have the pole at
three-dimension

J div
0 = −µM

4π

1

3 − d
+ · · · , (B28)

and thus we include the PDS counter term and have

J div
0 = − M

4π
µ + αM2

8π

[
1

ε
− 3γ + 2 + ln

(
πµ2

α2M2

)]
.

(B29)

(v) J2:

J2 =
∫

d3 �q
(2π )3

d3 �q ′

(2π )3
�q ′2〈�q ′|Ĝ(+)

C |�q〉

= M

∫
d3 �q

(2π )3

ψ2(q)ψ∗
0 (q)

�p2 − �q2 + iε
. (B30)

Using the result of ψ2 in Eq. (B14), we get

J2(p) =
[
p2 − µαM − 1

2
(αM)2

]
J0(p) − �J2,

(B31)
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where

�J2 = M
(µ

2

)4−d
∫

dd−1�k
(2π )d−1

2πη(k)

e2πη(k) − 1

= M
(µ

2

)4−d �d−1

(2π )d−1
(παM)d−1

×	(2 − d)ζ (2 − d). (B32)

For d = 4, we have

�J2 = 1

4
πα3M4ζ ′(−2), (B33)

where ζ ′(−2) = −0.0304 · · ·. For d = 3, we obtain

�J
(d=3)
2 = 1

48
πα2M3µ

1

3 − d
+ · · · , (B34)

and by including the PDS counter term, we have

�J2 = πM

48
(αM)2µ + πM

4
(αM)3ζ ′(−2). (B35)

(vi) J22:

J22 =
∫

d3 �q
(2π )3

d3 �q ′

(2π )3
�q ′2〈�q ′|Ĝ(+)

C |�q〉�q2

= M

∫
d3 �q

(2π )3

ψ2(q)ψ∗
2 (q)

p2 − q2 + iε

= (p4 − 2Ap2 + A2)J0 − (p2 − 2A)�J2 − �J22,

(B36)

where A = µαM + 1
2 (αM)2, and

�J22 = M
(µ

2

)4−d
∫

dd−1 �q
(2π )d−1

�q2ψ0(q)ψ∗
0 (q)

= M
(µ

2

)4−d �d−1

(2π )d−1
(παM)d+1	(−d)ζ (−d).

(B37)

For d = 4, we have

�J22 = 1

48
π3α5M6ζ ′(−4), (B38)

where ζ ′(−4) = 0.00798 · · ·. For d = 3, we get

�J
(d=3)
22 = − 1

2880
π3α4M5µ

1

3 − d
+ · · · , (B39)

and thus we obtain

�J22 = −π3M

2880
(αM)4µ + π3M

48
(αM)5ζ ′(−4).

(B40)

(vii) J4:

J4 =
∫

d3 �q
(2π )3

d3 �q ′

(2π )3
�q ′4〈�q ′|Ĝ(+)

C |�q〉

= M

∫
d3 �q

(2π )3

ψ4(q)ψ∗
0 (q)

p2 − q2 + iε
. (B41)

Using the relation for ψ4 in Eq. (B18), we have

J4 =
{
p4 −

[
4

3
αMµ + 5

6
(αM)2

]
p2

+ 1

6
(αM)3µ + 1

24
(αM)4

}
J0

−
[
p2 − 4

3
αMµ − 5

6
(αM)2

]
�J2 − �J22.

(B42)
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