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Nuclear spin polarization following intermediate-energy heavy-ion reactions
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Intermediate-energy heavy-ion collisions can produce a spin polarization of the projectile-like species. Spin
polarization has been observed for both nucleon removal and nucleon pickup processes. Qualitative agreement
with measured spin polarization as a function of the momentum of the projectile-like fragment is found
in a kinematic model that considers conservation of linear and angular momentum and assumes peripheral
interactions between the fast projectile and target. Better quantitative agreement was reached by including more
realistic angular distributions and deorientation caused by γ -ray emission and by correcting for the out-of-plane
acceptance. The newly introduced corrections were found to apply to both nucleon removal and nucleon pickup
processes.
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I. INTRODUCTION

Nuclear spin polarization is a necessary condition for
many types of physics experiments including studies of
nuclear structure, nuclear reactions, fundamental interactions,
and condensed matter physics. Many of these experiments
require the polarization of radioactive ion beams (RIBs). For
example, ground state nuclear magnetic dipole (µ) and electric
quadrupole (Q) moments are critical in the study of nuclear
structure, especially as one moves away from the valley of
stability. Currently, the best reach for such measurements
has been demonstrated by RIBs polarized in fragmentation
reactions.

Quenched magnetic moment values are observed for the
extremely neutron-deficient nuclei 9C and 57Cu. The small µ

value of the proton drip line nucleus 9C (Sp = 1.3 MeV) leads
to a large deviation of the deduced isoscalar expectation value
〈σ 〉 for the 9Li-9C mirror pair when compared with observed
trends for T = 1/2 nuclei [1]. Shell model calculations were
shown to better reproduce 〈σ 〉 when isospin mixing was
included [2]. Intruder mixing with the ground state of 9C
caused by proton shell quenching may also account for the
deviant µ value [3]. 57Cu represents the heaviest Tz = −1/2
nuclide with a known µ value. The magnetic moment is smaller
than predicted in shell model calculations that assume 56Ni is
a good doubly magic nucleus [4].

The quadrupole moments of the B isotopes also provide
evidence for changes in nuclear structure. Q(8B) was found to
be twice as large as expected from shell model calculations [5].
The larger Q was considered evidence of a proton halo.
Near the neutron drip line, the experimental Q moments
for odd-mass 13B, 15B, and 17B were found to be nearly
constant, independent of neutron number [6]. The calculated Q
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obtained with standard values of effective charges overpredict
the experimental Q for 15B and 17B isotopes. The result reveals
that both proton and neutron quadrupole polarization charges
may be reduced near the neutron drip line [7].

From these examples, it is apparent that moment measure-
ments play an important role in nuclear structure studies.
As stated earlier, to perform any moment measurement, the
nuclei must be spin polarized. There is a strong dependence
of polarization on the momentum of the fragment nucleus;
therefore, it is crucial to know the magnitude of polarization
prior to the experiment. While fragmentation reactions are key
in producing exotic nuclei, these nuclei come with low rates.
A figure of merit for measurements involving polarization
is P 2Y , where P represents polarization and Y is yield.
The optimization of polarization with yield is important.
Improvements in yield will come with the development of
new RIB facilities, but while yields are small, the ability to
accurately predict the expected polarization is required for
experimental success. Broader applications for the polarized
beams will be achieved with new RIB facilities, but at the same
time, better predictive power is needed.

In general, the spin orientation of an ensemble of quantum
states is usually specified by a statistical tensor [8]. The tensor
can be denoted by ρkq(I ), where I is the spin of the state
and k, the rank of the statistical tensor, takes the values k =
0, 1, 2, . . . , 2I if I is an integer, and k = 0, 1, 2, . . . , 2I − 1
if I is a half-integer. q takes integer values between −k

and +k. The statistical tensor is related to the distribution
of magnetic substates with respect to a chosen coordinate
frame. It is usually possible to specify the magnetic substate
distribution by the populations P (m) of the 2I + 1 m substates,
where it is assumed that the P (m) are normalized so that∑

P (m) = 1.
For an m-state distribution with axial symmetry, only

the q = 0 components of ρkq(I ) are nonzero. Spin polar-
ization is defined in terms of the k = 1 statistical tensor,
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denoted ρ10, relative to its value for maximum polarization.
Specifically,

ρ10(I ) = −
∑
m

mP (m)√
I (I + 1)

, (1)

and

ρmax
10 (I ) = −I√

I (I + 1)
, (2)

so the spin polarization is

ρ10(I )

ρmax
10 (I )

=
∑
m

mP (m)

I
≡

〈
Iz

I

〉
. (3)

Thus, spin polarization is a measure of the orientation of the
total angular momentum relative to a fixed axis.

Spin polarization of projectile-like residues from
intermediate-energy heavy-ion reactions was first observed at
the Institute of Physical and Chemical Research (RIKEN) of
Japan [9]. Fragments detected at small angles with respect
to the normal beam axis were shown to have a polarized
spin in the low-intensity wings of the momentum distribution.
A qualitative description of the polarization mechanism was
found in a model that considers conservation of linear and
angular momenta and assumes peripheral interactions between
the fast projectile and target. Figure 1 presents a schematic of
the expected polarization and yield for the nucleon removal
process for fragmentation of a projectile on a heavy target. A
systematic study of spin polarization following few-nucleon
removal from light projectiles as a function of energy and target
was completed by Okuno et al. [10]. This study demonstrated
that the relation between the outgoing fragment momentum
and the spin polarization sign depended on the mean deflection
angle θ̄def . Near-side reactions occur for high-Z targets,
where the Coulomb deflection will dominate the internuclear
potential between projectile and target, giving the polarization
dependence shown in Fig. 1. The nucleon-nucleon potential
energy governs removal reactions on low-Z targets. Far-side
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FIG. 1. Illustration of nuclear spin polarization produced in a
nucleon removal reaction at intermediate energies, for a high-Z
target. The yield and polarization curves are given relative to the
incident projectile momentum. The removal schematic is given in the
projectile-like rest frame.

reactions prevail in this case, and the sign of the observed
polarization is reversed.

The spin polarization has a near-zero value at the peak
of the fragment yield curve for both near- and far-side
dominated reactions, since |θ̄def| is large. This behavior can
be qualitatively understood from the projectile rest-frame
diagram in Fig. 1. The removed nucleons have momentum
K. The z component of the induced angular momentum
of the projectile-like species is �z = −Xky + Ykx , where
X, Y are the localized Cartesian coordinates of the removed
nucleon(s), and kx, ky are the momentum components of the
removed nucleons in the reaction plane. If the nucleon removal
occurs uniformly in the overlap region, X ∼ R0, Y ∼ 0, then
�z = −Xky . Zero polarization will therefore result when the
fragment momentum equals the projectile momentum, since
ky = 0 in the projectile rest frame under these conditions.

If nucleon removal is not uniform in the overlap region,
Y �= 0 and the term Ykx can contribute to �z. Such a
contribution will only be observed experimentally when |θ̄def|
is small. The final scattering angle of the fragment is θL =
θ̄def + �θ , where �θ is the change in angle caused by the
transverse momentum component of the removed nucleons,
�θ = tan−1(−kx/p). Here, p is the total momentum of the
projectile-like fragment. In reactions where |θ̄def| ∼ 0, it is the
transverse momentum component of the removed nucleon(s)
that “kicks” the fragments to small angles, and the resulting
polarization is negative since kx > 0 to give positive �θ

and Y < 0 for non-uniform nucleon removal as illustrated in
Fig. 1.

A Monte Carlo code was developed [10] based on the
ideas discussed above to simulate the spin polarization gen-
erated in nucleon removal reactions at intermediate energies.
The general behavior of spin polarization as a function of
projectile-like momentum was achieved, although a scaling
factor of 0.25 was needed to reproduce the magnitude of
polarization observed experimentally.

Spin polarization via nucleon pickup reactions at interme-
diate energies was first demonstrated at NSCL [11]. Positive
spin polarization was determined for 37K species collected
at small angles in the reaction of 36Ar projectiles on a 9Be
target at 150 MeV/nucleon. Figure 2 illustrates the spin
polarization and yield from nucleon pickup reactions. The key
to understanding the observed spin polarization in the pickup
process is that the picked-up nucleon must have an average
momentum equal to the Fermi momentum oriented parallel to
the beam direction. Souliotis et al. [12] reached this conclusion
from the observed shifts in the centroids of the momentum
distributions for one- and two-nucleon pickup products. The
average projectile-like momentum 〈p〉 was found to satisfy the
relation 〈p〉 = 〈pp〉 + 〈pt 〉, with 〈pp〉 the average momentum
of the incident particle and 〈pt 〉 the average momentum of
the picked-up nucleon equal to the Fermi momentum. In the
rest frame of the projectile-like species, the momentum of
the picked-up nucleon will be antiparallel to the incoming
projectile momentum.

The z component of orbital angular momentum induced
by the nucleon pickup process is �z = R�p, assuming a
peripheral interaction where the nucleon is picked up to a
localized position on the projectile given by R in Fig. 2. The
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FIG. 2. Illustration of nuclear spin polarization produced in a
nucleon pickup reaction at intermediate energies. The yield and
polarization curves are given relative to the incident projectile
momentum. The pickup schematic is given in the projectile-like rest
frame.

spin polarization will be zero when the momentum of the
picked-up nucleon matches the momentum of the incoming
projectile (�p = 0). The zero crossing occurs at the projectile-
like momentum p = [(Ap + 1)/Ap]pp, where Ap and pp are
the mass number and momentum of the projectile, respectively.
A linear increase in �z is expected with a decrease in the
momentum of the outgoing pickup product. Groh et al. [11]
found that proton pickup reactions follow the trend shown in
Fig. 2, except for the low momentum side of the momentum
distribution. At low momentum values of the pickup products,
the matching conditions for pickup will no longer be satisfied,
and the spin polarization is observed to rapidly approach zero.

Turzó et al. showed that neutron pickup reactions at
intermediate energies behave in a similar manner [13]. They
extended the Monte Carlo simulation of Ref. [10] to include
nucleon pickup and the momentum considerations discussed
by Groh et al. [11]. Qualitative agreement of the observed
spin polarization as a function of the projectile-like product
was realized, as was the case with nucleon removal reactions.
But again, a scaling factor of 0.25 was needed to reproduce the
magnitude of the observed spin polarization. Scaling factors
of the same magnitude required for both nucleon removal and
nucleon pickup suggest that the same quantitative correction
factors should apply to both.

The kinematic model proposed by Asahi et al. has been suc-
cessfully employed to qualitatively explain spin polarization
at intermediate energies for both nucleon removal and pickup
reactions. This paper introduces additional considerations to
the kinematic model aimed to improve the quantitative agree-
ment of the Monte Carlo simulation with the experimentally
observed spin polarization in nucleon removal and pickup
reactions.

II. MONTE CARLO SIMULATION

The simulation code developed by Okuno et al. [10] was
used to compute the momenta of the removed nucleons in

FIG. 3. Schematic diagram of right- and left-sided collisions, with
far-side (dotted lines) and near-side (solid lines) interactions.

Monte Carlo fashion. The kinematic equations from Ref. [9]
were then applied to calculate the spin polarization (�z/L)
as a function of fragment momentum. The nucleon removal
positions X, Y on the projectile surface are determined by the
relations X = R0 cos � and Y = −R0 sin �, where � > 0 as
shown in Fig. 1. Improvements made to the original simulation
code, which advance toward better quantitative agreement with
spin polarization in both nucleon removal and nucleon pickup
reactions, are discussed below.

A. Location of nucleon abrasion

One shortcoming of the original simulation code was
that the projectile-target interaction was one-sided. We have
adopted an absolute coordinate system to maintain the correct
relationship between the sign of the polarization, the emission
angle of the fragment, and the momentum of the fragment.
Interactions between projectile and target are permitted in
the reaction plane, on both “sides” of the target, as shown in
Fig. 3. The coordinate system is defined as follows. Positive
y is the beam direction, positive x is defined to the right of
the target relative to the beam direction, and positive z is
perpendicular to the scattering plane forming a right-handed
coordinate system. Positive angles are defined to the left of
the y axis, or toward negative x. For left-sided interactions, a
near-side (far-side) collision will scatter to the left (right) or
to positive (negative) angles. For the interactions on the right
side of the target, a near-side (far-side) interaction must scatter
to the defined negative (positive) angles; thus the signs of the
mean deflection angles are changed for these events.

One of the fundamental phenomena in fragmentation
reactions related to polarization is that no fragment spin
polarization is observed when the mean fragment angle θL

is 0◦ [14]. Shown in Fig. 4 is the calculated polarization for
109.6 MeV/nucleon 15N fragmented in a target of 197Au to
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FIG. 4. (Color online) Calculated polarization as a func-
tion of relative fragment momentum for the fragmentation of
109.6 MeV/nucleon 15N in a target of 197Au to make 13B at a fragment
angle of 0◦. p0 is the momentum of the incident projectile, and p is
the momentum of the outgoing fragment. The grey band represents
the range of simulation results within a 1σ distribution.

make 13B at a mean fragment angle of 0◦ with an angular
acceptance of 0.25◦. The calculated polarization is equivalent
to zero within statistical error. Allowance for right- or left-
sided collisions correctly accounts for the observed absence
of spin polarization. On average, half of the events detected
at 0◦ are from a right-sided interaction, while the other half
are from left-sided interactions. The resulting polarization for
each type of interaction is equal in magnitude, but opposite in
sign, giving an average of zero polarization.

Previously, an average value for the location X, Y of the
removed nucleons in the projectile was calculated based on
the rotation angle �. The same removal location was then
used for every event in the simulation. The removal location
is now calculated based on the volume of intersection of a
cylinder and sphere following the prescription of Gosset et al.
[15]. The number of nucleons removed is directly proportional
to the overlap volume. A removal position was calculated in
Monte Carlo fashion for each nucleon in the overlap region
and then averaged to give the position X, Y of the group of
removed nucleons. The rotation angle � is accommodated in
this approach by offsetting the Y position by a fixed value, yet
ensuring that the offset Y value remains in the overlap region.

B. Distribution of Deflection Angles

The mean deflection angle θ̄def is calculated by way of
numerical integration. Required input parameters are the Z

and A of both projectile and target, the energy of the projectile,
the distance of closest approach rmin, and the real part of the
optical model potential for the nucleus-nucleus interaction V0.
The relations of Gossett et al. [15] are used to determine rmin.

In the original incarnation of the simulation code, all
resulting fragments scatter to a single angle defined by θ̄def ,
based on the number of nucleons removed plus the angular
impulse given to the fragment in the transverse direction.
However, for a given number of nucleons removed, fragments
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FIG. 5. Linear angular distribution with θ̄def = 3◦.

will scatter to a range of angles whose mean is the mean
deflection angle. To better simulate experimental conditions, a
distribution of scattering angles whose average is θ̄def has been
considered, including Rutherford, Fermi, and step function
distributions. The Rutherford distribution describes classical
elastic scattering and is strongly peaked at 0◦. This distribution
was problematic because fragmentation reactions are not
classical elastic scattering, and the Rutherford distribution is
incompatible with a mean angle larger than about 1◦. The step
function distribution ranged in angle from zero to twice the
mean deflection angle, with the functional form

f (θdef) =
{

1, 0 � θdef < 2θ̄def,

0, θdef � 2θ̄def .
(4)

Even though the mean is θ̄def , the angular distribution is
nonphysical. In particular, the maximum number of fragments
did not occur at 0◦ as observed in experiment. The Fermi
distribution (i.e., a Woods-Saxon shape) has the form

f (θdef) = 1

1 + e(θdef−x)/a
, (5)

where a = 0.5, θdef is the scattering angle, and the value of
x is varied to make the mean of the distribution equal to the
mean deflection angle. The correct mean for the distribution
could only be achieved with a negative value for x, which is
unphysical.

A compromise was made on a straight-line distribution with
negative slope. This distribution has the advantage of peaking
at 0◦; and by changing the slope, the desired mean deflection
angle can be imposed on the distribution. A calculated angular
distribution with θ̄def = 3◦ is shown in Fig. 5.

C. Out-of-plane scattering

In the original simulation code, projectile-target interac-
tions that occurred only in the x, y plane were considered.
However, fragments should interact with the target on the top,
the bottom, and all the angles in between, not just on the right
or left side of the target in the horizontal x-y plane. Such
nonequatorial interactions would decrease the z component
of angular momentum in the equatorial (reaction) plane, as
shown in Fig. 6. The primed frame represents nonequatorial
scattering and can be represented as a rotation of the coordinate
system about the y axis through the angle β.
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FIG. 6. (Color online) Representation of nonequatorial scattering
of fragments (primed axes) and the scattering of fragments purely in
the horizontal x-y plane (unprimed axes). Labels defined in the text.

The resulting z component of angular momentum for the
nonequatorial scattering is L′

z = Lz cos β − Lx sin β, where
Lx is the component of angular momentum projected on
the x axis and β is the rotation angle. In theory, β can
range from −π/2 to +π/2, since the projectile interaction
can occur anywhere in the y-z plane. Integrating all possible
contributions from the out-of-plane acceptance and including
a 1/π normalization factor from the interval of integration
gives

L′
z = 1

π

∫ π
2

− π
2

(Lz cos β − Lx sin β) dβ = 2

π
Lz. (6)

Experimental devices have a limited angular acceptance,
and thus the range on β will be smaller than −π/2 to +π/2.
Figure 7 shows a schematic of the beam view of an angular
acceptance of 2.0◦ ± 0.5◦ horizontally and ±2◦ vertically.
The out-of-plane acceptance of ±2◦ limits the range on β

to −53◦ to +53◦ for this case. Equation (6) with these limits
of integration and a renormalization of 106◦ rather than 180◦
gives L′

z = 0.86Lz. As the acceptance window moves farther
from the beam axis, the range on angle β will decrease. This

Beam Axis
(into page)

2o

1o

3o

Acceptance Window

0.5o

0.5o

2o

2o

β

FIG. 7. Representation of the angular acceptance window from a
beam view. The fragment angle acceptance (horizontal acceptance)
is 2.0◦ ± 0.5◦ and the vertical acceptance is ±2◦.

TABLE I. Polarization correction factors due to nonequatorial
scattering.

Fragment Acceptance βmax(deg) Correction
angle (deg) (deg) factor

1.0 ±2.5 90 0.64
2.0 ±0.5 53 0.86
2.0 ±2.5 90 0.64
4.0 ±2.5 53 0.86
5.0 ±2.5 39 0.92
0 full 90 0.64

causes the value of L′
z to approach that of Lz. Various example

acceptance windows, β angles (i.e., ranges on β), and the
resulting corrections for Lz in terms of L′

z are listed in Table I.
A vertical acceptance of ±2◦ is assumed in all cases, common
in most fragment separators.

A factor of 2/π has been included in the simulation code as
a multiplicative factor on the polarization. As shown in Table I,
different angular acceptance windows could slightly increase
this value.

D. γ -ray deorientation

The fragmentation process will often leave the projectile-
like product in an excited state. One pathway to remove
the excitation energy is through γ -ray emission. Discrete γ

rays have been observed in “in-beam” fragmentation studies
[16]. Intermediate-energy reactions also populate high-spin
isomeric states, whose depopulation can be readily followed
in the absence of the prompt radiation background [17].
γ rays emitted from a spin polarized nucleus can reduce
the magnitude of the polarization. Such a deorientation
process was not previously considered. γ -ray deorientation
was included in the simulation code by assuming a statistical
cascade through a continuum of levels following a prescription
similar to that of Leander [18]. A nuclear level density is
specified by a constant temperature level-density formula [19].
For each γ ray, the transition energy, multipolarity (E1, E2,

or M1), and spin change are determined by random numbers.
The deorientation coefficients Uk [20] are calculated from
the initial and final spin values and from the multipolarity.
A cumulative deorientation is obtained from the product of the
U1 values of the cascade γ rays. The statistical nature of the
cascade decay is included by repeating the calculation with a
random walk. The resulting average deorientation coefficients
are given a weighting factor based on the calculated spin
distribution and excitation energy of the fragment.

Deorientation coefficients were calculated for the frag-
mentation reactions involving two-nucleon removal reported
in Ref. [10], as well as the nucleon pickup reactions re-
ported in Refs. [12] and [13]. The values are presented in
Table II. The U1 values ranged from 0.50 to 0.89, suggesting
that γ -ray deorientation can have significant impact on the
final spin polarization of the projectile-like fragment. The
calculated average entry spin (∼2h̄) and cascade multiplicity
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TABLE II. Polarization correction factors due to γ -ray
deorientation

Reaction Energy U1 Avg. entry Multiplicity
(MeV/A) spin

197Au(14N,12B)X 39.4 0.500 1.54 2.32
197Au(15N,13B)X 68 0.592 1.79 2.35
197Au(15N,13B)X 109.6 0.576 1.71 2.34
93Nb(15N,13B)X 67.3 0.583 1.74 2.34
27Al(15N,13B)X 68 0.555 2.02 2.39
9Be(36Ar,37K)X 150.0 0.688 2.59 2.95
9Be(36S,34Al)X 77.6 0.887 4.17 2.82

(∼3) were reasonable based on in-beam spectroscopy of light
fragmentation products [16].

It can be anticipated that nuclear structure effects, especially
the discrete level sequence at low energy, may affect the
magnitude of deorientation in some cases. For example, 11Be
has an Iπ = 1/2+ ground state, and its only excited state at
320 keV has Iπ = 1/2−. Any population of the ground state
via the excited state will have the opposite polarization to the
direct population of the ground state. This is an exceptional
case. In p-shell nuclei closer to the valley of stability that have
low lying 1/2+ and 1/2− states, with one being the ground
state, the excited spin 1/2 state is accompanied by several other
states of higher spin that decay directly to the ground state.
Thus, if the population of the excited states is not selective, the
effect of the change in the sign of the polarization for decays
through excited spin 1/2 states is not expected to be prominent
in most cases.

Low-lying spin 0 states also have the potential to greatly
diminish the net polarization. For example, in 16N, which has
a 2− ground state, the first-excited state at 120 keV is a 0−
state. Any population that passes through this state will lose
its orientation. However, in 16N, there are 3− and 1− states at
298 and 397 keV, respectively, which will compete with the 0−
state for population as a result of the reaction and ameliorate
the overall polarization loss.

Thus although specific nuclear level sequences at low spin
are important, especially in weakly bound systems with very
few excited states, as a first estimate of the magnitude of
the effect it seems appropriate to model the deorientation
in a generic way by assuming a statistical cascade through
a continuum of levels using a Monte Carlo simulation as
described above.

E. Nucleon pickup

The simulation code has been modified to include nucleon
pickup, independent of the efforts reported in Ref. [13].
The pickup process follows the observations of Souliotis
et al. [12] in that the picked-up nucleon has an average
momentum equal to the Fermi momentum (230 MeV/c),
oriented parallel to the beam direction. The momentum
distribution for the one-neutron pickup reaction 27Al(18O,19O)
at 80 MeV/nucleon shows a considerable shift of the centroid
below the momentum/nucleon of the beam, as observed in
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FIG. 8. (Color online) Parallel momentum/nucleon distribution
calculated with the simulation code for the reaction 27Al(18O,19O)
at 80 MeV/nucleon. The squares are the data points and the
line represents the simulation results. The arrow corresponds to
the momentum/nucleon of the beam. The simulated momentum
distribution has been scaled by the ratio observed in Ref. [12] of
experimental centroid/calculated centroid (0.969/0.978) in order to
compare with the data.

Ref. [12], in contrast to those for nucleon removal products.
The simulated position of the centroid agrees with the
calculation of Ref. [12], where a simple model based on
momentum conservation was used (see Fig. 8). The width
of the momentum distribution is observed experimentally to
be small (around 20 MeV/c), while it is calculated to be zero,
based on the equation by Goldhaber [21], and extended to
nucleon pickup, that is,

σ 2
‖ = σ 2

0
APF (AP − APF )

AP − 1
, (7)

where APF = AF − �At is the mass of the projectile part of
the final product and �At is the number of nucleons picked up
from the target. The parameter σ0 is the reduced width and is
related to the Fermi momentum of the nucleon motion inside
the projectile: σ 2

0 = p2
Fermi/5. A value of σ0 = 80 MeV/c is

used, which agrees with the experimental widths in Ref. [12].
Equation (7) assumes that the nucleon is picked up from the
target with a fixed momentum and direction, and the picked up
nucleon makes no contribution to the width. Thus, for any pure
nucleon pickup process, AP = APF and the parallel width
is zero. To model experimental observations of Ref. [12], a
parallel width of 20 MeV/c was used. In addition to the parallel
width, Van Bibber et al. [22] showed that in heavy-fragment
studies in the 100 MeV/nucleon region, the projectile is
subject to an orbital deflection due to its interaction with the
target nucleus before fragmentation takes place. The orbital
deflection gives an additional dispersion of the transverse
momentum, as demonstrated in the expression

σ 2
⊥ = σ 2

1
APF (AP − APF )

AP − 1
+ σ 2

2
APF (APF − 1)

AP (AP − 1)
, (8)

where the first term was defined previously, and the second
term contains σ 2

2 , the variance of the transverse momentum
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FIG. 9. Variable definitions for mean deflection angle calculation.

of the projectile at the time of fragmentation (200 MeV/c, as
used in Ref. [22]). A comparison of the simulated momentum
distribution is shown in Fig. 8 with the data taken from
Ref. [12].

F. Optical potential

The real part of the optical model potential for the nucleus-
nucleus interaction, V0, is a required input parameter for the
mean deflection angle calculation. For a single interaction, the
deflection angle θ (see Fig. 9) is given by

θ = π − 2φ, (9)

with

φ =
∫ ∞

rmin

b dr

r2
√

1 − b2

r2 − U (r)
E

, (10)

where b is the impact parameter, r is the distance between the
centers of the two objects, U (r) is the potential governing the
interaction of the two objects, rmin is the separation between
the centers of the two point-like objects at the distance of
closest approach, and E is the energy given by

E = 1
2mv2

∞, (11)

where v∞ is the velocity of the projectile at r = ∞ [23].
The projectile is assumed to move away from the target

after the scattering event with momentum equal to the incident
momentum, thus E(v∞) = E(vincident). This formula is general
for any spherically symmetric potential.

The potential U (r) is defined by

U (r) = UCoulomb(r) + Unuclear(r). (12)

The Coulomb part of the potential is repulsive and is equal to

UCoulomb(r) = 1.438ZpZt

r
, (13)

where Zp and Zt are the charges on the projectile and target,
respectively, and r is the separation in fm. The nuclear part of
the potential is based on the real part of the optical model [24]
and is attractive:

Unuclear(r) = −V0

1 + e(r−R)/a
. (14)

Here V0 is the depth of the optical model potential, R =
1.2( 3

√
Ap + 3

√
At ), where Ap and At are the masses of the

projectile and target, respectively, and a is a measure of the
diffuseness of the nuclear surface. V0 and a are parameters fit

TABLE III. θ̄def and corresponding V0 used for the
reactions studied in the present work.

Reaction Energy θ̄def(deg) V0 (MeV)
(MeV/A)

197Au(14N,12B)X 39.4 3.09 48
197Au(15N,13B)X 68.0 0.92 63
197Au(15N,13B)X 109.6 0.09 85
93Nb(15N,13B)X 67.3 −0.35 65
27Al(15N,13B)X 68.0 −3.25 118
9Be(36Ar,37K)X 150.0 −0.07 29
9Be(36S,34Al)X 77.6 −0.49 32

to experimental data. There are very limited nucleus-nucleus
scattering data, and an exact determination or parametrization
of V0 is difficult for any given projectile-target combination.
Typically this is not a problem, because in head-on collisions,
the nuclear potential does not have a large influence. However,
the treatment of peripheral collisions depends on the optical
potential. In the minimum, a determination of V0 is needed.
A parametrization of V0 based on energy and/or number of
nucleons removed would suffice, but unfortunately, such a
parametrization does not presently exist.

In the reactions studied in Ref. [10], V0 was calculated by
the authors, and the corresponding θ̄def was reported in the
literature. The reported θ̄def (given in Table III) was used in the
polarization calculations to follow.

For the nucleon pickup reactions, V0 was determined with a
folding model calculation [25]. The model was chosen because
it reproduces experimental scattering data for heavy ions in
the energy range of interest. The folding calculation yields
the real part of the optical potential (V0) as a function of
the internuclear radius, the distance between the center of the
projectile and target. The internuclear radius is calculated in
the simulation code, based on the relations by Gosset et al. [15],
as mentioned previously. The value of V0 corresponding to a
radius for one nucleon overlap was used in the nucleon pickup
reactions. Given in Table III are the θ̄def and V0 for the reactions
studied in the present work.

G. Results

Comparison of the spin polarization measurements for
intermediate-energy reactions that include two-nucleon re-
moval in Ref. [10] with the simulation results that include con-
siderations for angular distributions, out-of-plane scattering,
and γ -ray deorientation are presented in Fig. 10. No scaling
factor was used to adjust the simulated spin polarization.

The predicted polarization trend as a function of outgoing
fragment momentum for a three-nucleon removal case is
shown in Fig. 11. The polarized 55Ni nucleus from a 58Ni
primary beam is proposed to determine the ground-state
magnetic moment measurement of 55Ni at NSCL [26]. The
expected rate of 55Ni is 500 pps; thus optimized polarization at
peak yield is critical to realize a successful measurement. The
proposed measurement will complete the µ measurements of
nuclei one nucleon removed from 56Ni. The two Tz = +1/2
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FIG. 10. (Color online) Polarization as a function of fragment momentum p relative to the primary beam momentum p0 for the removal
reactions 197Au(14N,12B) at 39.4 MeV/nucleon, 197Au(15N,13B) at 68 MeV/nucleon, 197Au(15N,13B) at 109.6 MeV/nucleon, 93Nb(15N,13B)
at 67.3 MeV/nucleon, and 27Al(15N,13B) at 68 MeV/nucleon. The squares are the experimental data points and the dashed lines are the
previous simulation results, both from Ref. [10]. The black band represents the range of the present simulation results within a 1σ distribution.
Momentum is given relative to the peak of the yield distribution.

nuclei, 55Co and 57Ni, both have known magnetic moment
values that compare favorably with results of shell model
calculations. On the other side of N = Z, the Tz = −1/2
nucleus 57Cu has a µ value that deviates significantly from
shell model expectations, suggesting a weakened core in 56Ni.
The measurement of µ(55Ni) is key to understanding how the
56Ni core may be polarized when coupled to a neutron hole.

The simulation results for the one-nucleon pickup processes
are shown in Figs. 12 and 13. Angular distributions, out-of-
plane scattering, and γ -ray deorientation were implemented
in the nucleon pickup process as well. In the momentum
distribution calculations discussed previously, Souliotis et al.
[12] used the “typical” Fermi momentum of 230 MeV/c. For
the simulation to encompass a range of targets, the Fermi

momentum was taken not as 230 MeV/c, but was calculated
based on data from Moniz et al. [27]. The Fermi momentum
ranges from 170 MeV/c for the lightest targets to 260 MeV/c
for heavier targets. The results of the simulation for proton
pickup are shown in Fig. 12, calculated for the one-proton
pickup reaction, 9Be(36Ar,37K)X, first observed by Groh et al.
[11]. The momentum matching conditions [28] for simple
surface-to-surface pickup are best met for the two data points
on the high momentum side of the yield distribution, where
the simulation agrees with the data. On the low momentum
side of the peak of the yield curve, the picked-up nucleon
has a momentum less than the Fermi momentum, and the
momentum matching conditions for direct pickup are poorly
satisfied. More complex transfer mechanisms are therefore
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FIG. 11. Polarization distributions generated from the Monte Carlo simulation code as a function of relative fragment momentum for the
three-neutron removal fragmentation reaction with a primary 58Ni beam at 140 MeV/nucleon on 9Be target and 184W targets. Both targets will
be used during the experiment to provide better comparison with the simulation.

required to describe the polarization on the low momentum
side [11].

The simulation code was also used to model the neutron
pickup data obtained in Ref. [13], as shown in Fig. 13. Again,
no scaling factor was required to achieve a better quantitative
agreement with experiment.

III. SUMMARY

A statistical Monte Carlo code for nuclear spin polarization
has been modified to include corrections to the kinematic
model that aim to improve quantitative agreement with
experiment. The positions of removed nucleons are assigned
in a Monte Carlo fashion, and projectiles are allowed to
interact on either side of the target. The real part of the optical
potential V0 is obtained with a folding model calculation and
then used in the calculation of the mean deflection angle
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FIG. 12. (Color online) Polarization as a function of fragment
momentum p relative to the primary beam momentum p0 for
the one-proton pickup reaction 9Be(36Ar,37K) (150 MeV/nucleon).
The squares are the experimental data points from Ref. [11], and
the grey band represents the range of simulation results within a 1σ

distribution.

θ̄def . Fragments are permitted to scatter to a distribution of
deflection angles rather than a single mean angle, and the
out-of-reaction-plane acceptance has been taken into account.
The process of deorientation due to γ -ray relaxation is also
included. The angular distribution implementation reduces
the calculated polarization magnitude by about 10%, and the
out-of-plane acceptance reduces the polarization magnitude by
about 40%. The calculated polarization magnitude is corrected
by about 50% due to γ -ray deorientation. These corrections
account for the 0.25 scaling factor needed by both Refs. [10]
and [13] in their simulations.

It should be noted that the corrections are approximations.
A primitive function is used to calculate the distribution of
deflections angles, and no attempt was made to rigorously
reproduce the scattering angles observed in fragmentation re-
actions. The out-of-plane scattering correction is implemented
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FIG. 13. (Color online) Polarization as a function of fragment
momentum p relative to the momentum at the peak of the yield
distribution p0 for the one-neutron pickup reaction 9Be(36S,34Al)
(77.5 MeV/nucleon). The squares are the experimental data points,
and the heavy dashed line is the previous simulation result, both from
Ref. [13]. The grey band represents the range of the present simulation
results within a 1σ distribution.
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as a constant multiplicative factor based on the expected
acceptances of typical fragment separators. The deorientation
correction due to γ -ray relaxation is calculated in a statistical
manner considering average excitation energy and entry spin.
Even within these limitations, the magnitude with which the
corrections are shown to improve the results indicate that these
are important contributions to consider in the simulation of
polarization in intermediate-energy reactions.
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