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How to identify the orbital of the valence nucleon(s) of exotic nuclei is an important problem. The elastic
magnetic electron scattering is an excellent probe to determine the valence structure of odd-A nuclei. The
relativistic mean-field theory has been successfully applied to systematic studies of the elastic charge electron
scattering from even-even exotic nuclei. The extension of this method to investigate the elastic magnetic electron
scattering from odd-A exotic nuclei is a natural generalization. The experimental form factors of 17O and 41Ca
are reproduced very well with the help of the spectroscopic factors which are introduced into the relativistic
treatment of the magnetic electron scattering for the first time. The emphases are put on the magnetic form factors
of 15,17,19C, 23O, 17F, and 49,59Ca calculated in the relativistic impulse approximation. Great differences have
been found in the form factors of the same nucleus with different configurations. Therefore, the elastic magnetic
electron scattering can be used to determine the orbital of the last nucleon of odd-A exotic nuclei. Our results
can provide references for the electron scattering from exotic nuclei in the near future.
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I. INTRODUCTION

In the past 20 years, the nuclear structure of halo nuclei have
attracted much attention [1–3]. Very recently, Wang et al. [4]
have studied the observable effects of the extended charge
densities on the form factors of the elastic charge electron
scattering from even-even exotic nuclei by comparing with
those from stable ones. A halo nucleus can be viewed as
a normal core plus a low density halo. The formation of a
halo is directly related to the orbital of the last nucleon(s).
As for odd-A exotic nuclei, the orbital of the last nucleon
is mainly deduced from the ground-state spin-parity and the
spectroscopic factors up to now. However, the spin-parity of
an exotic nucleus is not always available. When the spin-parity
is absent, there may exist debate about the configuration of the
exotic nucleus. For example, the configuration of 23O arose
a hot debate very recently [5–10]. A similar situation has
ever occurred for 19C [11]. The nuclear density distribution
is another important property of nuclei. It is an important
input of some reaction models such as the most-used Glauber
model. As for two-body halo nuclei (i.e., one-nucleon halo
nuclei) the density can be viewed as the sum of the normal
core density and the halo density which is determined by
the orbital of the last nucleon. Therefore, a sensitive probe
that can determine accurately both the orbital and the density
of the halo nucleon is necessary. Elastic magnetic electron
scattering provides us such a probe [12–14]. Elastic magnetic
electron scattering has been extensively used to study the
valence structure of the nuclei near the stability valley. The
magnetic form factor is determined by the orbital of the last
nucleon. So from the elastic magnetic form factor one can
determine directly the orbital of the last nucleon. Furthermore,
electron is a charged lepton, which can only participate in
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electromagnetic interaction. It is expected that in the process
of electron scattering the wave function of the loosely bound
halo nucleon can hardly be perturbed. Therefore, magnetic
electron scattering will be a powerful tool in studying the
valence structure of exotic nuclei. In recent years, an electron
scattering ring is under construction at RIKEN [2,15,16] in
Japan. Similar facilities are also under construction or planned
to be constructed [17,18]. It is expected that the data of electron
scattering from exotic nuclei will be available soon. Therefore,
it is time to study the magnetic electron scattering from exotic
nuclei, providing references for future experiments. In fact,
Bertulani [19] and Karataglidis et al. [20] have performed
theoretical studies on electron scattering from exotic nuclei
very recently.

In order to calculate the magnetic form factor we need a
reliable model to provide the single-particle wave function. In
the literature, the magnetic form factors of electron scattering
from stable nuclei were often calculated using the single-
particle wave functions of the Woods-Saxon model. Although
this method has given reliable results for odd-A nuclei near the
stability line, the not well-known dependence of the nuclear
potential on proton and neutron numbers of exotic nuclei [2]
make it invalid at present. Moreover, the wave function of the
last nucleon is also determined by its binding (or separation)
energy. Unfortunately, the one-nucleon separation energies
of exotic nuclei are very difficult to measure. For instance,
in the 1995 mass table by Audi et al. [21] the one-neutron
separation energy Sn of 19C is 160(110) keV, and in the 2003
mass table [22] this value is replaced by 580(90) keV which
is close to the value 530(130) keV deduced by Nakamura
et al. [23]. Therefore, a self-consistent model is required
in calculating the single-particle wave function of the last
nucleon. As a simple model of the quantum hadronic dynamics
(QHD), the relativistic mean-field (RMF) theory is a good
choice. This model has been successful in studying the halo
structure [4,24]. The QHD models have also achieved success
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in investigating the magnetic properties of odd-A nuclei.
Serot [25] and Kim [26] have calculated the elastic magnetic
form factors in the relativistic impulse approximation. An
obvious advantage of the QHD is that it provides a consistent
framework to examine various corrections such as the effects
of the backflow [27–29] and the meson exchange currents
(MEC) [30]. As the first step to investigate the magnetic form
factors of exotic nuclei in the QHD framework, we will neglect
these corrections since the purpose of this paper is to suggest a
method of identifying the configurations of exotic nuclei rather
than making comparisons with existing data. More detailed
calculations will be performed in the next works. In this paper,
we will calculate the magnetic form factors of 23O, 17F, 49,59Ca,
and 15,17,19C in the plane wave Born approximation (PWBA)
for simplicity.

II. THEORY

In the RMF theory [31–33], the single-particle wave
function of the valence nucleon reads (following the notation
of Ref. [34])

ψnκm =
[

i[G(r)/r]�κm(r̂)

−[F (r)/r]�−κm(r̂)

]
=

[
i|nκm〉
−|nκm〉

]

=
[

i
∣∣nl 1

2jm
〉

−∣∣nl′ 1
2jm

〉
]

. (1)

With above relative phase factor the upper and lower compo-
nents G(r) and F (r) are real functions. The angular quantum
number κ uniquely determines the orbital and the total angular
momentum quantum numbers l, l′, and j ,

j = |κ| − 1

2
,

{
l = κ, l′ = l − 1, (κ > 0)
l = −(κ + 1), l′ = l + 1, (κ < 0). (2)

In Eq. (1) �κm is the spinor spherical harmonics.
In the quantum hadronic dynamics (QHD) the internal

structure of the single nucleon comes mainly from the charged
mesons. In the low and medium momentum transfer region
(say q � 5 fm−1) it is reliable to assume that the free single
nucleon charge and magnetic form factors have the same q

dependence:

F1,2(q2) = fsn(q2)F1,2(0), (3)

where q is the momentum transfer carried by the virtual
photon. Then the S-matrix of electron scattering from a single
nucleon is equivalent to that from the effective current operator
[25,26,35]

Ĵµ = iψ̄Qγµψ + (1/2Mn)∂/∂xν(ψ̄λ′σµνψ). (4)

In this equation Q (Mn) is the charge (mass) of the nucleon
and λ′ is the anomalous magnetic moment [36],

Q = 1

2
(1 + τ3), λ′ = λ′

p

2
(1 + τ3) + λ′

n

2
(1 − τ3), (5)

with λ′
p = 1.793, λ′

n = −1.913.
The magnetic form factor can be expressed in terms of the

reduced matrix elements of the magnetic multipole operators

of the effective current operator,

F 2
ML(q) = 4π

2Ji + 1
|〈Jf ‖T̂ mag

L (q)‖Ji〉|2. (6)

The multipole operator is given by [12–14]

T̂
mag

LM (q) =
∫

jL(qr)YM
LL(r̂) · Ĵ(r)d3r, (7)

where YM
LL(r̂) is the vector spherical harmonics [37]. With the

effective current operator and the four-component Dirac wave
function the multipole operator T̂

mag
LM can be written in a block

matrix form [25,26,35]:

T̂
mag

LM (r) =
[

iq(λ′/2Mn)�′M
L (r) Q�M

L (r)

Q�M
L (r) −iq(λ′/2Mn)�′M

L (r)

]
,

(8)

where

�M
L (r) ≡ MM

LL(r) · σ,

�′M
L (r) ≡ −i(∇ × MM

LL(r)) · σ/q,

MM
LL(r) ≡ jL(qr)YM

LL(r̂).

In the independent single-particle shell model only the last
nucleon contributes to the magnetic form factor

F 2
M (q) = 4πf 2

sn(q)f 2
c.m.(q)

2Ji + 1

odd∑
L=1

|〈Jf ‖T̂L
mag‖Ji〉|2

= 4πf 2
sn(q)f 2

c.m.(q)

2Ji + 1

odd∑
L=1

|2〈nκ‖Q�L‖nκ〉 − (q/2Mn)

× (〈nκ‖λ′�′
L‖nκ〉 − 〈nκ‖λ′�′

L‖nκ〉)|2, (9)

where the single-nucleon factor and the center-of-mass factor
are given by fsn(q) = [1 + (q/855 MeV)2]−2 and fc.m.(q) =
exp(q2b2/4A), respectively. In this paper we choose the
oscillator parameter b = A1/6 fm−1.

In calculating the single-particle reduced matrix elements
the formulas given by Edmonds [37] and Willey [38] are used.
With the method of partial integration the reduced matrix
elements can be written explicitly as follows:

〈nκ‖�′
L‖nκ〉

= (−1)l+1

q

(
6

4π

)1/2

(2l + 1)(2j + 1)

×






l l L + 1
1
2

1
2 1

j j L




(
l L + 1 l

0 0 0

)
(L(2L + 3))1/2

×
∫

dr r2jL(qr)

(
d

dr
+ L + 2

r

)
g2(r)

+



l l L − 1
1
2

1
2 1

j j L



(

l L − 1 l

0 0 0

)
((L + 1)(2L − 1))1/2

×
∫

dr r2jL(qr)

(
d

dr
− L − 1

r

)
g2(r)


 , (10)
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and

〈nκ‖�L‖nκ〉

= (−1)l
′
(

6

4π

)1/2

(2L + 1)(2j + 1)((2l + 1)(2l′ + 1))1/2

×



l′ l L
1
2

1
2 1

j j L


 ×

(
l′ L l

0 0 0

)∫
dr r2jL(qr)g(r)f (r),

(11)

where we have defined g(r) = G(r)/r, f (r) = F (r)/r .
Through replacing g(r) and l by f (r) and l′ of Eq. (10),
respectively, one can obtain the matrix element 〈nκ‖�′

L‖nκ〉.

III. NUMERICAL RESULTS

With the formalism described above we write the fortran
code. At first, it is necessary to investigate the validity and
precision of this code. With this purpose, we calculate the
elastic magnetic form factors of 17O and 41Ca where the last
neutron has a stretched configuration (j = l + 1

2 ) and is bound
by the doubly closed core. For these nuclei, the interpretation
of magnetic form factors is very simple. That is why we choose
these two nuclei to test the validity of this code. The nonlinear
RMF calculations are performed with the force parameters
NL-SH [32] and TM1/TM2 [33]. Many calculations showed
that these parameters can reproduce the ground-state properties
of both stable and unstable nuclei. The theoretical results of
17O and 41Ca calculated using the relativistic formulas agree
with the experimental data considerably. The detailed results
are shown in Fig. 1. It is shown that the single-particle form
factors deviate slightly from the experimental data in low and
medium q region, and that the single-particle form factors
fall more steeply than experimental data. These deviations
are attributed to the many-body effects such as backflow
and meson exchange currents in the relativistic field theory.
Historically, the discrepancies between the experimental and
theoretical results were often treated by introducing the
spectroscopic factors α′

Ls which were fitted along with the
parameters of the Woods-Saxon model. In this paper we will
also make the least-square fits to the form factors using the
formula

F 2
M =

odd∑
L=1

α2
LF 2

ML(q)f 2
sn(q)f 2

c.m.(q). (12)

For the first time, the spectroscopic factors are introduced
into the relativistic treatment of the magnetic form factors.
However, it can not be generalized simply from the non-

relativistic models to the relativistic ones. There is a
question must be answered beforehand: do these corrections
depend strongly on the momentum transfer in the relativistic
field-theories? The answer is no. Ichii et al. [28] have shown
that the effect of vacuum fluctuation (or backflow) is moderate
and changes slowly with the momentum transfer. Blunden and
Kim [30] have calculated the contributions of the one-pion
exchange currents and found a fairly uniform enhancement
of the magnetic form factors up to a rather high momentum
transfer q = 4 fm−1. Therefore, it is reasonable to believe
that these effects can be incorporated into the spectroscopic
factors sufficiently. In contrast to the nonrelativistic treatment
where the parameters of the single-particle potential are fitted
simultaneously with the spectroscopic factors, we assume the
validity of the RMF theory in predicting the wave function
of the last nucleon beforehand. The purpose is twofold: one
is to see to what extent the discrepancy can be eliminated
in both low and high q regions; the other is to compare
these spectroscopic factors with those obtained from the
Woods-Saxon model. Because of the lack of experimental
data in the very low q region where M1 dominates the electron
scattering, the factor α1 is fixed to the ratio of the experimental
magnetic moment to the single-particle value: α1 = µexp/µsp.
The experimental and single-particle magnetic moments,
rms radii of the valence neutron, and spectroscopic factors
are listed in Table I. In this table the experimental magnetic
moments of these two nuclei are both taken from the table
compiled by Raghavan [39].

For 17O, the rms radii of the 1d5/2 orbital calculated
from the RMF theory with parameters NL-SH and TM2 are
3.397 fm and 3.458 fm, respectively. These results agree
with the values of Refs. [40–42]. The valence rms radius of
17O deduced from the best fit of the overall spectroscopic
factors α

,
Ls to the magnetic electron scattering data taken from

Ref. [43] is 3.35 ± 0.03 fm [41], which is very close to the
value 3.36 fm of Ref. [40]. The spectroscopic factors of M5
from NL-SH and TM2 are 0.92 and 0.94, respectively. These
values are similar to the value 0.96±0.11 deduced from elastic
electron scattering form factors in the high-q region [40].
As for 41Ca, the rms radius of the 1f7/2 orbital obtained
from sub-Coulomb transfer reactions are 4.00 ± 0.06 fm
[44] and 3.89 ± 0.12 fm [45]. These values are similar to
the results deduced from elastic electron scattering data
3.99 ± 0.06 fm [46] and 3.99 ± 0.05 fm [47]. The RMF
results 4.01 and 4.12 fm agree well with the value 4.02 fm from
the nonrelativistic mean-field theory [48]. The spectroscopic
factors of M7 (see Table I) are also in agreement with the
value 0.83 ± 0.05 obtained in Ref. [46]. The agreement of the

TABLE I. Valence rms radii (in fm), magnetic moments (in µN ), and spectroscopic factors of 17O and 41Ca.

Nucleus Configuration Force rms µexp µsp α1 α3 α5 α7

17O 1d5/2 NLSH 3.397 −1.894 −1.913 0.99 0.46 0.92
17O TM2 3.458 0.99 0.40 0.94
41Ca 1f7/2 NLSH 4.014 −1.595 −1.913 0.83 0.70 0.56 0.87
41Ca TM2 4.118 0.83 0.71 0.52 0.89
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(a) (b)

FIG. 1. The magnetic form factors of 17O and 41Ca. The single-
particle form factors are labeled by “without αL”, the results including
the spectroscopic factors are labeled by “with αL”. The experimental
form factors of 17O and 41Ca are taken from Refs. [40,43] and [46,47],
respectively.

rms radii and spectroscopic factors in the RMF theory with
the experimental data and other theoretical ones implies the
validity of the RMF theory in reproducing the magnetic form
factor.

The theoretical form factors with and without the spec-
troscopic factors are shown in Fig. 1. In this figure, the
experimental form factors of 17O and 41Ca are taken from
Refs. [40,43] and [46,47], respectively. One can see that the
theoretical form factors of 17O and 41Ca with the spectroscopic
factors agree very well with the experimental data in low
and medium q region, but in high-q region the theoretical
form factors still fall more deeply than the experimental data.
It means that the discrepancy in high-q region can not be
eliminated only by introducing the spectroscopic factors. The
reason is that in the high-q region the large momentum virtual
photon may excite more degrees of freedom, such as the

-isobar, and even quark structure of hadrons, and more than
one particles may share the momentum transfer carried by the
virtual photon.

With the assumption that the RMF theory is valid in
predicting the single-particle wave function of the last nucleon
of exotic nuclei, we calculate the elastic form factors of 23O
using the formulas given in Sec. II. The single-particle wave
function of the last neutron is obtained from the nonlinear RMF
theory with NL-SH and TM2 parameters. The calculations
are performed for two cases: (a) the last neutron occupies the
1d5/2 orbital, and (b) the last neutron occupies the 2s1/2 orbital.
For case (a) the configuration of 23O is (1d5/2)5(2s1/2)2, and
the configuration for case (b) is (1d5/2)6(2s1/2)1. The results
are listed in Table II. In this table (B/A)cal. is the theoretical
average binding energy (in MeV), Rc,Rn, Rm are rms radii (in
fm) of the charge, neutron, and matter densities, Rv is the rms
radius of the last neutron (in fm), and ε,s are single-particle
energy levels (in MeV). The experimental average binding
energy is taken from the 2003 Audi Table [22]. It is clear that
the results from NL-SH and TM2 are close to each other. It
means that the RMF theory is stable in predicting the properties
of exotic nuclei. So we will only show the results from NL-SH
in the next.

TABLE II. The ground-state properties of 23O calculated using
NL-SH and TM2 parameters. The experimental average binding
energy is 7.164 MeV [22].

1d5/2

(NLSH)
2s1/2

(NLSH)
1d5/2

(TM2)
2s1/2

(TM2)

(B/A)cal. 7.097 7.248 7.155 7.325
Rc(fm) 2.723 2.712 2.776 2.763
Rn(fm) 3.224 3.128 3.308 3.205
Rm(fm) 3.022 2.951 3.096 3.021
Rv(fm) 3.472 4.453 3.549 4.649
−ε(1s1/2) (p) 48.47 49.20 48.97 49.74
−ε(1p3/2) (p) 29.34 30.46 29.78 31.01
−ε(1p1/2) (p) 22.63 24.09 22.42 24.02
−ε(1s1/2) (n) 43.22 43.70 43.41 43.82
−ε(1p3/2) (n) 24.13 24.41 24.15 24.46
−ε(1p1/2) (n) 17.57 18.27 16.96 17.75
−ε(1d5/2) (n) 7.23 7.31 7.35 7.46
−ε(2s1/2) (n) 3.82 3.73 3.60 3.43

When the last neutron occupies the 1d5/2 orbital (case (a))
the rms radius of the last neutron is much smaller than that
when the last neutron occupies the 2s1/2 orbital [case (b)].
However, the rms radius of the total neutron distribution in case
(a) is slightly larger than that in case (b). It is because there are
two neutrons in the 2s1/2 orbital for case (a). In this case, the
ground-state spin-parity is determined by the neutron in the d

orbital and the neutrons in the s orbital participate in the nuclear
reaction [5]. Whereas, in case (b) the ground-state spin-parity
and the nuclear reaction are both determined by the same
neutron in the s orbital. The density distribution calculated
with NL-SH is shown in Fig. 2. In this figure, the lower part
corresponds to case (a) and the upper part to case (b). One can
see that the charge, neutron, and matter distributions are similar
for these two cases. So it is difficult to determine the orbital of
the last neutron from the rms radius which can be deduced from
the total interaction cross section σI . Other experiments are

FIG. 2. The density distribution of 23O when the last neutron
occupies the 1d5/2 orbital (labeled by ν1D5/2) and the 2s1/2 orbital
(labeled by ν2S1/2) from NL-SH.
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FIG. 3. The calculated form factors of 23O when the last neutron
occupies the 1d5/2 orbital (labeled by ν1D5/2) and the 2s1/2 orbital
(labeled by ν2S1/2) from NL-SH.

needed. One-neutron knockout reaction [8], Coulomb breakup
reaction [9], and one-neutron transfer reaction [10] have been
performed and conclude that 23O is a one-neutron halo nucleus
with the last neutron occupying the 2s1/2 orbital. But there
exist large deviations between the experimental data and the
theoretical predictions, which are partly due to the complexity
of the nuclear reaction mechanism which are not well-known
up to now. Therefore, it is necessary to search for a simple
and well-known probe to investigate the refine information of
halo nuclei. The elastic magnetic electron scattering is a good
choice.

The magnetic form factors from NL-SH are shown in
Fig. 3. It is clear that there are great differences between the
form factors of different configurations. Generally speaking,
the form factor for the 2s1/2 orbital is smaller than that
for the 1d5/2 orbital. Especially, near the first minimum the
difference is up to a factor of about 100. When the elastic
magnetic electron scattering form factors are obtained in the
future, it will be very easy to determine the orbital of the last
neutron from the shape of the measured form factor. After

further analyses one can deduce the wave function and density
distribution of the last neutron.

We are also interested in C isotopes 15,17,19C. In this isotopic
chain, 15C and 19C are both one-neutron halo nuclei but 17C is
not a halo nucleus. It means that this isotopic chain can provide
much more knowledge about nuclear structure of exotic nuclei.
We perform the RMF calculations of 15,17,19C also for two
cases: (a) the last neutron occupies the 1d5/2 orbital, and (b)
the last neutron occupies the 2s1/2 orbital. For 15C, case (a)
corresponds to the configuration (1d5/2)1(2s1/2)0, and case (b)
to (1d5/2)0(2s1/2)1 in the sd shell; for 17C, case (a) corresponds
to (1d5/2)1(2s1/2)2, case (b) to (1d5/2)2(2s1/2)1; for 19C, case
(a) corresponds to (1d5/2)3(2s1/2)2, case (b) to (1d5/2)4(2s1/2)1.
The numerical results from NL-SH are listed in Table III. One
can see that in the RMF theory the energy levels of the 1d5/2

and 2s1/2 orbitals in 15,17C are very close. This agrees with
the shell model prediction [11]. For example, the difference
between 1d5/2 level and 2s1/2 level in 17C is almost zero in the
RMF theory with NL-SH parameters (see Table III). When
the last neutron in 15C occupies the 2s1/2 orbital [case (b)],
the rms radii of the last neutron and the total neutron density
increase sharply as compared with those when the last neutron
occupies the 1d5/2 orbital [case (a)], though the level energies
of these orbitals and the total binding energies are similar.
The reason is that the rms radius of a level is determined by
the detailed behavior of the wave function. A more node in
the 2s1/2 orbital allows the extension of the wave function to
larger coordinate compared with that of the 1d5/2 orbital. It
is well known that the single-particle energy increases with
both the number of node and the angular momentum. The halo
nucleon favors the orbital with more nodes and low angular
momentum which combine to make the nucleon have both
larger binding energy and larger radius [24]. The rms radius
of the total neutron density of 15C in case (b) is much larger
than that in case (a). The reason is that there is only one
neutron in the sd shell. So it is possible to determine the
orbital of the last neutron by comparing the radius of 15C
with neighboring nuclei such as 14C, 15N. As for 17C and
19C the situation is different. The total neutron radii of 17C and

TABLE III. The ground-state properties of C isotopes calculated using NL-SH parameters.
The experimental average binding energies of 15,17,19C are 7.10017, 6.5576, and 6.118 MeV [22],
respectively.

15C(1d5/2) 15C(2s1/2) 17C(1d5/2) 17C(2s1/2) 19C(1d5/2) 19C(2s1/2)

(B/A)cal.(MeV) 7.147 7.155 6.437 6.440 5.964 5.980
Rc(fm) 2.518 2.520 2.536 2.534 2.553 2.552
Rn(fm) 2.737 3.077 3.346 3.150 3.347 3.212
Rm(fm) 2.602 2.821 3.047 2.908 3.085 2.985
Rv(fm) 3.845 5.666 3.823 5.160 3.758 4.869
−ε(1s1/2) (p) 43.208 42.299 44.670 45.521 47.872 48.598
−ε(1p3/2) (p) 20.852 19.582 22.109 23.316 25.772 26.914
−ε(1p1/2) (p) 12.818 11.300 13.869 15.353 17.833 19.318
−ε(1s1/2) (n) 40.376 40.050 40.205 40.518 40.643 40.931
−ε(1p3/2) (n) 18.128 17.857 18.402 18.654 19.168 19.391
−ε(1p1/2) (n) 10.478 9.905 10.552 11.115 11.691 12.266
−ε(1d5/2) (n) 1.058 0.897 1.698 1.837 2.613 2.728
−ε(2s1/2) (n) 1.065 1.060 1.707 1.696 2.362 2.341
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 4. Same as Fig. 2 but for 15,17,19C.

19C in case (a) are both larger than those in case (b). The reason
is that in case (a) there are two neutrons in the 2s1/2 orbital,
but in case (b) only one neutron occupies the 2s1/2 orbital. That
is why the neutron radius of 17C is the largest one in the C
isotopes in the RMF theory. This agrees with the experimental
fact [49]. This can be considered as an additional proof that
the last neutron in 17C occupies the 1d5/2 orbital rather than
the 2s1/2 orbital. In Fig. 4 we show the density distributions
of 15,17,19C calculated from NL-SH. From this figure, one can
see again that 15C is a one-neutron halo nucleus when the last
neutron occupies the 2s1/2 orbital, but the neutron densities of
17C and 19C are similar either the last neutron occupies the
1d5/2 orbital or occupies the 2s1/2 orbital. So it is impossible
to determine the orbital of the last neutron only by comparing
the neutron radii.

The form factors of these three nuclei when the last neutron
occupies the same orbital are shown in Fig. 5. From this figure
one can see that the form factors of these three nuclei are very
close to each other. The difference is found only in higher q

FIG. 5. Same as Fig. 3 but for 15,17,19C.

region (q � 3.5 fm −1). In PWBA, the elastic magnetic form
factor is the Fourier-Bessel transform of the current density
which is directly related to the density distribution of the last
nucleon. The form factor at large coordinate in momentum
space is mainly determined by the current density at small
coordinate in r space, and vice versa. The very close form
factors in low and medium q region (q � 3.5 fm −1) mean that
the tail part of the wave functions of the last neutron in 15,17,19C
are very close to each other when the last neutron occupies
the same orbital. When accurate experimental form factors in
low and medium q region (q � 3.5 fm −1) are obtained in the
future, one can determine easily whether the last neutron of
these nuclei occupies the same orbital by comparing the shape
of the form factors.

At the same time one can see that there are great differences
between the form factors for different configurations. When
the form factors are measured, one can immediately determine
the orbital of the last neutron by comparing the magnitude and
shape of the experimental data with the theoretical curves.
Furthermore one can deduce the wave function and density
distribution of the last neutron.

According to above analyses, we conclude that the valence
orbital of an odd-A exotic nucleus can be determined from
the shape of the elastic magnetic form factor and then one can
deduce the wave function and density distribution when the
experimental data are available. What we are interested in is
can we deduce the magnetic form factor when the valence
density distribution are obtained from some method? The
wave function and density distribution are determined by the
node number, orbital angular momentum, and single-particle
energy. In 15,17,19C, the single-particle energies of the 1d5/2

and 2s1/2 orbitals are close, but the densities and rms radii
differ greatly. It means that the density distribution of the
last neutron is mainly dependent on the node number and the
orbital angular momentum. Now we will investigate a pair of
nuclei in which the last neutrons occupy the orbitals with the
same node number and orbital angular momentum. 49Ca and
59Ca provide good examples. 49Ca is another nucleus with a
single neutron outside the doubly closed core. 59Ca is found
to be the odd-A neutron drip-line of Ca isotopes in the RMF
theory [50]. The densities of the last neutron of 49Ca and 59Ca
from NL-SH are shown in Fig. 6. From this figure one can see

FIG. 6. The density distribution of the last neutron in 49Ca and
59Ca from NL-SH.
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FIG. 7. Comparison of the calculated form factors of 49Ca and
59Ca from NL-SH.

that the shape of the densities are similar as expected, since the
shape of the density is mainly determined by the node number
and the orbital angular momentum (or centrifugal potential).
The form factors of these two nuclei are shown in Fig. 7.
It is clear that there are great differences between them. The
magnitude of the form factor of 49Ca is larger than that of 59Ca.
But the shapes of them are similar apart from the zero points
which can be eliminated by considering the effect of Coulomb
distortion. It means that the form factors are also dependent on
the total angular momentum. The reason is that the magnetic
form factor is determined by the magnetization density rather
than the density distribution of the last nucleon.

Finally, we will investigate the magnetic form factors
of proton halo nuclei. Due to the Coulomb barrier, proton
halos may only occur at the proton drip-line of the lightest
elements. Up to now, the only well-known example in ground
state is 8B. However, the RMF theory may be invalid for
such a light nucleus. Another example is the first exited
state of 17F having the configuration 16O(0+)⊗2s1/2 [51]. Its
ground-state configuration is 16O(0+)⊗1d5/2. Though it will
be impossible to perform electron scattering experiments from
the exited state of 17F, it is also interesting to see whether
the conclusions we have drawn from even-odd nuclei are
applicable to odd-even ones where the convection currents
exist. The form factors are shown in Fig. 8. It can be seen that
the situation is similar to those of the even-odd nuclei 23O and
15,17,19C. So one can reach the same conclusion as those drawn
from one-neutron halo nuclei.

IV. CONCLUSION AND DISCUSSIONS

In summary, the elastic magnetic electron scattering form
factors of 23O, 15,17,19C, 49,59Ca, and 17F are calculated in the
relativistic impulse approximation. Great differences between

FIG. 8. Comparison of the calculated form factors of 17F in the
ground state and the first exited state.

the form factors have been found when the last nucleon of a
given nucleus occupies different orbitals. Therefore, one can
determine immediately the orbital of the last nucleon when
the form factors of these nuclei are measured. In this article
the effects of various corrections such as backflow, MEC, and
CP are neglected. Although great success has been achieved
in treating the effects of backflow and MEC in the QHD
framework, there are also many efforts should be made along
this line. Ichii et al. [28] have examined the effect of backflow
(vacuum fluctuation) in the Hartree approximation. Blunden
et al. [30] have investigated the contribution of the one-pion
exchange currents in the relativistic Hartree-Fock level. The
effect of core polarization, which has been found to be
important in the nonrelativistic theories [52,53], has not been
treated consistently in the QHD framework. How to calculate
these effects within the same model is an interesting problem.
More detailed investigations are necessary in the future.
Furthermore, the advent of the radioactive ion beam (RIB)
gives us good chance to investigate some fundamental features
about nuclear interaction. It is expected that the electron
scattering from exotic nuclei will provide new information
about the fundamental NN interaction. Our results will be
useful for the electron scattering experiments in the near future.
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