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Dependence of the wave function of a bound nucleon on its momentum and the EMC effect
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It is widely discussed in the literature that the wave function of the nucleon bound in a nucleus is modified
by the interaction with the surrounding medium. We argue that the modification should strongly depend on the
momentum of the nucleon. We study such an effect in the case of the pointlike configuration component of the
wave function of a nucleon bound in a nucleus A, considering the case of arbitrary final states of the spectator
A − 1 system. We show that for nonrelativistic values of the nucleon momentum, the momentum dependence
of the nucleon deformation appears to follow from rather general considerations and discuss the implications of
our theoretical observation for two different phenomena: (i) the search for medium-induced modifications of the
nucleon radius of a bound nucleon through the measurement of the electromagnetic nucleon form factors via the
A(e, e′p)X process and (ii) the A dependence of the EMC effect.
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I. INTRODUCTION

One of the main challenges in particle physics, nuclear
physics, and astrophysics is the necessity to achieve unam-
biguous understanding of the physics of cold dense nuclear
matter, the limiting mass and radius of neutron stars, and many
other questions that deeply interconnect astrophysics with the
physics of particles and nuclei. To this end, it is important
to reliably evaluate the modifications of the wave function
of a nucleon embedded in dense nuclear matter. The labora-
tory investigation of the quark-gluon structure of a nucleon
bound within a nucleus may help to quantify this important
phenomenon. Twenty-five years after the discovery of the
suppression of the nucleus structure function as compared
to that for a free nucleon at moderate value of the Bjorken
scaling variable x—the EMC effect (see, e.g., Ref. [1])—its
origin remains a matter of considerable discussion. Various
effects have been advocated to explain it, including (a) the
modification of the bound nucleon structure function owing to
(i) possible change of nonperturbative QCD scale in nuclei [2],
(ii) meson-nucleon interactions [3], (iii) and the dependence
of the strength of the nucleon interaction upon the size of the
quark-gluon configuration, which leads to oscillations of this
effect as the function of nuclear density [4]; (b) the presence
of non-nucleonic dynamic degrees of freedom in the nucleus
(see, e.g., Ref. [5]), which carry a fraction of the total nucleus
momentum, leading to depletion from one of the fraction of
nucleus momentum carried by nucleons; and (c) relativistic
effects resulting from nucleon binding and Fermi motion [6,7]
and models using the Bethe-Salpeter vertex function as nucleus

wave function [8]. Experiments at Jlab, especially after the
12-GeV upgrade, will be able to break the deadlock through a
series of dedicated experiments (see, e.g., Ref. [9]).

A certain restriction on the models follows from the
investigation of the Drell-Yan process [10], which found
no enhancement of the antiquark distribution in nuclei. It
appears difficult to explain this fact within models where the
non-nucleonic degrees of freedom are mesons. The conclusion,
which follows solely from the requirements of baryon charge
and momentum conservation, is that the EMC effect signals
the presence of non-nucleonic degrees of freedom in nuclei,
though it is not yet clear which are the most relevant
ones.

A possibility, which is discussed in a number of models
of the nucleon, is that the bound nucleon wave function
is deformed by the presence of nearby nucleons. A dis-
tinctive property of QCD, which is a consequence of color
gauge invariance, is that different components of the hadron
wave function interact with different strengths. The extreme
example is the pointlike configurations (PLCs) in hadrons,
which have interaction strength much smaller than average,
leading to the phenomenon of color transparency (for a
recent review see, e.g., Ref. [11]). This phenomenon has been
recently observed for the process of coherent high-energy pion
dissociation into two jets [12], with various characteristics of
the process consistent with the original QCD predictions [13].
There is also evidence for color transparent (CT) effects in
quasielastic production of ρ mesons off nuclei, investigated
first by the E665 experiment at FNAL [14] and, recently, by
the HERMES experiment at DESY [15]. The data of HERMES
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are well described by a model [16] that takes into account the
squeezing of the qq̄ state in the production vertex and its
expansion while propagating through the nucleus.

We will consider in this paper the effect of the suppression
of PLCs in bound nucleons, extending the analysis to the
case of a nucleon bound in 3He and in complex nuclei, with
the spectator system being in specific energy states. Similar
to Refs. [4,17] we find that the effect of suppression of
PLCs strongly depends on the momentum of the nucleon.
Moreover, by taking into account the energy state of the
spectator A − 1 system, we find a new effect, namely a strong
dependence of the effect on the excitation energy of the
residual system. Overall the analysis of the derived formula
allows us to establish the connection with another language,
which explores the concept of off-mass-shell particles. In
fact, we find that the effect depends on the virtuality of the
interacting nucleon defined via the kinematics of the spectator
system.

More generally, we will argue that a strong dependence
of the deformation of the nucleon wave function upon the
momentum is a general phenomenon in the lowest order over
p2/µ2, where p is the nucleon momentum and µ ∼ 0.5–1 GeV
is the strong interaction scale. We also discuss two implications
of this argument; the first one is the need to look for the
deviations of the bound nucleon electromagnetic (e.m.) form
factors from the free ones as a function of the struck nucleon
momentum; the second one is the estimate of the A dependence
of the EMC effect through the energy binding and the mean
excitation energies of nuclei. Our paper is organized as
follows: In Sec. II we briefly review the arguments concerning
the reduction of PLCs in the nuclear medium and extend the
analysis of Refs. [4,17] to three- and many-body nuclei; the
connection between nucleon virtuality and the suppression of
PLCs is presented in Sec. III; the effects of the reduction of
PLCs in quasielastic and deep inelastic scattering is discussed
in Sec. IV; in Sec. V the results of our calculations of the
EMC effect in nuclei, including the deuteron, are presented;
conclusions are given in Sec. VI.

II. THE SUPPRESSION OF POINTLIKE
CONFIGURATIONS IN NUCLEI

We will consider how the wave function of a bound nucleon
is modified by medium effects. Our approach implements
a well-understood and established property of perturbative
quantum chromodynamics (pQCD): If the collision energy is
not too large, the interaction between hadrons is proportional
to their size. This property relies on the nonrelativistic
Schrödinger equation for the nucleus wave function, which
describes the motion of centers of mass of the nucleons. Some
notations are therefore in order. The Schrödinger equation for
a nucleus composed of A nucleons interacting via two-body
interactions is

HA�
f

A =
∑

i

p2
i

2mN

+
∑
i<j

Vij

 �
f

A = E
f

A�
f

A, (1)

where the index f ≡ {0, 1, 2, . . .} denotes the excitation
spectrum of the system. (Note that from now on the ground-
state energy and wave functions will be simply denoted by
EA and �A, instead of E

(0)
A and �

(0)
A ; moreover, in case

of the deuteron, instead of A = 2 we will simply use the
notation D). We will consider a nucleon with four-momentum
p ≡ (Ep, p) and denote the center-of-mass four-momentum
of the spectator (A − 1) nucleons as ps or PA−1. The mass
of the nucleon will be denoted by mN . We will also need
to define the energy necessary to remove a nucleon from a
nucleus A, leaving the residual system in a state with intrinsic
(positive) excitation energy E

f

A−1; such a quantity is the

(positive) removal energy defined as E = Emin + E
f

A−1 with
Emin = |EA| − |EA−1|, with EA and EA−1 being the (negative)
ground-state energies of A and A − 1 systems, respectively.
Eventually, the ground-state energy per particle will be denoted
by εA = EA/A.

A. General considerations

In QCD the Fock space decomposition of the hadron wave
function contains components of the size much smaller than
the average size of the hadron; these components determine, at
Q2 → ∞, the asymptotic behavior of the elastic hadron form
factors and, for a pion, they were explicitly observed in the
exclusive dijet production [12].

It was argued in Refs. [4,17] that because the small size
configurations of the bound nucleon experience a smaller
nucleon attraction, their probability should be smaller in the
bound state since such a reduction would lead back to an
increase of the nuclear binding. The discussed effect was
formally described by an expression obtained within the
closure approximation [4,17,18].

The reduction of PLCs might be relevant for the explanation
of the EMC effect, though only in a restricted region of
the Bjorken scaling variable x = Q2

2mN ν
. Indeed, it has been

predicted by several models (see, e.g., Refs. [4,19]) that
the behavior of the structure functions at x → 1 should
be sensitive to the small-size quark gluon configurations.
One general argument is that at moderate values of the
four-momentum transfer Q2, PLCs compete in elastic form
factors with the end-point contribution, which is also but
gradually sqized with an increase of Q2 as a consequence
of Sudakov-type form factors, which, on the other side, are
connected to the inclusive structure functions at x → 1 via the
Drell-Yan-West relation (see the discussion in Refs. [20,21]).
Another argument, mostly relevant for the nucleon parton
density, is that large size configurations with the pion cloud
do not contribute at x � 1, since in these configurations pions
carry a significant part of the total light-cone momentum of
the nucleon.

The key characteristic of PLCs, which allowed one to
derive a compact expression for their modification in the
bound nucleon, is that the potential energy associated with the
interaction of a PLC is much smaller than Vij , the NN potential
averaged over all configurations. Using the decomposition of
the PLC over the hadronic states and the closure approximation
one finds for the nuclear wave function, which includes the
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PLC in the nucleon i, the following expression [4,17]:

ψ̃A(i) ≈
1 +

∑
j �=i

Vij

�E(N/A)

 ψA(i), (2)

where ψA(i) is the usual wave function with all nucleons,
including i, in average configurations, and �E(N/A) ∼ mN∗ −
mN ∼ 600–800 MeV parametrizes the energy denominator
depending upon the average virtual excitation of a nucleon N

in the nucleus A.

B. The deuteron

By using the equations of motion for ψA, the momentum
dependence of the probability to find a bound nucleon with
momentum p in a PLC was obtained in Refs. [4,17] within
the mean-field and two-nucleon correlation approximations.
In particular, for the deuteron the Shrödinger equation in
momentum representation leads to

V12 = −2
p2

2mN

+ ED, (3)

where ED is the (negative) binding energy of the deuteron.
Using the same closure approximation and equation of motions
for the higher order terms in Vij

�E
(assuming that �E is

approximately the same for the higher order terms) one obtains
the suppression of the probability of PLCs in the deuteron for
a nucleon with momentum p:

δD(p) =
1 +

2 p2

2mN
− ED

�E(N/D)

−2

. (4)

Thus, if for a given x PLCs dominate in the nucleon parton
distribution functions, the structure function of the bound
nucleon would be suppressed by a factor given by Eq. (4),
that is,

FD(x, p,Q2) � δD(p)F2N (x,Q2)

�
1 +

2 p2

2mN
− ED

�E(N/D)

−2

F2N (x,Q2). (5)

Note that Eq. (5) can equally well be applied to the
semi-inclusive process when the transition to one particular
final state of the spectator is considered. In the derivation
of the previous formulas, it has been assumed that for a
PLC |V (PLC)

ij (x)|/|Vij | 
 1. If one probes large values of

x, for which |V (PLC)
ij (x)|/|Vij | = λ(x) < 1, the suppression

factor will be obviously smaller and, in the lowest order in
p2/2mN�E, Eq. (4) will be modified as follows:

δD(p) =
1 + [1 − λ(x)]

2 p2

2mN
− ED

�E(N/D)

−2

. (6)

If the dominant nucleon configurations in F2N interact with
a strength substantially smaller than the average (say, λ � 0.5)
for x � 0.5–0.6, the PLC suppression may help explain the
EMC effect. Because we are interested in this paper in the

A dependence of the deviation of the EMC ratio from one,
for ease of presentation, we will simply use λ(x) = 0 in what
follows, though in the comparison with experimental data, to
be presented in Sec. V, a value of λ(x) �= 0 has been used.

A key test of the PLC suppression is the study of the tagged
structure functions [4,22–26].

C. The three-body nuclei

Let us consider now three-body nuclei. In this case we
face a more complicated situation owing to several possible
final states of the two-body spectator system. For this reason,
the suppression of PLCs will depend upon the transition
densities between the wave function (2) and the final-state
wave functions. Therefore the full nuclear spectral function of
3He is required to evaluate δ3He. Let us discuss this point in
detail. To this end, we first introduce the wave function φ2, the
solution of the two-body Schrödinger equation for nucleons 2
and 3:

(T̂2 + T̂3 + V2,3)φf

2 (2, 3) = E
f

2 φ
f

2 (2, 3), (7)

where T is the operator for the kinetic energy and f labels the
quantum numbers of the state, which can be either the ground
(D) or the continuum (pn) states of a neutron-proton pair or
the continuum (pp) state of a neutron-neutron pair. [Note that
Eq. (7) has the same spectrum as the final two-nucleon state in
the case of deep inelastic scattering on 3He (i.e., D along with
pn and pp in the continuum).] Then the relevant quantities are
the following densities:

φ
†
1(1)φf †

2 (2, 3)ψ̃3(1, 2, 3)

= φ
†
1(1)φf †

2 (2, 3)

(
1 + V1,2 + V1,3

�E(N/3)

)
ψ3(1, 2, 3), (8)

where φ1(1) is the wave function of the struck nucleon. By
considering the full three-nucleon Shrödinger equation

(T̂1 + T̂2 + T̂3 + V2,3 + V1,3 + V1,2)ψ3(1, 2, 3)

= E3ψ3(1, 2, 3), (9)

we obtain

φ
†
1(1)φf †

2 (2, 3)(V1,3 + V1,2)ψ3(1, 2, 3)

= (
E3 − E

f

2 − T1
)
φ
†
1(1)φf †

2 (2, 3)ψ3(1, 2, 3). (10)

The density on the right-hand side (r.h.s.) of this equation
defines the channels f of the spectral function of 3He, to be
denoted P

(f )
3 (|p|, E) [27]. For the three different channels we

obtain (and for the inclusive process we sum over the states of
the spectator, f )

δ
(D)
3 (p) �

1 +
|E3| − |ED| + 3p2

4mN

�E(N/3)

−2

, (11)

δ
(pn)
3 (p, k) �

1 +
|E3| + k2

mN
+ 3p2

4mN

�E(N/3)

−2

, (12)
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δ
(pp)
3 (p, k) �

1 +
|E3| + k2

mN
+ 3p2

mN

�E(N/3)

−2

, (13)

where we neglected the difference of the proton and neutron
masses and also a possible isospin dependence of �E(N/3).
Here k is the momentum of the nucleon in the spectator pair,
in the pair’s c.m. frame. In terms of removal energies we
have Emin = |E3| − |E2| for the process 3He → p + D, and
Emin = |E3| for the process 3He → p + (pn); the correspond-
ing excitation energies are E

f

A−1 = 0 and E
f

A−1 = k2/mN ,
respectively. Thus Eqs. (11), (12), and (13) can be unified
as

δ
(f )
3 (p, E) �

1 +
E + 3p2

4mN

�E(N/3)

−2

, (14)

where E = Emin + E
f

2 generates the dependence upon f

of the r.h.s.. We will need in what follows the average
value of δ

(f )
3 (p, E) with respect to p and E. This can be

obtained, provided the nucleon spectral function in channel
f, P

(f )
3 (|p|, E), is known; in such a case one has〈

δ
(f )
3 (p, E)

〉 =
∫

δ
(f )
3 (p, E)P (f )

3 (|p|, E) dEdp. (15)

Following Ref. [27], we will label various quantities per-
taining to the channel 3He → D + p with the superscript (gr)
and quantities pertaining to the channels 3He → p + (np) and
3He → n + (pp) with the superscript ex. The corresponding
spectral functions will be denoted P

(D)
3 (p, E) ≡ P

(gr)
3 (p, E)

and P
(NN)
3 (p, E) ≡ P

(ex)
3 (p, E).

The spectral functions in different channels f are normal-
ized as follows:∫

P
(f )
3 (|p|, E)d p dE = Sf , (16)

where f = {gr, ex}.
The spectral function of 3He is described in detail in the

Appendix and the mean values of various quantities calculated
with a realistic spectral function of 3He [28] are listed in
Table I.

D. General case

Equation (14) can be readily generalized to the case of an
arbitrary nucleus A, giving

δ
(f )
A (p, E) �

(
1 + E + A

A−1
p2

2M

�E(N/A)

)−2

. (17)

It is also trivial to modify Eq. (17) to account for the case
of small but finite size configurations by introducing a factor
1 − λ(x) as in Eq. (6). The evaluation of the average values of
Eq. (17),

〈
δ

(f )
A (p, E)

〉 =
∫

δ
(f )
A (p, E)P (f )

A (|p|, E) dEdp, (18)

requires knowledge of the spectral function of the nucleus A

in channel f, P
(f )
A (|p|, E). As illustrated in Refs. [7,29], the

spectral function of a complex nucleus can be written in the
form

PA(|p|, E) = P0(|p|, E) + P1(|p|, E), (19)

where P0(|p|, E) describes the transition to the ground state
and to the discrete shell-model statesof the nucleus A − 1,
whereas P1(|p|, E) is responsible for the transitions to the
whole of the continuum states generated by short-range
nucleon-nucleon correlations. For complex nuclei we will
consider two average values for the suppression of PLCs,
namely

〈
δ

(0)
A (p, E)

〉 �
∫

δ
(0)
A (p, E)P0(|p|, E) dEdp (20)

and 〈
δ

(1)
A (p, E)

〉 �
∫

δ
(1)
A (p, E)P1(|p|, E) dEdp, (21)

where f = {0, 1} plays, in a sense, the role of f = gr, ex in the
case of 3He. The mean values of various quantities pertaining
to complex nuclei calculated with the spectral function of
Ref. [29] are reported in Table II.

TABLE I. The normalization factors Sf [Eq. (16)], the mean kinetic 〈T 〉 and removal 〈E〉 energies, and the energy
per nucleon |ε3| for helium-3, calculated with the spectral function of Ref. [28] and the Pisa Group wave function [39]
corresponding to the AV18 interaction [40]. The state f = gr corresponds to the spectator proton-neutron system in the
ground state (a deuteron), whereas the state f = ex corresponds to the proton-neutron or proton-proton systems in the
continuum.

Norm, S 〈T 〉 (MeV) 〈E〉 (MeV) |ε3| (MeV)

gr ex totala gr ex totala gr ex totala gr ex totala

Proton 0.65 0.35 1 4.67 8.60 13.27 3.72 6.81 10.53 0.69 1.26 1.95
Neutron 0 1 1 0 17.69 17.69 0 16.33 16.33 0 3.74 3.74
Per nucleonb – – 1 3.11 11.63 14.74 2.48 9.99 12.47 0.46 2.09 2.55c

aTotal = gr + ex.
bPer nucleon = (2 protons + neutron)/3.
c3 × ε3 = E3 ≈ 7.7 MeV, the value computed in Ref. [39].
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TABLE II. The same as in Table I but for the deuteron and complex nuclei. The results for A = 2
correspond to the AV18 interaction and the ones for 4 � A� 208 to the spectral function of Ref. [29].

A S0 S1 〈T 〉0 〈T 〉1 〈T 〉 〈E〉0 〈E〉1 〈E〉 |εA|
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

D 1.0 – – 11.07 2.226 1.113
4He 0.8 0.2 8.23 17.55 25.78 15.85 19.20 35.05 8.93
12C 0.8 0.2 13.54 18.93 32.47 18.40 26.55 44.95 7.72
16O 0.8 0.2 11.22 19.73 30.95 19.42 27.20 46.62 8.87
40Ca 0.8 0.2 13.39 20.45 33.84 21.28 28.57 49.85 8.44
56Fe 0.8 0.2 11.45 21.26 32.71 20.00 29.06 49.06 8.47
208Pb 0.8 0.2 14.72 24.40 39.12 18.53 34.79 53.32 7.19

III. NUCLEON VIRTUALITY, THE SUPPRESSION OF
PLCs, AND THE VARIATION OF NUCLEON

PROPERTIES IN THE MEDIUM

A. Nucleon virtuality

Let us now consider the interaction of a bound nucleon with
a virtual photon. The virtuality of the interacting nucleon v is
as follows

v = p2 − m2
N = (PA − PA−1)2 − m2

N . (22)

In impulse approximation (p = −PA−1) we have

v(|p|, E) = (PA − PA−1)2 − m2
N

= (
MA − P

(0)
A−1

)2 − p2 − m2
N

= (
MA −

√
(MA − mN + E)2 + p2

)2 − p2 − m2
N.

(23)

The nonrelativistic reduction of Eq. (23) in the rest frame of
the nucleus A, which corresponds to neglecting higher order
terms in ∼ E

mN
and ∼ TA−1

mN
, yields

vNR(|p|, E) ≈ −2mN

(
A

A − 1

p2

2mN

+ E

)
. (24)

It can therefore be seen that in the nonrelativistic limit
the argument of δA(|p|, E), for any A, is the same as the
nonrelativistic reduction of the virtuality vNR, so that the
suppression of PLCs can be expressed in terms of the nucleon
virtuality as

δA(|p|, E) =
(

1 − vNR(|p|, E)

2 mN�E(N/A)

)−2

, (25)

with vNR(|p|, E) given by Eq. (23). Note that using the Koltun
sum rule [30] corresponding to a Hamiltonian containing only
two-body forces, that is,

2|εA| = 〈E〉 − 〈T 〉A − 2

A − 1
, (26)

where 〈T 〉 and 〈E〉 are the average kinetic and removal energies
per particle, respectively, one gets

〈vNR〉 = −2mN

(
A

A − 1

〈p2〉
2mN

+ 〈E〉
)

= −4mN [〈T 〉 + |εA|],
(27)

so that the average value of Eq. (17) [or Eq. (25)] can be written
as follows:

〈δA(|p|, E)〉 =
〈1 +

E + A
A−1

p2

2mN

�E(N/A)

−2〉
. (28)

Since our derivation was nonrelativistic one cannot distin-
guish the cases when vNR or v are used. Hence, to check the
sensitivity to the higher order terms, we will also consider an
expression for δA in which v is used instead of vNR:

〈δA(|p|, E)〉v =
〈(

1 − v(|p|, E)

2mN�E(N/A)

)−2
〉

, (29)

with v(|p|, E) given by Eq. (23).
Eventually, we will also consider the partial virtualities (i.e.,

the virtuality in a given state f ), defined as〈
v

(f )
NR

〉 = −2mN

(
A

A − 1
〈T 〉f + 〈E〉f

)
, (30)

and the corresponding partial coefficient of suppression of
PLCs, that is,

〈
δ

(f )
A (|p|, E)

〉
f

=
〈1 +

E + A
A−1

p2

2mN

�E(N/A)

−2〉
f

, (31)

satisfying

〈δA(|p|, E)〉 =
∑
f

〈
δ

(f )
A (|p|, E)

〉
, (32)

where the average in Eq. (31) has to be taken with the proper
partial spectral function.

If we expand Eq. (28), we get its lowest order (LO)
approximation in (p/mN )2:

〈δA(|p|, E)〉LO ≈
(

1 − 4 (〈T 〉 + |εA|)
�E(N/A)

)
. (33)

Let us now address the physical reasons for the derived
structure of Eq. (25).

It is often discussed in the literature that various properties
of a nucleon bound in the nucleus should be modified because
of the interactions with the surrounding nucleons (usually
referred to as medium modifications). Such a possibility has
been considered for the case of the electromagnetic nucleon
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form factors, the parton densities, and other quantities (see,
e.g., Refs. [4,31,32]). Medium modifications are theoretically
often considered within the mean-field approximation and are
assumed to depend on the mean nuclear density, with an
implicit assumption that the modification does not depend
on the momentum of the nucleon. However, we have just
shown that the contribution of PLCs exhibit a strong mo-
mentum dependence arising naturally from the reduction of
the interaction strength. Accordingly, one expects that in this
model the modification of, for example, the radius of a bound
nucleon, may also depend upon the nucleon momentum. One
intuitively expects that possible modifications of the properties
of a bound nucleon should depend upon its off-shellness, which
can be expressed in terms of the nucleon virtuality as defined
by Eq. (22).

To elucidate this point, let us consider the electrodisin-
tegration of the deuteron, e D → e pn, as a function of the
momentum of the spectator nucleon ps . (Another option would
be to consider deep inelastic scattering (DIS) off the deuteron
in a tagged mode, that is, when the spectator momentum is
detected.) The amplitude A(γ ∗ + D → pn) is an analytic
function of the Mandelstam variables, for example,

t = (pD − ps)
2, (34)

that is, the square of the momentum transfer, and therefore it
can be expressed as a series in terms of the variable m2

N − t .
The continuation to the pole t = m2

N of the propagator of
the interacting nucleon would correspond to the interaction
between γ ∗ and a free nucleon (analogous to the case of
the Chew-Low theorem relating the amplitude of the process
π + N → ππN to the π − π scattering amplitude [33]).
Hence, for small enough values of m2

N − t , the effect of
medium modifications are expected to be proportional to

m2
N − t = m2

N − (pd − ps)
2 = (p2 − mN ED)

+O(p4, p2 ED,ED p2), (35)

which is exactly the functional dependence of Eq. (4).
Our reasoning is heavily based upon the analyticity of the
amplitude in the t variable, which justifies the validity of the
Taylor expansion near the nucleon pole in terms of powers
of (t − m2

N ). Obviously, our argument can be applied to the
scattering off heavier nuclei, provided the residual (A − 1)
nucleon system has small enough momentum and excitation
energy. In this case the relevant perturbation parameter γA is
given by Eq. (25), that is,

γA(|p|, E) = −(PA − ps)
2 + m2

N ≈ 2m

(
A

A − 1

p2

2mN

+ E

)
= −v(|p|, E). (36)

In the leading order of perturbation theory over binding
effects Eq. (28) for the average value of δA is recovered by
using the Koltun sum rule

〈δA(|p|, E)〉 =
〈(

1 + γA(|p|, E)

2mN�E(N/A)

)−2
〉

≈
(

1 − 4
〈T 〉 + |εA|
�E(N/A)

)
. (37)

B. PLCs and the variation of nucleon properties in the medium

Denoting by κ(|p|, E) − 1 the deviation from one of the
ratio of a certain characteristic (say, the structure functions or
the radii) of the bound nucleon to its vacuum value, we can
expect that it will be given by

κ(|p|, E) − 1 = γ (|p|, E)

m2
N

. (38)

Therefore we can write

κ(|p|, E) − 1

〈κ(|p|, E)〉 − 1
= γ (|p|, E)

〈γ (|p|, E)〉 = E + A
A−1

p2

2m

2[〈T 〉 + |εA|]

= 2E mN + p2 A
A−1

4mN [〈T 〉 + |εA|] , (39)

which does not depend on the value of �E or on the strength
of the interaction for the probed property. It follows, from
this relation, that the region of small nucleon momenta and
small excitation energies is the least sensitive to the effects of
possible modifications of the nucleon properties. Hence such
a region is suitable for the extraction of the properties of the
free neutron from scattering processes off the deuteron and
3He using the analog of the Chew-Low procedure (see, e.g.,
the discussion in Ref. [9]). For the same reason, the 3% upper
limit for the change of the magnetic nucleon radius obtained
from the analysis of the Q2 dependence of the inclusive (e, e′)
cross section near the quasielastic peak [34] implies a much
weaker limit on the average change of the nucleon radius
in nuclei. In fact, in inclusive (e, e′) scattering, the cross
section at the quasielastic peak (x � 1) is proportional to∫

d(|p|)|p|nA(|p|)= 〈 1
|p| 〉, giving 〈p2〉 � 〈|p|〉〈1/|p|〉, whereas

in DIS (x < 1), it is directly proportional to 〈|p|2〉; therefore,
in quasielastic scattering the average value of the probed 〈|p|2〉
is significantly smaller than the corresponding quantity in DIS,
roughly by the factor

C = 〈|p|〉
〈|p|2〉〈1/|p|〉 . (40)

As we have demonstrated, the study of the momentum
dependence of the properties of a bound nucleon may be
a better tool for the investigation of modification effects
in nuclei. This can be achieved, for example, by means of
semi-inclusive processes (tagged structure functions) and by
the measurement of the momentum dependence of the ratio of
electric to magnetic nucleon form factors.

IV. SUPPRESSION OF PLCS IN INCLUSIVE SCATTERING:
THE A DEPENDENCE OF THE EMC EFFECT

Let us now illustrate how the derived equations allow one to
improve previous estimates of the A dependence of the EMC
effect in a particular region of x. To this end let us consider
the well-known EMC ratio for an isoscalar nucleus,

RA(x,Q2) ≡ AF2A(x,Q2)

ZF2p(x,Q2) + NF2n(x,Q2)
, (41)

where F2A and F2N are the nuclear and nucleon structure
functions, respectively. We will consider in the Bjorken limit
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two models for the nuclear structure function F2A, namely the
light cone (LC) and the virtual nucleon convolution models.
In both cases the proton and neutron spectral functions and
momentum distributions are considered to be the same.

A. The light-cone quantum mechanical model

Light-cone quantum mechanics of nuclei is based on
the following assumptions: (i) bound nucleons are on-shell;
(ii) closure over final states is performed; and (iii) the light-
cone momentum of the nucleus is entirely carried by nucleons.
Within this model the nuclear structure function F2A reads as
follows:

F LC
2A (x,Q2) = A

∫ A

x

dα

α
d2p⊥F2N (x/α,Q2)ρLC(α, p⊥),

(42)

where α = A
MA

p− (d4 p = MA

A
d αd p+d2 p⊥ with p± as the

corresponding light-cone variables defined relative to the
direction of the momentum transfer) is the light-cone fraction
carried by the interacting nucleon scaled to vary between
zero and A, and ρLC(α, p⊥) is the nucleon LC density matrix
normalized according to the baryon charge sum rule∫ A

0

dα

α
d2p⊥ρLC(α, p⊥) = 1 (43)

and automatically satisfying the momentum sum rule∫
α

dα

α
d2p⊥ρLC(α, p⊥) = 1, (44)

corresponding to 〈α〉 = 1. In the nonrelativistic approximation
for the nucleon motion within a nucleus, LC quantum
mechanics coincides with the conventional nuclear theory
based on the nonrelativistic Schrödinger equation. An evident
advantage of the LC mechanics is the accurate account of
relativistic effects, including those related to pair production
off vacuum resulting from the Lorentz transformation.

To calculate the effect of the suppression of PLCs in bound
nucleons we have to substitute in the convolution formula F2N

by F bound
2N = F2N δA(|p|, E), (see Eq. (5)) obtaining

F
LC(δ)
2A (x,Q2)

A

=
∫ A

x

dα

α
d2p⊥δA(|p|, E)F2N (x/α,Q2)ρLC(α, p⊥), (45)

where δA(|p|, E) is given by Eq. (17) [or Eq. (25)]. By
expanding F2N (x/α,Q2) in Eq. (45) in a power series about
α = 1 one obtains

F LC
2A (x,Q2)

A
� 〈δA(|p|, E)〉F2N (x,Q2)

+ xF ′
2N (x,Q2)〈(α − 1)〉 +

[
xF ′

2N (x,Q2)

+ x2

2
F ′′

2N (x,Q2)

]
〈(α − 1)2〉, (46)

where the averages have to be evaluated with the light-cone
density ρLC(α, p⊥). By considering that 〈(α − 1)〉 = 0 [by

Eqs. (43) and (44)] and taking the nonrelativistic limit to order
〈p2〉
m2

N

of the third term, the average values can be evaluated

with the nonrelativistic momentum distributions, obtaining
〈(α − 1)2〉 = 〈p2〉/3m2

N , so that

F
LC(δ)
2A (x,Q2)

A
� 〈δA(|p|, E)〉F2N (x,Q2)

+
[
xF ′

2N (x,Q2) + x2

2
F ′′

2N (x,Q2)

]
2〈T 〉
3mN

.

(47)

Supposing that the behavior of F2(x) at x � 0.5–0.7 is
governed solely by u quarks [u(x) ∼ (1 − x)n with n ∼ 3],
one gets

R
LC(δ)
A (x,Q2) = F

LC(δ)
2A (x,Q2)

AF2N (x,Q2)

� 〈δA(|p|, E)〉 + nx
x(n + 1) − 2

6(1 − x)2

2〈T 〉
mN

, (48)

yielding the result of Ref. [35] when δA = 1. For n = 3 we
obtain

RLC
A (x,Q2) = F LC

2A (x,Q2)

AF2N (x,Q2)
� 1 + x

(2x − 1)

(1 − x)2

2〈T 〉
mN

, (49)

leading to a cancelation of the Fermi motion effects for x =
1/2. Hence x ∼ 0.5 is especially convenient for the analysis,
for one has, provided p is not very large,

R
LC(δ)
A (x ∼ 0.5) ∝ 〈δA(|p|, E)〉

�
〈(

1 + γA(p)

2 mN�E(N/A)

)−2
〉

� 1 − 4
|εA| + 〈T 〉
�E(N/A)

. (50)

When δA = 1, one has, obviously,

RLC
A (x ∼ 0.5) � 1. (51)

We remind the reader that, to simplify the discussion, we
have up to now placed λ(x) = 0 on the r.h.s. of Eq. (6). Now,
to compare our calculations with the experimental data, we
necessitate an explicit consideration of the value λ(x), so we
will use the following expression for the ratio R

LC(δ)
A :

R
LC(δ)
A (x ∼ 0.5) � 1 − [1 − λ(0.5)] 4

〈T 〉 + |εA|
�E(N/A)

. (52)

B. The virtual nucleon convolution model

Another approach to the description of the DIS is the
approach in which the role of the nuclear wave function
is played by the covariant vertex function described by
appropriate Feynman diagrams. In the case of DIS this
approximation is usually referred to as the virtual nucleon
convolution (VNC) model. In this approximation the interact-
ing nucleon is off-shell and the light-cone fraction carried
by the interacting nucleon can be expressed through the
laboratory-frame momentum and energy of the residual system
as

z = A

MA

(p0 − p3), (53)
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where

p0 = MA −
√

(MA − mN + E)2 + p2. (54)

The nuclear structure function has the following form:

F VNC
2A (x,Q2)/A =

∫
F2N (x/z, Q2)fA(z)d z, (55)

with the longitudinal momentum distributions f N
A given by

fA(z) =
∫

d4 pSA(p) zδ

(
z − A

MA

[p0 − p3]

)
. (56)

The relation between the relativistic, SA(p), and nonrelativis-
tic, PA(|p|, E), spectral functions is, to order (|p|/mN )2,

SA(p) = PA(|p|, E)

[
1 + O

( |p|
mN

)2

+ · · ·
]

, (57)

and baryon charge conservation is enforced by properly
normalizing fA(z), that is [7],∫

fA(z)d z = CA

∫
d E dpPA(|p|, E) z d z

× δ

(
z − A

MA

[po − |p| cos θp̂ q]

)
= 1. (58)

The light-cone fraction carried by the nucleons in this model
is less than one [36]:

〈z〉 =
∫

z fA(z) = 1 − 〈E〉 − |εA| + 〈TR〉
mN

≡ η < 1, (59)

where 〈TR〉 � 〈p2〉/2(A − 1)mN and η is the total light-cone
momentum carried by nucleons. The momentum sum rule is
restored by assuming that non-nucleonic components carry the
fraction 1 − η of the missing momentum. These components
should be added explicitly to satisfy the momentum sum rule.

By expanding F2N (x/z, Q2) in Eq. (55) about z ∼ 1, we
obtain, to order 〈p2〉

m2
N

,

F VNC
2A (x,Q2)/A � F2N (x,Q2)

+xF ′
2N(x,Q2)

〈E〉 − |εA| − 2
3 〈T 〉 + 〈TR〉

mN

+
[
xF ′

2N (x,Q2) + x2

2
F ′′

2N(x,Q2)

]
2〈T 〉
3mN

.

(60)

Choosing again x = 0.5 we obtain

RVNC
A (x ∼ 0.5) = 1 − 3

|εA| + 1
3 〈T 〉

mN

. (61)

We notice that the A dependence of all terms contributing
to R is very similar since all coefficients are dominated by the
contribution of the kinetic energy term. Hence, independent of
the details one expects an approximate factorization of

RA(x,Q2) − 1 = φ(x,Q2)

f (A)
, (62)

which works well experimentally.
An important quantity considered in the literature

is the relation between the EMC effect ratio in the

deuteron, RD(x,Q2), given by Eq. (41), and the value
of RA(x,Q2)/RD(x,Q2) measured experimentally. Such a
relation has been used to extract the neutron to proton ratio
F2n/F2p. Previous estimates gave for 56Fe [4,17]

RD(x,Q2) − 1 = c

(
RA(x,Q2)

RD(x,Q2)
− 1

)
, c = 1

4
. (63)

This relation is referred to by Yang and Bodek [37] as a density
model, since in the mean-field approximation the average
kinetic energy is proportional to the average nuclear density.
[Note, however, that the average nuclear density is hardly
defined for light nuclei whereas expressions (50) and (61) are
well defined even for A = 2.] It is also worth emphasizing that
〈p4〉/〈p2〉 is significantly smaller in the deuteron than in heavy
nuclei, so that as soon as the terms proportional to 〈p4〉 become
important, Eq. (63) breaks down, which occurs at x ∼ 0.7–0.8.
At x = 1 Eq. (63) is badly violated, since the r.h.s. remains
finite in this limit, whereas the left-hand side tends to infinity.

Relation (63) has been used in several papers (see, e.g.,
Ref. [37]) to extract the neutron to proton ratio F2n/F2p. We
will show in the next section that by using realistic nuclear
spectral functions a different relation will be obtained.

We will explore in the next section the sensitivity of the A

dependence of the EMC effect predicted by our models.

V. RESULTS OF CALCULATIONS

In this section the results of our calculations based upon
realistic spectral functions for few-nucleon systems and com-
plex nuclei are presented. We have calculated the following
quantities:

(i) The normalization (S) and the average values of the
kinetic (〈T 〉) and removal (〈E〉) energies in 3He corre-
sponding to various states of the spectator two-nucleon
system presented in Table I.

(ii) The same quantities as in Table I but for A = 2 and
4 � A � 208 reported in Table II.

(iii) Various average values of powers of the nucleon mo-
mentum p listed in Table III.

(iv) The average values (divided by 2 mN ) of the virtuality
in the states f 〈v(f )

NR〉 [Eq. (30)] and their sum [Eq. (27)]
listed in Table IV.

(v) The average value of the coefficient δ(p, E) of the
suppression of PLCs in various configurations [Eq. (31)]
and their sum [Eq. (32)], together with δ(v) [Eq. (29)],
presented in Table V. In the case of 3He, 〈δ(0)〉 ≡ 〈δgr〉
and 〈δ(1)〉 ≡ 〈δex〉 [cf. the sentences after Eq. (14)].

(vi) The EMC ratio given by

RA(x,Q2) = F2A(x,Q2)

F2D(x,Q2)
, (64)

calculated at x = 0.5 with Eqs. (50), (51), and (61)
[all multiplied by AF2N/F2D , to be consistent with the
experimentally measured RA(x,Q2)] and compared with
SLAC experimental data fitted by Rexp = 1.009 A−0.0234

[38]. [Note that Eq. (64) differs from Eq. (41) in that the
denominator represents the deuteron structure function
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TABLE III. Various average values of the nucleon momentum p. Wave functions and spectral functions
are as in Tables I and II.

A 〈p2〉0 〈p2〉1 〈p2〉 〈|p|〉0 〈|p|〉1 〈|p|〉 〈|p|〉0
−1 〈|p|〉1

−1 〈|p|〉−1 〈|p|〉
〈p2〉 〈1/〈|p|〉

(fm−2) (fm−2) (fm−2) (fm−1) (fm−1) (fm−1) (fm) (fm) (fm)

D 0.533 – 0.533 0.502 – 0.502 3.74 – 3.74 0.25
3He 0.150 0.5651 0.71 0.224 0.415 0.64 1.31 0.548 1.86 0.49
4He 0.396 0.845 1.24 0.517 0.346 0.86 1.59 0.19 1.78 0.39
12C 0.652 0.912 1.56 0.6777 0.369 1.05 1.13 0.17 1.30 0.51
16O 0.540 0.951 1.49 0.618 0.380 0.998 1.24 0.157 1.40 0.48
40Ca 0.645 0.985 1.63 0.679 0.385 1.06 1.13 0.16 1.29 0.51
56Fe 0.552 1.024 1.58 0.631 0.400 1.03 1.20 0.14 1.34 0.49
208Pb 0.709 1.176 1.88 0.719 0.480 1.20 1.03 0.18 1.21 0.53

and not the sum of the nucleon structure functions F2N .]
In the case of the LC with suppression of PLCs we
have used both �E(N/D) = 800 MeV and �E(N/A) ∼
500 MeV and �E(N/D) = �E(N/A) = 800 MeV. Wave
functions and spectral functions are as in Tables I and II.

In our calculations we have employed the spectral function
of 3He given in Ref. [28] obtained using the ground-state three-
body wave function from the Pisa Group [39] corresponding
to the AV18 interaction [40]. For complex nuclei, calculations
have been performed with the model spectral function of
Ref. [29], which correctly reproduces the momentum and
energy distributions as obtained from realistic calculations on
complex nuclei.

The following comments concerning the obtained results
are in order:

(i) Tables I and II. The average kinetic and removal energies
in channels ex(f ) are much larger than the corresponding
quantities in channels gr(0) and the high momentum
components are linked to high removal energies, which
is a well-known result demonstrated long ago [27].

(ii) Table III. The effects of correlations on the high
momentum components is clearly seen. The value of
the quantity C [Eq. (40)] indicates that the probed value
of 〈p2〉 in deep inelastic scattering is larger by a factor 2
than in quasielastic scattering.

TABLE IV. The quantities 〈v(f )
NR〉/2mN , where 〈v(f )

NR〉 is the
average value of the virtuality in various states [Eq. (30)] and
their sum 〈vNR〉/2mN = −2(〈T 〉 + |εA|) [cf. the discussion after
Eq. (27)]. In the case of 3He, 〈v(0)

NR〉 ≡ 〈v(gr)
NR 〉 and 〈v(1)

NR〉 ≡ 〈v(ex)
NR 〉

[cf. Eq. (14)]. Wave functions and spectral functions are as in
Tables I and II. All quantities are in MeV.

A 〈v(0)
NR〉 〈v(1)

NR〉 〈vNR〉
3He −7.15 −27.44 −34.59
4He −26.82 −42.58 −69.40
12C −33.17 −49.11 −82.28
16O −31.40 −48.28 −79.68
40Ca −35.00 −49.54 −84.54
56Fe −31.66 −50.76 −82.44
208Pb −32.87 −59.33 −92.20

(iii) Tables IV and V. The nucleon virtuality in states ex(f )
is much higher than in states gr(0) owing to the higher
average values of the removal energy and momentum.
Consequently, the suppression of PLCs in states ex(f ) is
expected to be higher than in states gr(0). Semi-inclusive
processes with the spectator A − 1 nucleus in high
excited states should be a very effective tool to investigate
the suppression of PLCs.

(iv) Table VI. Both the LC model with suppression of PLCs
and the VNC model predict almost no A dependence
of the EMC effect in the range 4 � A � 56. The results
pertaining to the former model do depend upon the value
of �E(N/D). We have tried both �E(N/D) = 800 MeV
and �E(N/A) ∼ 500 MeV and �E(N/D) = �E(N/A) =
800 MeV; in the former case to reproduce the magnitude
of the EMC effect for iron at x = 0.5 one needs λ ∼ 0.4,
which is similar to the value used in Ref. [17].

To better illustrate the A dependence of the EMC effect, we
show in Fig. 1 the results presented in Table VI normalized
to the SLAC experimental value of R for carbon. It can be
clearly seen that, at variance with the trend of the SLAC data,
the VNC model does not predict, in the interval 4 � A � 208,
any A dependence. A flattening of the A dependence of R is
also predicted by the LC approach with suppression of PLCs,
which appears to be sensitive to the value of �E(N/A). Note
that our results seem to agree with recent experimental data

FIG. 1. (Color online) The EMC ratio F2A/F2D [Eq. (64)] at x =
0.5 corresponding to the values given in Table VI. Note that the
SLAC fit [38] to the experimental data Rexp = 1.009 A−0.0234 does
not include systematic and statistic errors and has a tendency to
underestimate the effect for 4He.
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TABLE V. The average value of the coefficient of the suppression of PLCs in
various configurations [Eq. (31)] and their sum [Eq. (32)]. The latter is compared
with the results of Eq. (29), where the nonrelativistic reduction of the virtuality
[Eq. (23)] has not been performed. The last column exhibits the lowest order value
[in (p/mN )2] given by Eq. (33). In the case of 3He, 〈δ(0)〉 ≡ 〈δ(gr)〉 and 〈δ(1)〉 ≡ 〈δ(ex)〉
[cf. the discussion after Eq. (14)]. Wave functions and spectral functions are as in
Tables I and II.

A 〈δ(0)(|p|, E)〉 〈δ(1)(|p|, E)〉 〈δ(|p|, E)〉 〈δ(|p|, E)〉v 〈δ(|p|, E)〉LO

D 0.95 – 0.95 0.96 0.94
3He 0.43 0.48 0.91 0.92 0.90
4He 0.70 0.12 0.82 0.82 0.72
12C 0.68 0.11 0.79 0.81 0.68
16O 0.69 0.11 0.80 0.83 0.68
40Ca 0.68 0.10 0.78 0.83 0.66
56Fe 0.69 0.10 0.79 0.83 0.61
208Pb 0.68 0.13 0.82 0.86 0.64

from JLab [41], which exhibit practically the same EMC effect
for 4He and 12C. It should also be pointed out, in this respect,
that for heavy nuclei (A � 50) the Coulomb effect, which we
will discuss in a separate publication, leads to an additional
suppression of the EMC ratio that increases with A (for a brief
discussion see Ref. [42]).

Our studies of the A dependence of the EMC effect allow
us to make predictions for the EMC effect in the deuteron that
will be useful for a comparison with the forthcoming JLab data
aiming at determining F2n(x,Q2) from the measurements of
the deuteron tagged structure function. Our results suggest that

RD(x,Q2) − 1 = cA(x)

(
RA

RD

− 1

)
, (65)

with cA(x) practically independent of x for 0.3 � x � 0.6.
Within the VNC model we obtain c12(x) � 0.34 and c56(x) =
0.33, whereas in the LC model with suppression of PLCs
we have c12(x) � 0.23 and c56(x) = 0.22 in the case of
�EN/A �= �EN/D and c12(x) � 0.43 and c56(x) = 0.41 in

TABLE VI. The EMC ratio [Eq. (64)] given by Eqs. (50), (52),
and (61) multiplied by A F2N/F2D (see text), calculated at x = 0.5
with the value of λ fixed to reproduce the experimental data of 12C
[λ(0.5) ≈ 0.82 for the case �EN/A �= �EN/D , and λ(0.5) ≈ 0.66 for
�EN/A = �EN/D = 800 MeV, respectively]. The theoretical results
are compared with the SLAC experimental data fitted by Rexp =
1.009 A−0.0234 [38]. Wave functions and spectral functions are as in
Tables I and II.

A R
LC(δ)
A

�EN/A �= �EN/D

R
LC(δ)
A

�EN/A = �EN/D

RLC
A RVNC

A R
exp
A

D 1.0 1.0 1.0 1.0
3He 0.99 0.99 1.0 0.99 0.980
4He 0.96 0.962 1.0 0.96 0.980
12C 0.95 0.95 1.0 0.955 0.950
16O 0.95 0.953 1.0 0.953 0.946
40Ca 0.949 0.948 1.0 0.952 0.930
56Fe 0.951 0.950 1.0 0.953 0.920
208Pb 0.943 0.941 1.0 0.950 0.890

the case of �EN/A = �EN/D = 800 MeV. Our results, which
are somewhat different from the estimate c56(x) = 1/4, might
have consequences on the extraction of the ratio F2n/F2p.

VI. CONCLUSIONS

We have provided a derivation of the suppression of the
PLCs of a nucleon bound in the nucleus A with the spectator
nucleus A − 1 being in a particular energy configuration. We
have pointed out that the result we have obtained can be in-
terpreted as a specific dependence of the nucleon deformation
upon the nucleon virtuality and argued that such a pattern is
of quite general nature for small values of excitation energy
and the momentum of the nucleon. Within such a framework,
we have discussed the effects of the nucleon virtuality on the
investigation of the modification of the radius and form factor
of nucleons embedded in the nuclear medium, illustrating
that deep inelastic processes might be more effective than
quasielastic processes, in that in the former higher momentum
components are probed. Eventually, we have illustrated the
implications of our approach for the A dependence of the
EMC effect, obtaining very similar effects for 4He and 12C,
which agree well with the preliminary JLab data [41].
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APPENDIX: THE NONRELATIVISTIC SPECTRAL
FUNCTIONS OF 3He

For 3He one has to define the proton and neutron

spectral functions formed by the three different channels
3He → n(pp),3 He → p(D), and 3He → p(np):

Pp(|p|, E) = Pp(D)(|p|, E) + Pp(pn)(|p|, E), (A1)

Pn(|p|, E) = Pn(pp)(|p|, E), (A2)

where Pp(D) is usually referred to as the “ground” spectral
function, P

gr
p , and Pp(pn) and Pn(pp) as the “excited” spectral

functions, P ex
p and P ex

n , respectively [27]. This terminology
refers to the final spectator state or, in other words, to the
state of the residual A − 1 system. The spectral functions are
normalized in the following way:∫

Pp(|p|, E)dE|p|2d|p| = 1,

(A3)∫
Pn(|p|, E)dE|p|2d|p| = 1;

therefore the isotopic factors and angular factors have to be
explicitly taken into account. The mean values of the kinetic
and separation energies are then given by

〈Ep〉 =
∫

Pp(|p|, E)EdE|p|2d|p|,
(A4)

〈En〉 =
∫

Pn(|p|, E)EdE|p|2d|p|,

〈Tp〉 =
∫

Pp(|p|, E)
|p|2
2m

dE|p|2d|p|,
(A5)

〈Tn〉 =
∫

Pn(|p|, E)
|p|2
2m

dE|p|2d|p|.
and the corresponding averages for the nucleon are

〈EN 〉 = 2
3 〈Ep〉 + 1

3 〈En〉, (A6)

〈TN 〉 = 2
3 〈Tp〉 + 1

3 〈Tn〉. (A7)

Using the Koltun sum rule [30]

〈E〉 = 2|εA| + A − 2

A − 1
〈T 〉 (A8)

one can define the effective binding energies per nucleon for
all components. The corresponding averages for the nucleon
are

εN = 1
2

(〈EN 〉 − 1
2 〈TN 〉) , (A9)

εp = 1
2

(〈Ep〉 − 1
2 〈Tp〉) , (A10)

εn = 1
2

(〈En〉 − 1
2 〈Tn〉

)
, (A11)

εN = 2
3εp + 1

3εn, (A12)

with the binding energy per particle of 3He, ε3, given by 3 ×
εN .

The mean values associated with P gr and P ex are given by
Eqs. (A1) and (A2) [29]:

〈P gr〉 =
∫

P gr(|p|, E)dE|p|2d|p|,
(A13)

〈P ex〉 =
∫

P ex(|p|, E)dE|p|2d|p|,

〈Egr〉 =
∫

P gr(|p|, E)EdE|p|2d|p|,
(A14)

〈Eex〉 =
∫

P ex(|p|, E)EdE|p|2d|p|,

〈T gr〉 =
∫

P gr(|p|, E)
|p|2
2m

dE|p|2d|p|,
(A15)

〈T ex〉 =
∫

P ex(|p|, E)
|p|2
2m

dE|p|2d|p|,

εgr = 1
2

(〈Egr〉 − 1
2 〈T gr〉) ,

(A16)
εex = 1

2

(〈Eex〉 − 1
2 〈T ex〉) .

The values of the various quantities that will be used in
this paper are listed in Table I. They have been obtained with
the spectral function of Ref. [28] and correspond to the wave
function of the Pisa Group [39] obtained variationally using
the AV18 interaction [40].
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