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Comment on “Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation
from a classical point of view”
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The phase-space paths introduced by Cheuk-Yin Wong in Phys. Rev. C [25, 1460 (1982)] and discussed
recently in the literature can be used for calculation of the evolution of the Wigner function to the first order in
time increments only. The first-order solutions are helpful in the determination the phase-space Green function
in the framework of the phase-space path integral method.
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Quantum trajectories exist in the de Broglie-Bohm theory
[1–3] and appear in the framework of the deformation
quantization [4–9] as the Weyl’s symbols of the Heisenberg
operators of canonical coordinates and momenta [10–14]. In
the de Broglie-Bohm theory, the particle trajectories play an
important role in the interpretation of measurements, whereas
within the deformation quantization framework quantum
trajectories have properties assigned to characteristic lines of
first-order partial differential equations (PDE). The evolution
equation for the Wigner function is the infinite-order PDE;
nevertheless, it can be solved with the help of quantum
characteristics. The interest in particle trajectories is motivated
by the fact that they remain a striking but intuitive feature of
transport models in heavy-ion collisions [15–18].

Already some time ago, Wong [19] proposed a new kind
of quantum trajectory for solving the evolution problem of
the Wigner function. Recently these ideas were discussed in
Refs. [20] and [21].

We wish to point out that the phase-space trajectories of
Ref. [19] can be used to find the evolution of the Wigner
function to the first order in time increments only.

Consider the double Fourier transform of the Wigner
function W (q, p, t):

W (q, p, τ ) =
∫

dsdp′

(2πh̄)3
exp

(
i

h̄
s(p − p′)

)
W ′(q, p′, τ ). (1)

We restrict ourselves to Hamiltonian functions of the form

H (q, p) = 1
2 p2 + V (q). (2)

Using representation (1), the quantum Liouville equation

∂

∂τ
W (q, p, τ ) = −W (q, p, τ ) ∧ H (q, p), (3)

where ∧ is the Moyal bracket [7–9], can be represented in the
form

0 =
∫

dsdp′

(2πh̄)3
exp

(
i

h̄
s(p − p′)

)(
∂

∂τ
+ p

∂

∂q

− i

h̄

(
V

(
q + s

2

)
− V

(
q − s

2

)))
W ′(q, p′, τ ). (4)

It is tempting to require

0
?=

(
∂

∂τ
+ p

∂

∂q
− i

h̄

(
V

(
q + s

2

)

−V
(

q − s
2

)))
W ′(q, p′, τ ). (5)

This is the first-order PDE. It can be solved using the method
of characteristics:

W ′(q, p′, τ ) = W ′(q − pτ, p′, 0)

× exp

(
i

h̄

∫ τ

0
dτ ′

(
V (q − p(τ − τ ′) + s

2

)

−V

(
q − p(τ − τ ′) − s

2

))
. (6)

We observe that Eq. (5) and its solution, Eq. (6), depend on s
and p.

Given the dependence on s enters into W ′(q, p′, τ ), equation
W (q, p, τ ) ≡ W ′(q, p, τ ) does not hold anymore; however,
Eq. (4) is still valid. The appearance of s in W ′(q, p′, τ ) does
not violate the equivalence of Eqs. (3) and (4). However, given
the dependence on p enters W ′(q, p′, τ ), Eq. (4) becomes
distinct from Eq. (3).

There is, therefore, the obvious shift in the definition of
W ′ from Eq. (1) to Eq. (5), because W ′ depends in Eq. (5)
on a parameter. This parameter, p, is not strictly related to the
same notation in Eq. (1) on which W depends but W ′ does
not. The arguments leading to Eqs. (5) and (6) are thereby not
founded.

On the other hand, suppose that Eq. (6) holds nevertheless.
Consider the evolution of a one-dimensional oscillator with
a potential V (q) = 1

2q2. The Wigner function of the ground
state has the form

W (q, p) = 2 exp(−q2/h̄ − p2/h̄). (7)

Applying Eqs. (1) and (6), we obtain

W (q,p,τ )
??= 2 exp(−(q + pτ )2/h̄ − (p − qτ − pτ 2/2)2/h̄).

(8)
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The Wigner function of stationary states does not depend on
time. This particular contradiction proves that Eqs. (5) and (6)
are incorrect for finite τ .

Equation (8) holds, however, to order O(τ ). One can verify,
indeed, that Eq. (6) upon the double Fourier transform (1) gives
the Wigner function correct to order O(τ ).

In Ref. [21] a numerical example is considered to compare
the exact evolution of the Wigner function with the Wigner
function calculated by the infinitesimal step-by-step evolution
according to Eq. (6). A discrete form of the phase-space path
integral is calculated per se. Equation (6) in its infinites-
imal form leads to the representation of the path integral
discussed by Leaf [22] and Marinov [23]. The first-order
solution is therefore useful to obtain the correct numerical
results [21].

The role of trajectories entering the phase-space path
integral is distinct from the role of characteristics in phase
space. Particle trajectories of the de Broglie-Bohm theory
depend on quantum states. To find them one has to know
the wave function. The phase-space trajectories appearing as
the Weyl’s symbols of the Heisenberg operators of canonical
coordinates and momenta are currently the only known objects
that can be treated as quantum characteristics. They constitute
the complete information on the evolution of quantum systems
and can be used to find the evolution of the Wigner function
for finite time intervals.

The authors acknowledge useful discussions with Professor
Amand Faessler.
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