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Neutron-proton pairing reexamined
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We reexamine neutron-proton pairing as a phenomenon that should be explainable in a microscopic theory
of nuclear binding energies. Empirically, there is an increased separation energy when both neutron and proton
numbers are even or if they are both odd. The enhancement is present at some level in nearly all nuclei: the
separation energy difference has the opposite sign in less than 1% of the cases in which sufficient data exist.
We discuss the possible origin of the effect in the context of density functional theory (DFT) and its extensions.
Neutron-proton pairing from mean-field theory does not seem promising to explain the effect. Gao and Chen have
argued that a significant part of the increased binding in odd-odd deformed nuclei might arise as a recoupling
energy, and we find a similar result for spherical nuclei. This suggests that the DFT should be extended by angular
momentum projection to reach an accuracy capable of treating this effect.
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It has long been known that nuclear binding has a mild
dependence on the combined even-odd parities of proton and
neutron numbers [1–3]. Except for the study of Gao and Chen
[4], there has been very little quantitative theoretical work to
describe the phenomenon. In this Brief Report we re-examine
the systematics and make some suggestions concerning the
necessary theory to treat it.

The neutron-proton pairing effect is ubiquitous in the
nuclear mass table. To see it visually, we show in Fig. 1
the neutron separation energies of an isotone chain, neutron
number N = 28, as a function of proton number Z. Plotted
is the separation energy, related to the binding energy by
Sn(N,Z) = B(N,Z) − B(N − 1, Z). One sees that the neu-
tron separation energies for even Z are systematically larger
than the average of the separation energies for the neighboring
odd-Z nuclei. Similar behavior is found for proton separation
energies Sp in chains of isotopes. In that case Sp is greater
if the number of neutrons is even than when the number of
neutrons is odd.

To study this behavior in more detail, we examine the sepa-
ration energy differences Sn2p, Sp2n, defined as the difference
between the separation energy and the average for the two
neighboring nuclei. This is

Sn2p = Sn(N,Z) − [Sn(N,Z + 1) + Sn(N,Z − 1)]/2
(1)

Sp2n = Sp(N,Z) − [Sp(N + 1, Z) + Sp(N − 1, Z)]/2

for neutrons and protons, respectively. These measures were
first introduced by Jensen et al. [5]. Using this notation, the
usual measure for ordinary pairing is given by Ref. ( [1]
Eqs. 2–92, 2–93)

2�n ≡ Sn2n = Sn(N,Z) − [(Sn(N + 1, Z)

+ Sn(N − 1, Z)]/2 (2)

for the neutron gap, �n, and similarly Sp2p gives the proton
gap. Most earlier studies of neutron-proton pairing used
different measures for the effect. In early fits of the measured
binding energies [3,6], the effect was parametrized as δ ∼

mod(N, 2) mod(Z, 2)/A and attributed to an enhancement
in the neutron-proton interaction. In Ref. [7], the parame-
terization was changed to one have an approximate A−2/3

dependence on nuclear mass number,

δ = K mod(N, 2) mod(Z, 2)/A2/3. (3)

In Ref. [8] a nine-point difference formula was proposed
to describe a neutron-proton pairing energy. This is to be
compared the six-point difference formula we use in Eq. (1).
We also mention the shell-based mass fits of Zeldes [2], which
invoke a shell-dependent term similar to δ.

The signs of Sn2p and Sp2n are remarkably consistent across
the nuclear mass table. Taking experimental data from the
2003 Audi-Wapstra mass tables [9], there are 1412 nuclei that
have values of Sn2p that are significant, i.e., have magnitudes
larger than the accumulated error in the experimental binding
energies needed to construct the difference. Of these only 10
nuclei had a sign for Sp2n opposite to that seen in Fig. 1.
Of the 1448 measured proton separations Sn2p, only nine
had the opposite sign. The nuclei with significant values of
Sp2n for proton separations are shown in Fig. 2, with the few
opposite-sign cases shown as the black squares. The plot for
neutron separations is very similar. There is concentration in
the light nuclei near the N = Z line but no obvious pattern
elsewhere.

We next display the magnitude of the separation energy
differences as a function of the mass numbers, A, of the
nucleus. This is plotted in Fig. 3. There is a great deal of
scatter, but the trend is consistent with an A−2/3 dependence
as in Eq. (3). The heavy line shows a least-squares fit to the
data, |Sp2n| = 7.3/A2/3 MeV. The values for |Sn2p| have a
similar distribution. An obvious question is whether the size
of the effect correlates with proximity to shell closures. To see
if there any obvious trends, we plot in Fig. 4 the measured
nuclei whose |Sp2n| is larger than the average. There is no
visible dependence on shell closures. The behavior of |Sn2p| is
very similar in that there is no obvious pattern in the location
of the larger values.
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FIG. 1. Neutron-proton pairing effect as seen in the neutron
separation energy for N = 28 as a function of proton number Z.
There is a consistent offset of the separation energies of odd-Z nuclei
as compared with the average of the neighboring even-Z nuclei.

There is another strong neutron-proton pairing effect that
does not appear in nuclei away from the N = Z, the Wigner
energy. It is often expressed [10]

W (A)|N − Z| + d(A)δNZ[1 − mod(N, 2)][1 − mod(Z, 2)].

(4)

The second term has the obvious form of a neutron-proton
pairing. The Wigner energy has been much discussed in the
the literature (see, e.g., Refs. [10,11]) and we have nothing to
add here. Note however that the most of the cases where Sn2p

or Sp2n has the opposite sign are for nuclei near N = Z.
We now turn to the question of how to understand the global

neutron-proton pairing effect. The enhanced binding could
arise by an increased attraction between an odd neutron and
an odd proton. It could also arise by a mechanism that produced
an increased binding in a nucleus with even numbers for both
protons and neutrons. There is no way to distinguish these
pictures by the observed systematics of the separation energy
differences, because even-even and odd-odd binding energies
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FIG. 2. Nuclei with measured proton separation energy differ-
ences Sp2n showing the cases (black squares) with opposite sign from
the normal.

 0.01

 0.1

 1

 100

|S
p2

n
|

 A 

FIG. 3. |Sp2n| as a function of A. The line shows the A−2/3 fit
Eq. (3) with K ′ = 7.3 MeV.

contribute to the separation energy difference with the same
weights. Both pictures are consistent with the strong similarity
between the proton and neutron separation energy differences.
Still, it is important to understand the origin of the effect if
one is to construct accurate theories of nuclear binding based
on microscopic theories such as the self-consistent mean-field
theory, also called density functional theory (DFT) [12,13].

We first examine whether the usually DFT treatment
produces a significant neutron-proton pairing. We calculated
values of Sn2p for a small sample of cases for which the
measured values are large. Also, we have picked cases where
N − Z > 6 to avoid the influence of the Wigner energy. To
carry out these calculations we used the code ev8 [14] with
the SLy4 density functional that is widely used for global
studies [15]. Ordinary nn and pp pairing are treated in the
BCS approximation. The code was modified to calculate the
binding energies for odd-even, even-odd, and odd-odd isotopes
by blocking the odd orbitals. The modification allowed the odd
nucleon to occupy a quasiparticle orbital near the Fermi level
of the even neighbor. With this modification, ev8 treats the
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FIG. 4. Chart of nuclides showing those that have |Sp2n| values
higher than the average trend |Sp2n| = 7.3/A2/3 MeV.
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TABLE I. Comparison of DFT+BCS calculations of Sn2p

with measured values. Energies are in MeV.

N Z Calculated Measured

27 21 −0.023 0.526
37 27 −0.047 0.616
40 32 −0.049 0.699

interaction of the odd particles due to the time-even fields
generated by the energy functional. The calculated values for
Sn2p are compared to the measured values in Table I. It can be
seen that these are all more than an order of magnitude smaller
than the measured values. It is clear that some extension is
needed to the usual DFT+BCS with time-even fields.

Next we discuss an explicit treatment of neutron-proton
pairing in the framework of a generalized HFB theory. The
extension of DFT in this way is formally quite straightforward
[16]. Certainly, at the N = Z line neutron-proton pairing is on
the same footing as like-particle pairing and could contribute
to the Wigner energy. It is usually parametrized in a way that
does not exhibit a neutron-proton pairing effect away from the
N = Z line and we shall consider it irrelevant to explain the
effect. There have also been limited studies of neutron-proton
pairing in the HFB theory [11,17,18]. Typically, away from
the N = Z line, condensates form in the like-particle sectors
and prevent any pairing between neutrons and protons. We
therefore doubt whether the effect can be explained without
make some extension of the usual DFT+HFB theory.

There is a possible mechanism that only requires a mild
extension of the DFT. That is to exploit the higher degeneracy
of states in the odd-odd nucleus to recouple the neutron and
proton more favorably. This is easiest to understand in the
situations where the mean-field theory approaches either the
spherical shell model or the strongly deformed limit. Indeed,
Zeldes and Liran [2] may have had this mechanism in mind
in their shell-based mass parametrization. For the shell-model
limit, consider even-even nucleus (N,Z) that has a spherical
mean field. An added neutron goes into a spherical shell jn

with an energy εjn
. Similarly, an added proton goes into a shell

jp. When there are both added neutrons and protons, there is an
additional neutron-proton interaction energy 〈jnjp|Vnp|jnjp〉J
depending on the angular momentum of the pair J . The neutron
separation energies for the nuclei with proton numbers Z,Z +
1, Z + 2 are, respectively,

Sn(N + 1, Z) = −εjn
(5)

Sn(N + 1, Z + 1) = −εjn
− 〈jnjp|Vnp|jnjp〉Jg

(6)

Sn(N + 1, Z + 2) = −εjn
− 〈

jn

(
j 2
p

)J=0∣∣Vnp

∣∣jn

(
j 2
p

)J=0〉
jn

. (7)

In the second equation, Jg denotes the angular momentum of
the odd-odd nucleus ground state. The last equation gives the
neutron separation energy for the nucleus with two additional
protons. Here the angular momentum coupling is determined
by the three-particle wave function. In the spherical shell
model, the two protons are coupled to angular momentum
zero in the three-particle wave function |jn(j 2

n )J=0〉. Stan-
dard angular momentum recoupling gives the neutron-proton

interaction as
〈
jn

(
j 2
p

)J=0∣∣Vnp

∣∣jn

(
j 2
p

)J=0〉
jn

= 2
jn+jp∑

J=|jn−jp |
(2J + 1)〈jnjp|

× |Vnp|jnjp〉J /(2jn + 1)(2jp + 1). (8)

Thus, in the shell model, the additional energy of the odd
neutron when the proton pair is added is twice the (2J + 1)-
weighted average over the possible neutron-proton couplings.

This value can be estimated empirically from the spectrum
of the odd-odd nuclei as the quantity

δs =
jn+jp∑

J=|jn−jp |
(2J + 1)EJ /(2jn + 1)(2jp + 1). (9)

Here EJ are measured excitation energies of the levels of the
multiplet in the odd-odd nucleus. The quantity δs is thus a
measure of the enhancement of the neutron separation energy
for an odd neutron in a nucleus with an odd number of
protons.

For most odd-odd nuclei, the recoupling spectrum is
difficult to determine due to the presence of other levels.
However, near doubly magic nuclei it is often possible to
make a spectroscopic identification [19]. Some cases where
we could plausibly assign the members of the multiplet are
shown in Table II. These results are also shown in Fig. 5.
The recoupling energy δs has the same order of magnitude as
the separation energy differences and also varies from case to
case in a similar way. However, there is considerable scatter
leaving room for other mechanisms is to have a role.

The recoupling effect has also be estimated in strongly
deformed nuclei [4]. Odd-odd deformed nuclei have a two-
fold degeneracy of the ground state depending on whether
the K quantum numbers of the odd particles are parallel
or antiparallel. The quantity analogous to δs in Eq. (3) is
half the energy difference of the two intrinsic states. The
K-dependent interaction energies have been tabulated [21] and
compared with the separation energy differences in Ref. [4].
The recoupling energies are significant but about a factor of
two smaller than the separation energy differences.

TABLE II. Comparison of neutron-proton pair interaction
energies with the recoupling model [Eq. (9)]. Energies are in MeV.
The quantity δs is defined in Eq. (9).

N Z Sp2n Sn2p δs

21 19 0.49 0.32 0.44
27 21 0.39 0.53 0.70
29 21 0.25 0.30 0.32
29 27 0.30 0.31 0.38
29 29 0.81 0.78 0.65
33 27 0.20 0.29 0.15
81 51 0.24 0.22 0.14

125 83 0.03 0.03 0.06
127 81 0.15 0.04
127 83 0.36 0.36 0.42
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FIG. 5. Scatter plot of δs , Eq. (3), compared with Sp2n (solid
squares) and Sn2p (circles). The nuclei plotted are 40K, 48Sc, 50Sc,
56Co, 60Co, 58Cu, 208Tl, 208Bi, and 210Bi.

Independently, we have examined whether the separation
energy differences are altered in deformed nuclei. One might
expect the recoupling effect to be smaller in deformed
nuclei because of the greater restriction on orientations. We
took the classification of deformed nuclei from Ref. [20],

which used the theoretical criterion that the static defor-
mation of the nucleus be larger than the fluctuations about
the minimum. There are 92 nuclei with measured Sn2p

that meet the criterion. Fitting Eq. (3) to these nuclei, we
find a slightly lower value for K , 5.7 MeV compared to
7.3 MeV. Also a larger fraction of the deformed nuclei have
very small values of the separation energy differences: 23%
of the deformed nuclei have Sn2p less than 3.7/A2/3 MeV
versus 9% for the other nuclei. The difference is not very
large, suggesting that other mechanism beyond the recoupling
effect may be needed.

In conclusion, neutron-proton pairing is pervasive in the
nuclear mass table, but there is no apparent systematic theory
that can account for it. The effect is clearly beyond the mean-
field theory calculated with the usual BCS pairing. We regard
HFB with static neutron-proton pairing as unlikely to explain
the effect. We showed that recoupling effects in the odd-odd
nucleus can account for much of the effect in some nuclei.
Other correlation effects may have a role as well and should
be investigated.
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[16] E. Perlińska, S. G. Rohozinski, J. Dobaczewski, and
W. Nazarewicz, Phys. Rev. C 69, 014316 (2004).

[17] O. Civitarese, M. Reboiro, and P. Vogel, Phys. Rev. C 56, 1840
(1997).

[18] W. Satula and R. Wyss, Phys. Lett. B393, 1 (1997).
[19] Brookhaven Evaluated Nuclear Structure Data File,

http://www.nndc.bnl.gov/ensdf/.
[20] B. Sabbey, M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys.

Rev. C 75, 044305 (2007).
[21] J. P. Boisson, R. Piepenbring, and W. Ogle, Phys. Rep. 26, 99

(1976).

057301-4


