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Hindrance of 16O+208Pb fusion at extreme sub-barrier energies
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We analyze the fusion data for 16O+208Pb using coupled-channels calculations. We include couplings to the
low-lying surface excitations of the projectile and target and study the effect of the (16O,17O) one-neutron pickup.
The hindrance of the fusion data that is observed at energies far below the Coulomb barrier cannot be explained by
a conventional ion-ion potential and defining the fusion in terms of ingoing-wave boundary conditions (IWBC).
We show that the hindrance can be explained fairly well by applying the M3Y double-folding potential which
has been corrected with a calibrated, repulsive term that simulates the effect of nuclear incompressibility. We
show that the coupling to one-neutron transfer channels plays a crucial role in improving the fit to the data. The
best fit is achieved by increasing the transfer strength by 25% relative to the strength that is required to reproduce
the one-neutron transfer data. The larger strength is not unrealistic because the calculated inelastic plus transfer
cross section is in good agreement with the measured quasielastic cross section. We finally discuss the problem
of reproducing the fusion data at energies far above the Coulomb barrier. Here we do not account for the data
when we apply the IWBC but the discrepancy is essentially eliminated by applying the M3Y+repulsion potential
and a weak, short-ranged imaginary potential.
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I. INTRODUCTION

It would be desirable to be able to make a consistent
coupled-channels calculation of the most important reaction
channels in 16O on 208Pb collisions at energies near and below
the Coulomb barrier. This has been attempted several times
in the past [1–3] but the analyses were never completely
satisfactory. For example, it was difficult to reproduce the
energy dependence of the measured fusion cross section [4,5].
In order to improve the fit to the data it was necessary either
to use a very small diffuseness of the ion-ion potential [1]
or to use a complex ion-ion potential in the calculations
[2,3]. Both modifications indicate that the calculations were
either incomplete in terms of the reaction channels that were
considered or that other features of the calculations were
unrealistic.

The old 16O+208Pb fusion data [4,5] turned out to contain
some uncertainties, in particular with respect to the evaporation
residue component (see Ref. [6]). The most accurate data that
are now available can be found in Ref. [7]. The analysis of the
revised data showed that there are still some inconsistencies
with coupled-channels calculations. Thus it was necessary
to use a large diffuseness of the ion-ion potential in order
to reproduce the fusion data at energies above the Coulomb
barrier, whereas the fusion barrier distribution extracted from
the data required a very small diffuseness.

We have recently pointed out [8] that many of the ion-ion
potentials, which have been used in the past, are unrealistic at
small distances between the reacting nuclei. While the ion-ion
potential apart for minor adjustments is quite accurately given
by the M3Y double-folding potential at larger distances (say,
outside the Coulomb barrier), this potential is unrealistic at
smaller distances, where it produces a pocket in the entrance

channel potential that is far too deep, sometimes even deeper
than the ground state energy of the compound nucleus. By
considering the effect of nuclear incompressibility we obtained
what we think is a more realistic interaction, which we call
the M3Y+repulsion potential. It produces a rather shallow
pocket in the entrance channel potential [8]. Such a shallow
pocket makes it possible to accurately reproduce the measured
fusion cross sections for 64Ni+64Ni [9], in particular at the
lowest energies, where the data fall off steeply with decreasing
energy. The steep falloff is referred to as the fusion hindrance;
see Ref. [10] for a recent discussion of this phenomenon.

The measurements of the fusion of 16O+208Pb [7] were
recently extended to very small cross sections [11]. The new
data exhibit a fusion hindrance at low energies which is similar
to what has been observed for many other heavy-ion systems
[10]. It is therefore of interest to see whether the M3Y potential,
corrected for nuclear incompressibility as discussed above, can
account for the new data when applied in coupled-channels
calculations. It is also of interest to investigate whether the
M3Y+repulsion potential can explain the suppression of the
high-energy fusion data which was discussed in Ref. [12].

The coupled-channels calculations that have been per-
formed previously [1–3,7] included couplings to the 2+, 3−,
and 5− low-lying states in 208Pb, the lowest 3− state in 16O, and
to transfer channels [(16O,17O) neutron pickup and (16O,15N)
proton stripping]. The reaction data [4] had a significant yield
of C isotopes, which were simulated by simplified couplings
in some of the the calculations [1,3]. The calculations showed
that the couplings to the transfer channels have a significant
effect on the calculated fusion cross sections and improve the
fit to the data.

We include in our analysis of the 16O+208Pb fusion data
[7,11] some of the most important surface excitation modes
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HENNING ESBENSEN AND ŞERBAN MIŞICU PHYSICAL REVIEW C 76, 054609 (2007)

and study the effect of the (16O,17O) neutron pickup reaction,
which is one of the most dominant reaction channels besides
fusion [4,13]. We also study how well we can account for the
total reaction cross section and the elastic scattering data [4].

II. DESCRIPTION OF THE CALCULATIONS

The coupled-channels calculations we perform are similar
to those discussed in Refs. [14,15]. Here we summarize
the approximations we make and describe the input to the
calculations. The basic assumption is the rotating frame
approximation, which implies that one has to include only
one channel for each state of spin I , and not the I + 1
(or even 2I + 1) channels that are required in general. This
approximation is commonly used in calculations of heavy-ion
fusion cross sections because it makes it possible to include the
effect of many reaction channels. It is a reliable approximation
for calculating fusion and elastic scattering but the angular
distributions for inelastic scattering and transfer reactions can
be poor, in particular at forward angles (see, for example,
Ref. [14]).

A. Ion-ion potentials

The ion-ion potentials we use are the same as those we
applied in Ref. [16], namely, the Aküyz-Winther (AW) and the
M3Y+repulsion double-folding potential. The AW potential
is defined by Eqs. (40,41,44,45) in Sec. III.1 of Ref. [17] but
we have modified Eq. (40) by introducing an adjustable radius
parameter �R,

UN
12(r) = −16πγR12a

1 + exp((r − R1 − R2 − �R)/a)
. (1)

Here γ = 0.95 MeV/fm2 is the nuclear surface tension, a is the
surface diffuseness defined in Eq. (44), Sect. III.1 of Ref. [17],
Ri = 1.2A

1/3
i − 0.09 fm, and R12 = R1R2/(R1 + R2). The

parameter �R is adjusted so that the two potentials, namely,
the AW and the M3Y+repulsion potentials, produce the same
Coulomb barrier height. In the case discussed below this
requires the value �R = 0.13 fm.

The M3Y double-folding potential is calculated numeri-
cally in the Fourier representation,

U (r) = 1

2π2

∫
q2dq ρ1(q)ρ2(q)v(q)j0(qr) . (2)

Here v(q) represents the M3Y effective nucleon-nucleon
interaction, j0(x) is the spherical Bessel function, and ρi(q) is
the Fourier transform of the density of nucleus i. The Yukawa
and contact type interactions that we use [16] to define the
direct and exchange part of the M3Y interaction have simple
analytic Fourier transforms.

The densities are parametrized in terms of a Fermi function.
We use the proton and neutron density parameters: Rp =
2.53, Rn = 2.57, a = 0.513 fm for 16O, and Rp = 6.60, Rn =
6.75, a = 0.546 fm for 206Pb. The proton densities are consis-
tent with the measured charge densities [18] while the radii for
the neutron densities are slightly larger. The Fermi function
does not have a simple analytic Fourier transform so we use
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FIG. 1. The M3Y and M3Y+repulsion potentials are compared
to the AW potential. The height of the Coulomb barrier is 75.6 MeV
in all three cases.

instead an accurate analytic approximation, which has an exact
analytic Fourier transform. This approximation is described in
the Appendix.

The repulsive interaction, which simulates the effect of
the nuclear incompressibility (see Ref. [16] for details) is
calculated from the same integral, Eq. (2). In this case
the v(q) represents the (constant) Fourier transform of a
contact interaction with the strength Vrep. The densities we
use in the integral have the same radii as those used in
the calculation of the M3Y double-folding potential but the
diffuseness arep is chosen differently. We have chosen the
parameters Vrep = 570 MeV fm3 and arep = 0.35 fm and obtain
a nuclear incompressibility of 245 MeV. The total potential
(M3Y+repulsion plus Coulomb interaction) is illustrated by
the solid curve in Fig. 1. It has a Coulomb barrier of 75.6 MeV
and the minimum energy of the pocket is 65.1 MeV. The
latter pocket energy was chosen because it is required by the
fusion data as we shall see later on, and this was achieved by
adjusting arep.

The AW potential, Eq. (1), with �R = 0.13 fm ad-
justed to produce the same Coulomb barrier height as the
M3Y+repulsion potential, is also shown in Fig. 1. It has a
pocket energy at 50.5 MeV. The total potential which is based
on the pure (direct+exchange) M3Y potential has a much
deeper pocket. It is unrealistic because the minimum is lower
than the ground state energy of the compound nucleus 224Th,
which is indicated in the figure by the thick solid, horizontal
line at −Qgg = 46.5 MeV.

B. Surface excitations

The structure input that will be used to describe the
excitation of the low-lying states in 16O and 208Pb is given in
Table I. For the lead states it is assumed that the Coulomb and
nuclear β-values are identical. For the oxygen states we use
the parameters that were determined in Ref. [19]. The coupling
strengths to the oxygen states are rather strong, in particular
for the octupole state, but the strengths for Coulomb excitation
are consistent with the adopted values [20]. In addition to the
states shown in Table I we also include all mutual excitations
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TABLE I. Structure input for 16O [19,20] and 208Pb [20]. The
quadrupole moments of the 2+ and 3− states in 208Pb, Q = −0.7(3)
and −0.34(15) b [21], respectively, have been converted into an
effective quadrupole deformation β(Q).

Nucleus λπ Ex

(MeV)
B(Eλ)
(W.u.)

βC
λ βN

λ β(Q)

16O 2+ 6.92 3.1(1) 0.352 0.324 —
3− 6.13 13.5(7) 0.713 0.481 —

208Pb 3− 2.615 33.9(5) 0.111 0.111 0.038
5− 3.198 11.0(7) 0.059 0.059 —
2+ 4.085 8.7(5) 0.057 0.057 0.078
4+ 4.323 18.0(13) 0.079 0.079 —

of these states up to an excitation energy cutoff of 7.7 MeV.
That gives a total of 12 channels.

As in our previous work [16] we include all couplings
up to second order in the nuclear deformation parameters,
whereas Coulomb excitation is described by linear couplings.
The form factors for the linear and quadratic nuclear couplings
are assumed to be the first and second radial derivatives of the
ion-ion potential, respectively.

C. Neutron transfer

We will also study the effect of transfer and consider
explicitly the one-neutron transfer to the 5/2+ ground state
of 17O leaving the 207Pb nucleus in the 1/2− ground state, and
in the 5/2− and 3/2− excited states at 0.57 and 0.88 MeV,
respectively. The Q-values for these transfers are −3.22 MeV,
−3.79, and −4.10 MeV. These transfer channels dominate
the measured (16O,17O) cross section at 104 MeV laboratory
energy [13], and the spectroscopic factors that were extracted
are close to one. The three transfer channels are lumped
together into one effective transfer channel, the same way
it was done in Ref. [14]. The effective Q-value for the transfer
is set to Qeff = −3.2 MeV. This represents a weighted average
of the actual Q-values corrected as suggested in Ref. [22] for
the lower Coulomb barrier (�VCB = 0.46 MeV) in the transfer
channel, i.e.,

Qeff =
∑

Qnσn∑
σn

+ �VCB. (3)

Here the sums over N are over the three final states mentioned
above.

The transfer form factors we use are taken from Ref. [23]
and they are calculated for full spectroscopic strength. The
overall strength of the effective form factor will be scaled by
the factor F1n, in order to be able to reproduce the measured
transfer data [13] at 104 MeV in the laboratory frame. We shall
see later on (Fig. 3B) that this requires the strength F1n = 0.95,
whereas boosting the strength to F1n ≈ 1.2 makes it possible
to simulate the total reaction cross section.

III. RESULTS OF THE CALCULATIONS

The coupled-channels equations are solved with the usual
scattering conditions at large distances and ingoing-wave
boundary conditions (IWBC) that are imposed at the location
Rpocket of minimum of the potential pocket in the entrance
channel. We found in Ref. [16] that the fusion hindrance
observed at extreme sub-barrier energies could only be
explained by defining the fusion in terms of IWBC. However,
in order to be able to simulate the fusion and the total reaction
cross section at energies far above the Coulomb barrier we will
also consider the possibility of supplementing the IWBC with
an imaginary potential.

A. Fusion

The measured fusion cross sections [7,11] are compared in
Figs. 2A and 2B to the results of coupled-channels calculations
that are based on the AW and M3Y+repulsion potentials,
respectively. In each case we show in increasing order the
fusion cross sections we obtain in the no-coupling limit, by
including couplings to the one-neutron transfer (ntr), and to
excitations of the surface modes (exc). The solid curves show
the combined effect of surface excitations and one-neutron
transfer. It is seen that the full calculation (solid curve) in
Fig. 2B, which is based on the M3Y+repulsion potential,
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FIG. 2. Calculated fusion cross sections, obtained with the AW
potential (A) and the M3Y+repulsion potential (B), are compared
with the data of Ref. [7] (open circles) and Ref. [11] (solid points). The
curves show in increasing order the no-coupling limit, the coupled-
channels results for neutron transfer only (ntr) using F1n = 0.95, for
surface excitations only (exc), and the combined effect of surface
excitations and transfer (exc+ntr, solid curve).
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TABLE II. Analysis of 16O+208Pb fusion data. The best χ 2/N ,
and the energy shift �E of the calculations that is required to
minimized the χ 2, are shown for two data sets. The analysis
included statistical errors and an assumed systematic error of 5%. The
calculations were based on the AW potential and the M3Y+repulsion
potentials, respectively, and included couplings to surface modes and
one-neutron transfer using different values of the transfer coupling
strength F1n.

Potential F1n Old data [7] All data [7,11]
�E MeV χ 2/N �E MeV χ 2/N

AW 0 −0.41 9.9 0.50 72
0.95 −0.24 9.2 0.70 73
1.2 −0.06 9.2 0.82 72

M3Y 0 −0.61 14.2 −0.45 25.6
+ 0.95 −0.20 7.2 −0.20 7.1
repulsion 1.10 −0.08 5.7 −0.10 5.6

1.20 0.0 5.2 0.015 5.2
1.30 0.1 5.8 0.10 5.4

provides the best fit to the data, in particular at the lowest
energies where the seven new data points [11] are shown by
solid points.

The best χ2 per point we obtain by shifting the calculation
by an energy �E is shown in Table II as a function of the
transfer strength F1n. It is seen that the quality of the fit
to the data is insensitive to the transfer strength when the
calculations are based on the AW potential, whereas the fit
improves considerably with increasing transfer strength when
the M3Y+repulsion potential is used. The best fit is achieved
for F1n ≈ 1.2.

It is also seen in Table II that the fit to all of the data
points is very poor when the AW potential is used, whereas
the χ2/N is much smaller when the calculations are based on
the M3Y+repulsion potential. We assumed in our analysis a
5% systematic error in addition to the statistical uncertainty.
However, it is not clear whether this assumption is realistic.
Another way of expressing the quality of the best fit is to say
that it requires a 12% uncertainty, in addition to the statistical
error, in order to produce a χ2/N ≈ 1.

B. Reaction cross sections

In this subsection we take a look at the measured reaction
and transfer cross sections [4,13] in order to determine a
realistic value of the transfer coupling strength F1n. The
reaction data are compared in Fig. 3 to calculations that are
based on the M3Y+repulsion potential and include couplings
to surface excitations and one-neutron transfer with the
coupling strength F1n = 0.95. The results shown in Fig. 3A
were obtained without using any imaginary potential, i.e., the
only absorption in this case is the fusion which is determined
by the IWBC. The top solid curve is the total reaction cross
section which falls below the data [4] (top solid points) so
there is obviously room for more reaction channels.

The next set of data points in Fig. 3A are the fusion cross
sections (open circles) which are reproduced fairly well by
the calculation (upper dashed curve). The diamonds show
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FIG. 3. Calculated reaction cross sections (top solid curves) are
compared to data (solid points) [4]. The calculations are based
on the M3Y+repulsion potential and include couplings to surface
excitations and neutron transfer with F1n = 0.95. The calculations
in (A) use IWBC, whereas (B) employs an imaginary potential. In
decreasing order we also show the cross sections for fusion (open
circles), oxygen like fragments (triangles), and one-neutron transfer
(star). The diamonds are the difference between the measured reaction
and quasielastic cross sections.

the difference between the measured total reaction and the
quasielastic cross sections. They agree very well with the
measured fusion cross cross sections, so the total reaction
cross section is essentially comprised of fusion and quasielastic
scattering.

The triangles in Fig. 3A are the measured cross sections
for oxygen like fragments, i.e., the sum of the inelastic and
neutron transfer cross sections. These data points are slightly
below the calculated values (lower dashed curve). The lowest
star-like point at 96.6 MeV is the one-neutron cross section
obtained in Ref. [13] and it is also slightly below the calculated
cross section (the lower solid curve).

A simple way to simulate the reaction data in Fig. 3 is
to increase the transfer coupling strength F1n. Thus we find
that we need a value in the range of F1n ≈ 1.2–1.3 in order to
reproduce the total reaction cross section at the higher energies.
It is interesting that this coupling strength is roughly what
produces the best fit to the fusion data according to Table II.
This implies that the calculated surface excitation plus one-
neutron transfer cross section accounts in this case for the
experimental quasielastic cross section.

Another way to account for the total reaction cross section
is to employ a complex ion-ion potential. We find that the
total reaction cross section can be simulated quite well by
including in the calculations an imaginary potential of the
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FIG. 4. Elastic scattering data at Elab = 80, 83, and 88 MeV [4]
are compared with calculations that are based on the M3Y+repulsion
and the imaginary potential discussed in the text. The dashed curves
(exc) include the effect of surface excitations. The solid curves
(exc+ntr) include in addition the effect of neutron transfer using
the strength F1n = 0.95.

Woods-Saxon type with the parameters: W0 = −7 MeV, Rw =
11 fm, and aw = 0.45 fm. The results are shown in Fig. 3B.
The absorption cross section (upper dashed curve) exceeds the
measured fusion cross section because it must now simulate
the sum of fusion and charged-particle transfer. The calculated
cross section for oxygen-like fragments (lower dashed curve) is
in good agreement with the data (triangles). The measured one-
neutron transfer cross section at 96.6 MeV [13] (the star-like
symbol) is also reproduced by the calculation (the lower solid
curve). This was achieved as mentioned earlier by adjusting
the coupling strength to F1n = 0.95.

C. Elastic scattering

The elastic scattering cross sections we obtain are compared
with data [4] in Fig. 4. The calculations include the diagonal
imaginary potential (W0 = −7 MeV, aw = 0.45 fm, Rw =
11 fm) which was calibrated in the previous subsection so that
the total reaction cross section was reproduced. The dashed
curves are based on couplings to surface excitations (exc).
The solid curves include in addition the effect of transfer
(exc+ntr) and they are seen to reproduce the data at the lowest
energies. Some discrepancies develop at the highest energy
where the calculated rainbow peak is too high and the large
angle scattering cross section is too low. This is somewhat
disappointing because the imaginary potential and the transfer
strength F1n were adjusted in the previous subsection to
account for the measured cross sections, c.f. Fig. 3B.

D. Barrier distribution and S factor

A good way to focus on the energy dependence of the
fusion cross section at energies close to the Coulomb barrier
is to plot the so-called barrier distribution, which is defined
as the second derivative of the energy weighted fusion cross
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FIG. 5. Barrier distributions extracted from the data and from
calculations that are based on the M3Y+repulsion potential. Both
calculations include couplings to surface excitations (exc). The solid
curve (exc+ntr) includes in addition the coupling to neutron transfer
with the coupling strength F1n = 1.2.

section [24]

B(Ec.m.) = d2(Ec.m.σf (Ec.m.))

dE2
c.m.

. (4)

The results we obtain, with and without the effect of transfer,
are compared in Fig. 5 to the barrier distribution we have
extracted from the data. The most obvious discrepancy with
the data is the much higher peak of the calculated distributions.
The same problem was recognized in the coupled-channels
calculations presented in Ref. [7]. There the discrepancy was
removed by applying a very small diffuseness (a ≈ 0.4 fm)
of the ion-ion potential but that would be inconsistent with
the high-energy behavior of the fusion cross section which re-
quired a large diffuseness (a ≈ 1 fm) [7]. It is unfortunate that
using the shallow entrance channel potential we obtain with the
M3Y+repulsion double-folding potential does not resolve the
discrepancy with the peak height of the experimental barrier
distribution.

A significant difference between the two calculations shown
in Fig. 5 is the behavior at the lowest energies. The calculation
which includes the effect of transfer reproduces the low energy
data very well, whereas the calculation which is based on
couplings to excited states only falls off too steeply.

A good way to emphasize the low-energy behavior of the
fusion cross section is to plot the S factor [10] for fusion,

S = Ec.m. σf (Ec.m.) exp(2πη) , (5)

where η = Z1Z2e
2/(h̄vrel) is the Sommerfeld parameter, and

vrel is the asymptotic relative velocity in the entrance channel of
the reacting nuclei. The S factors we obtain are shown in Fig. 6.
It is seen that the calculation ‘exc’, which includes couplings
to surface excitations, makes a very poor fit to the data around
70 MeV. The calculation ‘exc+ntr-120’, which in addition to
surface excitations includes couplings to one-neutron transfer
with the strength F1n = 1.2, makes a surprisingly good fit. It
is evident that couplings to transfer channels, in combination
with the M3Y+repulsion potential, play a crucial role in
explaining the fusion data at the lowest energies. Calculations
that are based on the AW potential, on the other hand, do a
very poor job at low energies (see Fig. 2A), and the quality of
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The curves show in increasing order the no-coupling limit, and
coupled-channels results obtained with different transfer strengths,
namely, F1n = 0 (exc), 0.95 (exc+ntr-95), and 1.2 (exc+ntr-120).

the fit to the data shows very little sensitivity to the transfer
strength according to Table II.

E. Fusion at high energies

The behavior of fusion at high energies is illustrated in
Fig. 7 which shows a linear plot of the cross sections obtained
using the AW potential (A) and the M3Y+repulsion potential
(B). The no-coupling limit which is based on the AW potential
(Fig. 7A) is seen to exceed the data at the highest energies. This
is consistent with the analysis in Ref. [12] which showed that
the fusion data are suppressed at high energy. This problem
was fixed as mentioned earlier by using a large diffuseness of
the ion-ion potential [7,12].

The no-coupling limit which is based on the
M3Y+repulsion potential is shown in Fig. 7B. It is in much
better agreement with the data at the highest energies. Thus
the application of the M3Y+repulsion potential seems to help
resolve the problem of the suppression of the high-energy
fusion data. There is, however, another problem at high
energy, namely, that the fusion cross sections obtained in
coupled-channels calculations from the IWBC tend to drop
far below the no-coupling limit and even below the data. This
trend is clearly seen in Fig. 7B.

We have chosen to fix the problem with the IWBC in
coupled-channels calculations at high energies by supple-
menting the ion-ion potential with a short-ranged imaginary
potential that acts near the location Rpocket of the minimum
of the pocket in the entrance channel potential. (We use
the Woods-Saxon parameters: W0 = −10 MeV, aw = 0.1 fm,
Rw = Rpocket.) It is seen that this prescription produces a cross
section (solid curves in Fig. 7) that is closer to the no-coupling
limit. Moreover, the agreement with the data is very good when
we apply the M3Y+repulsion potential (Fig. 7B), whereas the
data are suppressed when compared to the calculations that are
based on the AW potential (Fig. 7A).
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FIG. 7. Linear plot of fusion cross sections obtained with the
AW potential (A) and the M3Y+repulsion potential (B). The no-
coupling limits (thin dashed curves) are compared to data [7] and
to coupled-channels calculations (exc+ntr, using F1n = 0.95). The
fusion obtained form IWBC (dashed curves) is supplemented with
the absorption from a short-ranged imaginary potential (SRAbs, solid
curves).

It is unfortunate that we have to resort to a short-ranged
imaginary potential in order to be able to reproduce the high-
energy fusion data because this prescription does not work at
extreme sub-barrier energies. We demonstrated that in Sec. VII
A of Ref. [16] and it is also true for the 16O+208Pb fusion
reactions. At the moment we are only able to reproduce the
hindrance of fusion at extreme sub-barrier energies when we
use IWBC without any imaginary potential.

Evidently, the behavior of the high energy fusion cross
section is not trivial. That may not be so surprising because it
is also difficult to reproduce the total reaction cross section and
the elastic scattering at high energy, without making resort to
some kind of absorption. Another problem is that the rotating
frame approximation which we have used is unrealistic
at large angular momenta because it ignores completely
the angular momentum dissipation which together with the
energy dissipation can be critical for high energy fusion.
The qualitative influence of angular momentum dissipation
is nicely illustrated in Fig. 18 of Ref. [25].

The quality of the fits to the data is illustrated in Fig. 8
in terms of the ratio of the measured and calculated fusion
cross sections. The three coupled-channels calculations were
all based on the M3Y+repulsion potential and they have been
shifted by the energy �E which is given in Table II, in order
to produce the best χ2/N . This requirement tends to force the
calculations to be in good agreement with the high energy data,
because the statistical error is very small at high energy. It is
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FIG. 8. Ratio of the measured and calculated fusion cross sec-
tions. The calculations are based on the M3Y+repulsion potential.
They include couplings to surface excitations (exc), and to surface
excitations and one-neutron transfer using the coupling strengths
F1n = 0.95 (exc+ntr-95) and 1.2 (exc+ntr-120).

only when we use the AW potential that we see a suppression
of the data at high energy (c.f. Fig. 7A). Thus we conclude
that using the M3Y+repulsion potential not only explains
the fusion hindrance phenomenon at low energies but it also
helps eliminate the suppression of fusion that was observed in
Ref. [12] at high energies.

The main discrepancy between experimental and calculated
cross sections occurs in Fig. 8 at energies slightly below and
slightly above the Coulomb barrier, which is located at VCB =
75.6 MeV. The enhancement of the ratio σexp/σcal just below
the barrier is very sensitive to which calculation we compare
to. The reduction of the ratio just above the barrier, on the
other hand, is rather insensitive to the calculation we consider.

It is not clear how one can eliminate the deviation of the
cross section ratio from unity. While the enhancement in Fig. 8
below the Coulomb barrier can be reduced by various means
(by changing the coupling strengths, the number of channels,
or by adjusting the ion-ion potential) the suppression above the
barrier seems to be more robust. We note that the suppression
above the barrier is closely related to the large peak height of
the calculated barrier distributions shown in Fig. 5.

IV. CONCLUSION

We have shown that the hindrance of fusion, which has
recently been observed in 16O+208Pb reactions at low energies,
is consistent with the shallow pocket in the entrance channel
potential which is produced by the M3Y+repulsion double-
folding potential. There is strong evidence that couplings to
transfer channels play a crucial role in explaining the energy
dependence of the fusion cross section (or S factor) at the
lowest energies.

The influence of couplings to transfer reactions in coupled-
channels calculations of the 16O+208Pb fusion has been recog-
nized before [1–3] but the importance is much more dramatic
when the new low-energy fusion data [7] are considered and
the coupled-channels calculations are based on the shallow
M3Y+repulsion potential. The best agreement with the fusion
data is achieved by boosting the neutron transfer coupling

strength so that the calculations reproduce the measured total
reaction cross sections. This is a nice consistency check of the
coupled-channels calculations.

Another way to account for the observed reaction cross
sections is to employ an imaginary potential, and this made it
possible for us to reproduce the elastic scattering data, at least
at energies close to the Coulomb barrier. There are still some
problems in accounting for the scattering data at energies far
above the Coulomb barrier, and the fusion, which we usually
define in terms of in-going wave boundary conditions, has to be
supplemented with the absorption in a short-ranged imaginary
potential at high energies in order to be able to simulate the
data. Using this prescription at high energies, we are able
reproduce the fusion data over eight orders of magnitude, from
10 nb to 1 b, with an average (root-mean-square) deviation of
the order of 12%. It is a challenge to theory to reduce this
deviation further.

Since the coupling to transfer plays such a prominent role in
the fusion of 16O+208Pb at very low energies, it may be useful
in future work to reexamine the transfer form factors we have
used. They were developed for peripheral reactions (much
the same way the Akyüz-Winther potential was developed to
describe the elastic scattering in peripheral collisions) but they
may not be realistic at shorter distances between the reacting
nuclei.
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APPENDIX: DENSITY PARAMETRIZATION

The matter or charge density of nuclei is often parametrized
as ρ0f [(r − R)/a)] in terms of the Fermi function f (x) =
1/[1 + exp(x)]. For analytic purposes it is convenient to use
instead the symmetrized form

ρ(r) = ρ0f ((r − R)/a) · f (−(r + R)/a)

=
1
2ρ0 exp(R/a)

cosh(r/a) + cosh(R/a)
. (A1)

The radial shape is essentially the same as that of the normal
Fermi function, when R is much greater than a. The largest
modification is at r = 0, where the ordinary Fermi function is
multiplied by the factor 1/(1 + exp(−R/a)).

A useful integral in this connection is

I (k) =
∫ ∞

0
dr cos(kr)ρ(r)

= ρ0 exp(R/a)

2 sinh(R/a)

aπ sin(kR)

sinh(kaπ )
, (A2)
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which follows from Eq. 3.983 no. 1 or no. 2 in Ref. [26]. One
can also invert this expression

ρ(r) = 2

π

∫ ∞

0
dk cos(kr)I (k). (A3)

These are the one-dimensional Fourier transform relations
between ρ(r) and I (k).

The three-dimensional Fourier transform of ρ(r) can easily
be derived from Eq. (A2),

ρ(k) =
∫

dr exp(−ikr)ρ(r)

= 4π

k

∫ ∞

0
dr r sin(kr) ρ(r) = −4π

k

dI (k)

dk
. (A4)

Inserting the derivative of Eq. (A2) we obtain

ρ(k) = 4πρ0 exp(R/a)

2 sinh(R/a)

aπ

k

×aπ sin(kR) cosh(kaπ ) − R cos(kR) sinh(kaπ )

(sinh(kaπ ))2
.

(A5)

A similar expression was derived in Ref. [27], Eq. (3–8j). It
differs from Eq. (A5) by the factor exp(R/a)/[2 sinh(R/a)],
which is usually close to one. The trick in deriving the analytic
expression, Eq. (A5), was to use the symmetrized density
distribution, Eq. (A1).

The overall normalization of the density in terms of the
mass number A can be determined from Eq. (A5) evaluated
at k = 0,

A = ρ(k = 0) = 4πρ0 exp(R/a)

2 sinh(R/a)

R3

3

(
1 +

(πa

R

)2
)

. (A6)

The mean square radius of the ground state density can be
extracted from the k2 term in the expansion of ρ(k),

ρ(k) = A

(
1 − 1

6
k2〈r2〉 + · · ·

)
.

This yields the familiar result, Eq. (2–65) of Ref. [28],

〈r2〉 = 3

5

(
R2 + 7

3
(aπ )2

)
. (A7)
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