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The tensor properties of the algebra generators and the basis are determined in respect to the reduction chain
Sp(12, R) ⊃ U(6) ⊃ U(3) ⊗ U(2) ⊃ O(3) ⊗ U(1), which defines one of the dynamical symmetries of the
interacting vector boson model. The action of the Sp(12, R) generators as transition operators between the basis
states is presented. Analytical expressions for their matrix elements in the symmetry-adapted basis are obtained.
As an example the matrix elements of the E2 transition operator between collective states of the ground band are
determined and compared with the experimental data for the corresponding intraband transition probabilities of
nuclei in the actinide and rare-earth region. On the basis of this application the important role of the symplectic
extension of the model is analyzed.
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I. INTRODUCTION

In the algebraic models the use of the dynamical symmetries
defined by a certain reduction chain of the group of dynamical
symmetry yields exact solutions for the eigenvalues and
eigenfunctions of the model Hamiltonian, which is con-
structed from the invariant operators of the subgroups in the
chain.

Moreover, it is very simple and straightforward to cal-
culate matrix elements of transition operators between the
eigenstates, as both the basis states and the operators can
be defined as tensor operators in respect to the considered
dynamical symmetry. Then the calculation of matrix elements
is simplified by the use of a respective generalization of
the Wigner-Eckart theorem, which requires the calculation
of the isoscalar factors and reduced matrix elements. By
definition such matrix elements give the transition probabilities
between the collective states attributed to the basis states of
the Hamiltonian.

The comparison of the experimental data with the cal-
culated transition probabilities is one of the best tests of
the validity of the considered algebraic model. With the
aim of such applications of the symplectic extension of one
of the dynamical symmetries in IVBM, we develop in this
article a practical mathematical approach for explicit evalu-
ation of the matrix elements of transitional operators in the
model.

The algebraic interacting vector bosons model (IVBM) was
developed [1] initially for the description of the low-lying
bands of the well deformed even-even nuclei [2]. Recently
this approach was adapted to incorporate the newly observed
higher collective states, both in the first positive- and negative-
parity bands [3] by considering the basis states a “yrast” states
for the different values of the number of bosons, N, that
built them. This was achieved by extending the dynamical
symmetry group U(6) to the noncompact Sp(12, R). The
excellent results obtained for the energy spectrum motivated
the present investigation of the transition probabilities in the
framework of the generalized IVBM with Sp(12, R) as a
group of dynamical symmetry. Thus we consider the tensorial
properties of the algebra generators in respect to the reduction

chain:

Sp(12, R) ⊃ U(6) ⊃ U(3) ⊗ U(2) ⊃ O(3) ⊗ U(1). (1)

and also classify the basis states by the quantum numbers
corresponding to the irreducible representations (irreps) of
its subgroups (Sec. II). In this way we are able to define
the transition operators between the basis states and then to
evaluate analytically their matrix elements (Sec. III).

Transition probabilities are by definition SO(3) reduced
matrix elements of transition operators T E2 between the
|i〉−initial and |f 〉−final collective states

B(E2; Li → Lf ) = 1

2Li + 1
|〈f ‖T E2 ‖ i〉|2. (2)

As a first step we will test the theory on the transitions
between the states belonging to the ground bands in the even-
even nuclei from the rare earths and the actinides, where the
energies and the staggering between the states are rather well
reproduced in our model approach [3]. This proves the correct
mapping of the basis states to the experimentally observed
ones and their band systematic, which is very important for
the theoretical reproduction of the behavior of the physical
observables in the framework of the considered model.

II. TENSORIAL PROPERTIES OF THE GENERATORS OF
THE SP(12, R) GROUP AND CONSTRUCTION OF THE

SYMPLECTIC BASIS STATES OF IVBM

The basic building blocks of the IVBM [1] are the
creation and annihilation operators of the vector bosons u

†
m(α)

and um(α) (m = 0,±1; α = ± 1
2 ), which can be considered

components of a six-dimensional vector that transforms
according to the fundamental U(6) irreducible representations
[1, 0, 0, 0, 0, 0]6 ≡ [1]6 and [0, 0, 0, 0, 0,−1]6 ≡ [1]∗6, re-
spectively. These irreducible representations become reducible
along the chain of subgroups (1) defining the dynamical
symmetry [2]. This means that along with the quantum number
characterizing the representations of U(6), the operators are
also characterized by the quantum numbers of the subgroups
of chain (1).
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The only possible representation of the direct product of
U(3) ⊗ U(2) belonging to the representation [1]6 of U(6)
is [1]3.[1]2, i.e., [1]6 = [1]3.[1]2. According to the reduction
rules for the decomposition U(3) ⊃ O(3) the representation
[1]3 of U(3) contains the representation (1)3 of the group
O(3) giving the angular momentum of the bosons l = 1 with a
projection m = 0,±1. The representation [1]2 of U(2) defines
the “pseudospin” of the bosons T = 1

2 , whose projection
is given by the corresponding representation of U(1), i.e.,
α = ± 1

2 . In this way the creation and annihilation operators

u
†
m(α) and um(α) are defined as irreducible tensors along the

chain (1) and the used phase convention and commutation
relations are as follows [4]:(

u
[1]6
[1]3[1]2mα

)† = u
[1]∗6 mα

[1]∗3[1]∗2
= (−1)m+ 1

2 −αu
[1]∗6
[1]∗3[1]∗2−m−α

(3)[
u

[1]∗6 mα

[1]∗3[1]∗2
, u

[1]6
[1]3[1]2nβ

] = δm,nδα,β .

We do not consider here the microscopic structure of the
so-introduced vector bosons. In the IVBM they serve as a
convenient mathematical tool and in the present work only
their tensor properties are important, as they generate the
transition operators and the basis states.

Initially the generators of the symplectic group Sp(12, R)
were written as double tensors [5] with respect to the O(3) ⊃
O(2) and U(2) ⊃ U(1) reductions

ALM
T T0

=
∑
m,n

∑
α,β

CLM
1m1nC

T T0
1
2 α 1

2 β
u

[1]6
[1]3[1]2mαu

[1]∗6 βn

[1]∗3[1]∗2
, (4)

FLM
T T0

=
∑
m,n

∑
α,β

CLM
1m1nC

T T0
1
2 α 1

2 β
u

[1]6
[1]3[1]2mαu

[1]6
[1]3[1]2nβ

, (5)

GLM
T T0

=
∑
m,n

∑
α,β

CLM
1m1nC

T T0
1
2 α 1

2 β
u

[1]∗6 αm

[1]∗3[1]∗2
u

[1]∗6 βn

[1]∗3[1]∗2
. (6)

Further, they can be defined as irreducible tensor operators
according to the whole chain (1) of subgroups and expressed
in terms of Eqs. (4), (5), and (6)

A
[χ ]6 LM

[λ]3[2T ]2 T T0
= C

[1]6 [1]∗6 [χ]6

[1]3[1]2[1]∗3[1]∗2 [λ]3[2T ]2
C

[1]3[1]∗3[λ]3

(1)3(1)3(L)3
ALM

T T0
, (7)

F
[χ]6 LM

[λ]3[2T ]2 T T0
= C

[1]6 [1]6 [χ]6
[1]3[1]2[1]3[1]2 [λ]3[2T ]2

C
[1]3[1]3[λ]3
(1)3(1)3(L)3

FLM
T T0

, (8)

G
[χ ]6 LM

[λ]3[2T ]2 T T0
= C

[1]∗6 [1]∗6 [χ]6

[1]∗3[1]∗2[1]∗3[1]∗2 [λ]3[2T ]2
C

[1]∗3[1]∗3[λ]3

(1)3(1)3(L)3
GLM

T T0
, (9)

where, according to the lemma of Racah [6], the Clebsch-
Gordan coefficients along the chain are factorized by means
of the isoscalar factors (IF), defined for each step of decompo-
sition (1). It should be pointed out [4] that the U(6) and U(3)
IFs, entering in Eqs. (7), (8), and (9), are equal to ±1.

The tensors [Eq. (7)] transform according to the direct
product [χ ]6 of the corresponding U(6) representations [1]6

and [1]∗6 [4], namely

[1]6 × [1]∗6 = [1,−1]6 + [0]6, (10)

where [1,−1]6 = [2, 1, 1, 1, 1, 0]6 and [0]6 = [1, 1, 1,

1, 1, 1]6 is the scalar U(6) representation. Further we multiply

the two conjugated fundamental representations of U(3)⊗
U(2)

[1]3[1]2 × [1]∗3[1]∗2

= ([1]3 × [1]∗3)([1]2 × [1]∗2)

= ([210]3 ⊕ [1, 1, 1]3) × ([2, 0]2 ⊕ [1, 1]2)

= [210]3[2]2 ⊕ [210]3[0]2 ⊕ [0]3[2]2 ⊕ [0]3[0]2.

(11)

Obviously the first three U(3) ⊗ U(2) irreducible representa-
tions in the resulting decomposition (11) belong to the [1,−1]6

of U(6) and the last one to [0]6.
Introducing the notations u

†
i (

1
2 ) = p

†
i and u

†
i (− 1

2 ) = n
†
i , the

scalar operator

A
[0]600

[0]3[0]200 = N̂ = 1√
2

∑
m

C00
1m1−m(p†

mp−m + n†
mn−m) (12)

has the physical meaning of the total number of bosons opera-
tor N̂ = N̂p + N̂n, where N̂p = ∑

p
†
mpm, N̂n = ∑

n
†
mnm and

is obviously the first-order invariant of all the unitary groups,
U(6), U(3), and U(2). Hence it reduces them to their respective
unimodular subgroups, SU(6), SU(3), and SU(2). Moreover,
the invariant operator (−1)N decomposes the action spaceH of
the Sp(12, R) generators to the evenH+ with N = 0, 2, 4, . . . ,

and odd H− with N = 1, 3, 5, . . . , subspaces of the boson
representations of Sp(12, R) [7].

In terms of Elliott’s notations [8](λ,µ), where λ = n1 −
n2, µ = n2 − n3, we have [210]3 = (1, 1) and [0]3 = (0, 0).
The corresponding values of L from the SU(3) ⊃ O(3)
reduction rules are L = 1, 2 in the (1, 1) irrep and L = 0 in
the (0, 0). The values of T are 1 and 0 for the U(2) irreps
[2]2 and [0]2, respectively. Hence, the U(2) irreps in the direct
product distinguish the equivalent U(3) irreps that appear in
this reduction and there is not degeneracy. The tensors with
T = 0 correspond to the SU(3) generators

A
[1−1]6 1M

[210]3[0]2 00 = 1√
2

∑
m,k

C1M
1m1k(p†

mpk + n†
mnk) (13)

A
[1−1]6 2M

[210]3[0]2 00 = 1√
2

∑
m,k

C2M
1m1k(p†

mpk + n†
mnk), (14)

representing the components of the angular LM and Elliott’s
quadrupole QM momenta operators [8]. The tensors

A
[1−1]6 00
[0]3[2]2 11 =

√
3

2

∑
m

p†
mn−m ∼ T1,

A
[1−1]6 00
[0]3[2]2 1−1 = −

√
3

2

∑
m

n†
mp−m ∼ T−1 (15)

A
[1−1]6 00
[0]3[2]2 10 = −

√
3

2

∑
m

(p†
mp−m − n†

mn−m) ∼ T0,
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correspond to the SU(2) generators, which are the components
of the pseudospin operator T̂ . And finally the tensors

A
[1−1]6 LM

[210]3[2]2 11 =
∑
m,k

CLM
1m1kp

+
mnk, (16)

A
[1−1]6 LM

[210]3[2]2 1−1 =
∑
m,k

CLM
1m1kn

+
mpk (17)

and

A
[1−1]6 LM

[210]3[2]2 10 = 1√
2

∑
m,k

CLM
1m1k(p+

mpk − n+
mnk), (18)

with L = 1, 2 and M = −L,−L + 1, . . . , L extend the U(3)
⊗ U(2) algebra to the U(6) one.

By analogy, the tensors described in Eqs. (8) and (9)
transform according to [4]

[1]6 × [1]6 = [2]6 + [1, 1]6 (19)

and

[1]∗6 × [1]∗6 = [−2]6 + [−1,−1]6,

respectively. But because the basis states of the IVBM are fully
symmetric, we consider only the fully symmetric U(6) repre-
sentations [2]6 and its conjugated [−2]6, because for the opera-
tors (8) and (9) we have (F [χ]6 LM

[λ]3[2T ]2T T0
)† = (−1)λ+µ+L−M+T −T0

G
[χ]∗6 L−M

[λ]∗3[2T ]∗2T −T0
, where [λ]3 = (λ,µ). Hence we present the next

decompositions only for the F tensors (19). According to the
decomposition rules for the fully symmetric U(6) irreps [4] we
have

[2]6 = [2]3[2]2 + [1, 1]3[0]2 = (2, 0)[2]2 + (0, 1)[0]2, (20)

which further contain in (2, 0) L = 0, 2 with T = 1 and in
(0, 1) − L = 1 with T = 0. Their explicit expressions in terms
of the creation p

†
i , n

†
i and annihilation operators pi, ni at i =

0,±1 are

F
[2]6 LM

[2]3[2]2 11 =
∑
m,k

CLM
1m1kp

†
mp

†
k,

(21)
F

[2]6 LM
[2]3[2]2 1−1 =

∑
m,k

CLM
1m1kn

†
mn

†
k

F
[2]6 LM

[2]3[2]2 10 = 1√
2

∑
m,k

CLM
1m1k(p†

mn
†
k − n†

mp
†
k),

(22)

F
[2]6 LM

[1,1]3[0]2 00 = 1√
2

∑
m,k

CLM
1m1k(p†

mn
†
k + n†

mp
†
k).

In addition to the SU(3) raising generators (21) F
[2]6
(2,0) we have

the operator F
[2]6
(0,1) (22), which is a new one compared to the

generators of the Sp(6, R) model of Rosensteel and Rowe [9].
The above operators and their conjugated ones,

G
[χ]∗6 LM

[λ]∗3[2T ]∗2T T0
, change the number of bosons by two and realize

the symplectic extension of the U(6) algebra. In this way we
have listed all the irreducible tensor operators in respect to
the reduction chain (1) that correspond to the infinitesimal
operators of the Sp(12, R) algebra.

TABLE I. Tensor products of two raising operators.

[2]6 [2]6 [4]6 O(3) U(2) U(1)
[λ1]3[2T1]2 [λ2]3[2T1]2 [λ]3[2T ]2 K; L T T0

(2, 0)[2]2 (2, 0)[2]2 (4, 0)[4]2 0; 0, 2, 4 2 0, ±1, ±2
(2, 0)[2]2 (2, 0)[2]2 (2, 1)[2]2 1; 1, 2, 3 1 0, ±1
(2, 0)[2]2 (2, 0)[2]2 (0, 2)[0]2 0; 0, 2 0 0
(2, 0)[2]2 (0, 1)[0]2 (2, 1)[2]2 1; 1, 2, 3 1 0, ±1
(0, 1)[0]2 (0, 1)[0]2 (0, 2)[0]2 0; 0, 2 0 0

Next we can introduce the tensor products

T
([χ1]6[χ2]6) ω[χ]6 LM

[λ]3[2T ]2 T T0

=
∑

T
[χ1]6 L1M1

[λ1]3[2T1]2 T1(T0)1
T

[χ2]6 L2M2
[λ2]3[2T2]2 T2(T0)2

×C
[χ1]6 [χ2]6 ω[χ]6
[λ1]3[T1]2 [λ2]3 [T2]2 [λ]3[2T ]2

C
[λ1]3[λ2]3[λ]3
(L1)3(L2)3 (L)3

×C
L1 L2 L
M1 M2 MC

T1 T2 T
(T0)1 (T0)2 T0

(23)

of two tensor operators, T
[χ]6 LM

[λ]3[2T ]2 T T0
, which are as well

tensors in respect to the considered reduction chain. We use
Eq. (23) to obtain the tensorial properties of the operators in
the enveloping algebra of Sp(12,R), containing the products
of the algebra generators. In this particular case we are
interested in the transition operators between states differing
by four bosons, T

[4]6 LM
[λ]3[2T ]2 T T0

, expressed in terms of the

products of two operators, F
[2]6 LM

[λ]3[2T ]2 T T0
. Making use of the

decomposition (20) and the reduction rules in the chain (1), we
list in Table I all the representations of the chain subgroups that
define the transformation properties of the resulting tensors.

To clarify the role of the tensor operators introduced in this
section as transition operators and to simplify the calculation
of their matrix elements, the basis for the Hilbert space must
be symmetry adapted to the algebraic structure along the
considered subgroup chain (1). It is evident from Eqs. (21) and
(22) that the basis states of the IVBM in the H+ (N−even)
subspace of the boson representations of Sp(12, R) can be
obtained by a consecutive application of the raising operators
F

[2]6 LM
[λ]3[2T ]2 T T0

on the boson vacuum | 0〉 (ground state),

annihilated by the tensor operators G
[χ]6 LM

[λ]3[2T ]2 T T0
| 0〉 = 0

and A
[χ]6 LM

[λ]3[2T ]2 T T0
| 0〉 = 0.

Thus, in general a basis for the considered dynamical
symmetry of the IVBM can be constructed by applying the
multiple symmetric coupling [Eq. (23)] of the raising tensors
F

[2]6 LiMi

[λi ]3[2Ti ]2 TiT0i
with itself: [F × · · · × F ] [χ]6 LM

[λ]3[2T ]2 T T0
.

Note that only fully symmetric tensor products [χ ]6 ≡ [N ]6

are nonzero, because the raising operator commutes with itself.
The possible U(3) couplings are enumerated by the set [λ]3 =
{[n1, n2, 0] ≡ (λ = n1 − n2, µ = n2); n1 � n2 � 0}. The num-
ber of copies of the operator F in the symmetric product
tensor [N ]6 is N/2, where N = λ + 2µ [3]. Each raising
operator will increase the number of bosons N by two. Then,
the resulting infinite basis is denoted by:

|[N ](λ,µ); KLM; T T0〉, (24)

where KLM are the quantum numbers for the nonorthonormal
basis of the irrep (λ,µ).
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The Sp(12, R) classification scheme for the SU(3) boson
representations obtained by applying the reduction rules [3]
for the irreps in the chain (1) for even value of the number
of bosons N is shown on Table II. Each row (fixed N ) of
the table corresponds to a given irreducible representation of
the U(6) algebra. Then the possible values for the pseudospin,
given in the column next to the respective value of N , are
T = N

2 , N
2 − 1, . . . 0. Thus when N and T are fixed, 2T + 1

equivalent representations of the group SU(3) arise. Each of
them is distinguished by the eigenvalues of the operator T0 :
−T ,−T + 1, . . . , T , defining the columns of Table II. The
same SU(3) representations (λ,µ) arise for the positive and
negative eigenvalues of T0.

Now it is clear which of the tensor operators act as transition
operators between the basis states ordered in the classification
scheme presented on Table II. The operators F

[2]6 LM
[λ]3[2T ]2 T T0

with T0 = 0 (22) give the transitions between two neighboring
cells (↓) from one column, whereas the ones with T0 = ±1(21)
change the column as well (↙). The tensors A

[1−1]6
[2,1]3[0]2

(13)
and (14), which correspond to the SU(3) generators do not
change the SU(3) representations (λ,µ) but can change the
angular momentum L inside it (=⇒). The SU(2) generating
tensors A

[1−1]6
[0]3[2]2

[Eq. (15)] change the projection T0 (→) of
the pseudospin T and in this way distinguish the equivalent
SU(3) irreps belonging to the different columns of the same
row of Table II. Inside a given cell the transition between the
different SU(3) irreps (⇓) is realized by the operators A

[1−1]6
[2,1]3[2]2

[Eqs. (16), (17), and (18)] that represent the U(6) generators.
The action of the tensor operators on the SU(3) vectors inside a
given cell or between the cells of Table II. is also schematically
presented on it with corresponding arrows, given above in
parentheses.

III. MATRIX ELEMENTS OF THE TRANSITION
OPERATORS IN SYMMETRY-ADAPTED BASIS

Physical applications are based on the correspondence
of sequences of SU(3) vectors to sequences of collective
states belonging to different bands in the nuclear spectra.
The above analysis permits the definition of the appropriate
transition operators as corresponding combinations of the
tensor operators given in Sec. II.

Matrix elements of the Sp(12, R) algebra can be calculated
in several ways. A direct method is to use the Sp(12, R) com-
mutation relations [1] to derive recursion relations. Another
is to start from approximate matrix element and proceed by
successive approximations, adjusting the matrix elements until
the commutation relations are precisely satisfied [10]. The
third method is to make use of a vector-valued coherent-state
representation theory [5,11] to relate the matrix elements to
the known matrix elements of a much simpler Weyl algebra.

However, in the present article we use another technique for
calculation of the matrix elements of the Sp(12, R) algebra,
based on the fact that the representations of the SU(3) subgroup
in IVBM are built with the help of the two kinds of vector
bosons, which is in some sense simpler than the construction
of the SU(3) representations in the IBM and the Sp(6, R)
symplectic model.

TABLE II. Classification of the basis states.

In the preceding section we expressed the Sp(12, R) gener-
ators FLM

T T0
, GLM

T T0
, ALM

T T0
and the basis states as components of

irreducible tensors in respect to the reduction chain (1). Thus,
for calculating their matrix elements, we have the advantage of
using the Wigner-Eckart theorem in two steps. For the SU(3)
→ SO(3) and SU(2) → U(1) reduction we need the standard
SU(2) Clebsch-Gordan coefficient (CGC)

〈[N ′](λ′, µ′); K ′L′M ′; T ′T ′
0

∣∣T [χ]6 lm

[σ ]3[2t]2 t t0

∣∣
× [N ] (λ,µ); KLM; T T0 〉

= 〈[N ′](λ′, µ′); K ′L′∥∥T
[χ]6 lm

[σ ]3[2t]2 t t0

∥∥
× [N ](λ,µ); KL〉CL′M ′

LMlmC
T ′T ′

0
T T0t t0

. (25)

For the calculation of the double-barred reduced matrix
elements in Eq. (25) we use the next step:

〈[N ′](λ′, µ′); K ′L′‖T [χ]6 lm

[σ ]3[2t]2 t t0
‖[N ] (λ,µ); KL〉

= 〈[N ′]|||T [χ]6
[σ ]3[2t]2

|||[N ]〉C[N]6 [χ]6 [N ′]6
(λ,µ)[2T ]2 [σ ]3[2t]2 (λ′,µ′)[2T ′]2

×C
(λ,µ) [λ]3 (λ′,µ′)
KL k(l)3 K ′L′ , (26)

where C
[N]6 [χ]6 [N ′]6
(λ,µ)[2T ]2 [σ ]3[2t]2 (λ′,µ′)[2T ′]2

and C
(λ,µ) [λ]3 (λ′,µ′)
KL k(l)3 K ′L′

are U(6) and SU(3) IFs. Obviously the practical value of the
application of the generalized Wigner-Eckart theorem for the
calculation of the matrix elements of the Sp(12, R) generators
and the construction of the symplectic basis depends on the
knowledge of the isoscalar factors for the reductions U(6) ⊃
U(3) ⊗ U(2) and U(3) ⊃ O(3), respectively. For the evaluation
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of the matrix elements [Eq. (25)] of the Sp(12, R) operators in
respect to the chain show in Eq. (1) the reduced triple-barred
U(6) matrix elements are also required [Eq. (26)].

IV. B(E2) TRANSITION PROBABILITIES FOR THE
GROUND BAND

In the symplectic extension of the IVBM the complete
spectrum of the system is obtained in all the even subspaces
with fixed N , even of the UIR [N ]6 of U(6), belonging to a
given even UIR of Sp(12, R). The classification scheme of the
SU(3) boson representations for even values of the number
of bosons N is presented in Table II. The equivalent use of
the (λ,µ) labels, resulting from the connections T = λ/2
and N = λ + 2µ facilitates the final reduction to the SO(3)
representations, which define the angular momentum L and
its projection M. The multiplicity index K appearing in this
reduction is related to the projection of L on the body fixed
frame and is used with the parity (π ) to label the different
bands (Kπ ) in the energy spectra of the nuclei. We have
defined the parity of the states as π = (−1)T [3]. This allowed
us to describe both positive and negative bands.

In this article we give as an example the evaluation of the
E2 transition probabilities of the ground-state band (GSB) [3],
whose states were identified with the SU(3) multiplets (0, µ).
In terms of (N, T ) this choice corresponds to (N = 2µ, T =
0). We define the energies of each state with given L as yrast
energy with respect to N in the considered bands. Hence for the
ground band their minimum values are obtained at N = 2L.
Using the tensorial properties of the Sp(12, R) generators it is
easy to define the E2 transition operator between the states of
the considered band:

T E2 = e
[
A

[1−1]6 20
[210]3[0]2 00 + θ

(
[F × F ][4]6 20

(0,2)[0]2 00

+ [G × G][−4]6 20
(2,0)[0]200

)]
, (27)

where the first tensor operator is expressed in terms of
the boson creation p

†
m, n

†
m and annihilation pm, nm,m = ±1

operators in Eq. (14) and, as part of the SU(3) generators,
actually changes only the angular momentum with 
L = 2.

The tensor product

[F × F ][4]6 20
(0,2)[0]2 00

=
∑

C
[2]6 [2]6 [4]6

(2,0)[2]2(2,0)[2]2 (0,2)[0]2
C

(2,0) (2,0) (0,2)
(2)3 (2)3 (2)3

×C20
20 20C

10
11 1−1F

[2]6 20
(2,0)[2]2 11F

[2]6 20
(2,0)[2]21−1 (28)

of the operators (21) that are the pair raising Sp(12, R)
generators changes the number of bosons by 
N = 4
and 
L = 2. Thus, for calculating the matrix elements of
Eq. (27) between the basis states shown in Eq. (24), we have
the advantage of using the Wigner-Eckart theorem in two steps
[Eqs. (25) and (26)], where only their reduced triple-barred
U(6) matrix elements are required.

However, the SU(3) generators [Eqs. (13) and (14)] are
scalars with respect to the isospin group U(2), so they act only
on the SU(3) part of the wave function and the Wigner-Eckart

theorem is applied in respect to the SU(3) subgroup [12]

〈[N ], (λ′, µ′); K ′L′M ′; T ′T ′
0

∣∣ A
[1,−1]6 lm
(1,1)[0]2 00

∣∣[N ],

× (λ,µ); KLM; T T0〉
= δT T ′δT0T

′
0
δλλ′δµµ′

∑
ρ=1,2

C
(λ,µ) (1,1) ρ(λ′,µ′)
K(L) k(l) K ′(L′)

×CL′M ′
LM lm〈[N ], (λ′, µ′)

∣∣∣∣∣∣ A
[1,−1]6
(1,1)[0]2

∣∣∣∣∣∣[N ], (λ,µ)〉.
The sum over ρ runs over terms containing products of IFs of
SU(3) and U(6), respectively. The reduced triple-barred matrix
elements are well known and are given for ρ = 1 by [9]

〈[N ], (λ,µ)|||A[1−1]6
(1,1)3[0]2

|||[N ], (λ,µ)〉1 =
{

gλµ, µ = 0
−gλµ, µ �= 0,

(29)

where

gλµ = 2

(
λ2 + µ2 + λµ + 3λ + 3µ

3

)1/2

(30)

and the phase convention is chosen to agree with that
of Draayer and Akiyama [13]. For ρ = 2 we have
〈[N ], (λ,µ)|||A [1−1]6

[210]3[0]2
|||[N ], (λ,µ)〉2 = 0. Thus, for the

matrix elements of A
[1−1]6 20

[210]3[0]2 00 between the states attributed
to the GSB we obtain

〈[N ], (0, µ); 0L − 20; 00|A [1−1]6 20
(1,1)[0]2 00|[N ], (0, µ); 0L0; 00〉

= C
(0,µ) (1,1) (0,µ)
L−2 2 L C

L,0
L−2,0 2,0

×〈[N ], (0, µ)|∣∣∣∣A [1−1]6
(1,1) [0]2

∣∣∣∣|[N ], (0, µ)〉

= 2

[
(µ − L + 2)(µ + L + 1)(L − 1)L

2(2L − 1)(2L + 1)

]1/2

C
L,0
L−2,0 2,0.

(31)

The value of the reduced SU(3) Clebsch-Gordan coefficient
(IF) is taken from Ref. [14]. Actually, we are interested in the
SO(3) reduced matrix elements which enter in Eq. (2). Thus
taking into account the yrast conditions µ = L we obtain

〈[N ], (0, µ); 0L − 2; 00
∥∥A

[1−1]6
(1,1)[0]2

∥∥[N ], (0, µ); 0L; 00〉

= 2

[
(L − 1)L

(2L − 1)

]1/2

. (32)

For the calculation of the matrix element

〈[N + 4], (0, µ + 2); 0L + 20; 00|
× [F × F ][4]6 20

(0,2)[0]2 00|[N ], (0, µ); 0L0; 00〉
= C

[N]6 [4]6 [N+4]6
(0,µ)[0]2 (0,2)[0]2 (0,µ+2)[0]2

C
(0,µ) (0,2) (0,µ+2)
L 2 L+2 C

L+2, 0
L,0 2,0

×〈[N + 4], (0, µ + 2)|||[F × F ] [4]6
(0,2)[0]2

|||[N ], (0, µ)〉
(33)

we use the standard recoupling technique for two coupled U(6)
tensors [15]:

〈[N ′]|||[T [α]6 × T [β]6 ]σ [γ ]6 |||[N ]〉
=

∑
c,ρ1,ρ2

U ([N ]6; [β]6; [N ′]6; [α]6|[Nc]6ρ2ρ1; [γ ]6σ )

×〈[N ′]|||T [α]6 |||[Nc]〉〈[Nc]|||T [β]6 |||[N ]〉, (34)
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where U(. . .) are the U(6) Racah coefficients in unitary form
[16]. For the reduced triple-bared matrix element in our case,
which is multiplicity free and hence there is no sum, we have

〈[N + 4]|||[F × F ] [4]6
(0,2)[0]2

|||[N ]〉
= U ([N ]6; [2]6; [N + 4]6; [2]6|[N + 2]6; [4]6)

×〈[N + 4]|||F (2,0)|||[N + 2]〉〈[N + 2]|||F (2,0)|||[N ]〉,
where the corresponding Racah coefficient for maximal cou-
pling representations is equal to unity ([15]; see also formula
A9 of Ref. [16]). Applying again the formula (34) with respect
to coupled tensor F [2]6 and using the fact that in the case of
vector bosons which span the fundamental irrep [1] of u(n)
algebra the u(n)-reduced matrix element of raising generators
has the well known form [17]

〈[N + 1]|||u†
m(α)|||[N ]〉 = √

N + 1. (35)

we obtain

〈[N + 2]|||F [2]6 |||[N ]〉
= U ([N ]6; [1]6; [N + 2]6; [1]6|[N + 1]6; [2]6)

×〈[N + 2]|||p†[1]6 |||[N + 1]〉〈[N + 1]|||p†[1]6 |||[N ]〉
=

√
(N + 1)(N + 2)

and in analogy

〈[N + 4]|||F [2]6 |||[N + 2]〉 =
√

(N + 3)(N + 4).

Introducing in Eq. (33) the above results and the value of
the coefficient C

(0,µ)(2,0)(0,µ+2)
L 2 L+2 from Ref. [14] (the corre-

sponding/fully stretched [15]/ U(6) IF for maximal coupling
representations is equal to 1), we finally derive for the SO(3)
reduced matrix element

〈[N + 4], (0, µ + 2); 0L + 2; 00
∥∥[F × F ] [4]6 20

(0,2)[0]2 00

∥∥
× [N ], (0, µ); 0L; 00〉

=
[

(µ + L + 3)(µ + L + 5)(L + 1)(L + 2)

(µ + 1)(µ + 2)(2L + 3)(2L + 5)

]1/2

×
√

(N + 1)(N + 2)(N + 3)(N + 4),

=
√

(2L + 1)(2L + 2)(2L + 3)(2L + 4), (36)

where N = 2µ + λ and for the last row the yrast condition
µ = L is taken into account. For the calculation of the matrix
element of [G × G] [−4]6 20

(2,0)[0]2 00 we use the conjugation
property

〈[N − 4], (0, µ − 2); 0L − 20; 00
∣∣[G × G][−4]6 20

(2,0)[0]2 00

∣∣
× [N ], (0, µ); 0L0; 00〉

= (〈[N ], (0, µ); 0L0; 00
∣∣[F × F ][4]6 20

(0,2)[0]2 00

∣∣
× [N − 4], (0, µ − 2); 0L − 20; 00〉)∗

= C
[N−4]6 [4]6 [N]6
(0,µ−2)[0]2 (0,2)[0]2 (0,µ)[0]2

C
(0,µ−2) (0,2)(0,µ)

L−2 2 L C
L,0
L−2,020

×
√

(N − 3)(N − 2)(N − 1)N

= C
L,0
L−2,0 20

√
(2L − 3)(2L − 2)(2L − 1)2L. (37)

With the help of the above analytic expressions [Eqs. (31),
(35), and (36)] for the matrix elements of the tensor operators
forming the E2 transition operator we can calculate the

FIG. 1. (Color online) The behavior of the number conserving
and symplectic terms of the matrix elements of the transition operator
T E2 [Eq. (27)].

transition probabilities [Eq. (2)] between the states in the
ground band as attributed to the SU(3) symmetry-adapted
basis states of the model [Eq. (24)]. It is obvious that the
second term in T E2 (27) comes from the symplectic extension
of the model. The behavior of each term of the transition
operator is plotted as a function of the angular momentum
L in Fig. 1 where for comparison typical experimental data
for the GSB of 236U are also shown. It can also be seen
that because of the yrast conditions (µ = L), the well-known
parabolic behavior corresponding to the Elliott’ s quadrupole
operator is modified and looks like a rigid rotor curve (see
also the curve corresponding to θ = 0 in Fig. 2). In this case,
the rigid rotor predictions are asymptotically determined by
the ordinary SO(3) Clebsch-Gordan coefficient. Such type of
curve is obtained in the limit of large-dimensional irreducible
representations 2λ + µ → ∞ when su(3) algebra contracts to
the rigid rotor algebra rot(3) = [R5]so(3) [18]. It is obvious
that the experimental points are well reproduced by the
modified SU(3) term up to L ≈ 20, whereas for the description
of the states with L > 20 the symplectic term is appropriate.

To see what type of B(E2) behavior can be obtained in
our theoretical predictions we give in Fig. 2 the results for
various values of the parameters θ and e.It is clearly seen that
the two main types of B(E2) behavior—the enhancement or
the reduction of the B(E2) values can be reproduced. The
strongly enhanced values that are an indication for increased
collectivity in the high angular momentum domain are easily
obtained for positive values of the parameter θ . For negative
values of the parameter θ we obtain behavior similar to that
of the standard SU(3) one and it can be used to reproduce
the well-known cutoff effect. Such saturation effect is also
characteristic feature of the IBM-based calculations in its
SU(3) limit. Although the coefficient in front of symplectic
term is about four orders of magnitude smaller than the SU(3)
contribution to the transition operator its role in reproducing
the correct behavior (with or without cutoff) of the transition
probabilities between the states of the GSB band is very
important.
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FIG. 2. (Color online) Study of particular dependence of the yrast
B(E2) values, using the E2 operator [Eq. (27)] as a function of the
parameters θ and e.

FIG. 3. (Color online) Comparison of theoretical and experimen-
tal values for the B(E2) transition probabilities for the 232Th.

FIG. 4. (Color online) The same as in Fig. 3 but for 236U.

V. APPLICATION TO REAL NUCLEI

To prove the correct predictions following from our
theoretical results we apply the theory to real nuclei for
which there is available experimental data for the transition
probabilities [19–21] between the states of the ground bands
up to very high angular momenta. The application actually
consists of fitting the two parameters of the transition operator
T E2 (27) to the experiment for each of the considered bands.

As a first example we consider the intraband B(E2)
transitions in the GSB for the nucleus 232Th. The experimental
data for it are compared with the corresponding theoretical
results of the symplectic IVBM and the SU(3) limit of the
IBM in Fig. 3. We see the standard SU(3) behavior for the latter
and because the IBM involves a small number of quadrupole
bosons the cutoff effect is observed at low spins and hence
only the transitions between the first few excited states are well
reproduced by it. From Fig. 3 one can see the enhanced B(E2)
values in the high-spin region and the good reproduction of
the experimental data [19] by our theoretical predictions.

Next the 236U case is presented. For it there are a lot of
experimental data, reaching high angular momenta up to L =
28 [20]. The B(E2) values for transitions between members of
the GSB compared with the theoretical results of the IVBM,
the IBM and the rigid rotor are shown in Fig. 4. One can see
that the IBM works well for the transitions between the first
excited states (L = 2 − 10). The rigid rotor describes well the
experimental states in the middle spin region (L = 4 − 16),
whereas for the high spins the B(E2) values must be enhanced
due to the observed collectivity excess. Thus, at high spins in
the yrast band the calculations of the IBM and the rigid rotor
model cannot reproduce the fine structure of the B(E2) data.
As mentioned in the preceding section, such an enhancement
can be obtained for slightly positive values of the parameter
θ in the transition operator T E2 [Eq. (27)] (see Fig. 2). From
Fig. 4 one can see that the experimental points lay very close
to the theoretical curves.

As a final example we consider the 156Dy nucleus. The
results (values of e and θ ) obtained for the yrast band compared
with that of the IBM and the experimental data [21] are
presented in Fig. 5. From it the saturation effect is clearly
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FIG. 5. (Color online) Comparison of theoretical and experimen-
tal values for the B(E2) transition probabilities for several closed
values of the parameters θ and e for the nucleus 156Dy.

observed at L = 16. The calculated results (for the IVBM with
negative value of the parameter θ ) illustrate characteristics of
the generic B(E2) curve discussed in connection with Fig. 2.
We see that the two models (for IVBM the blue curve) give
identical results with about the same level of accuracy. As one
can see, better overall reproduction of the experimental data
can be obtained if the parameters θ and e are slightly modified,
which is also illustrated in Fig. 5.

From the presented examples we see how sensitive the
theory is to the term coming from the symplectic extension
and in particular from the sign of the parameter θ entering in
the transition operator [Eq. (27)].

VI. CONCLUSIONS

In the present article we investigated the tensor properties
of the algebra generators of Sp(12, R) with respect to the
reduction chain (1). Sp(12, R) is the group of dynamical
symmetry of the IVBM and the considered chain of subgroups
was applied in Ref. [3] for the description of positive- and
negative-parity bands in well-deformed nuclei. The basis states
of the model Hamiltonian are also classified by the quantum
numbers corresponding to the irreducible representations of
the subgroups from the chain and in this way the symmetry

adapted basis is constructed in this limit of the model. The
action of the symplectic generators as transition operators
between the basis states is analyzed. Analytical expressions
for the matrix elements of Sp(12, R) generators in the U(6)
symmetry-adapted basis are obtained as well.

In the present new application of the rotational limit of the
symplectic extension of the IVBM, the model was tested on
the more complicated and complex problem of reproducing
the B(E2) transition probabilities between the states of the
ground band up to very high spins. In developing the theory
the advantages of the algebraic approach were used first for
the proper assignment of the basis states to the experimentally
observed states of the collective bands. Here the construction
of the E2 transition operator as linear combination of tensor
operators representing the generators of the subgroups of the
respective chain is a basic result that allows the application
of a specific version of the Wigner-Eckart theorem and
consecutively leads to analytic results for their matrix elements
in the U(6) symmetry-adapted basis that gives the transition
probabilities.

Analyzing the terms taking part in the construction of the
E2 transition operator the important role of the symplectic
extension of the model is revealed. In the application to real
nuclei the parameters of the transition operator are evaluated
in a fitting procedure for GSB of the considered nuclei. The
experimental data for the presented examples is reproduced
rather well, although the results are very sensitive to the values
of the parameters.

A further investigation of these bands in other nuclei from
other nuclear regions will clarify better the development of
collectivity in the symplectic extension of the IVBM, for which
more experiment on transition probabilities is needed. The
presented approach is rather general and universal and can be
used for the calculation of transitions in other collective bands,
in particular in the similarly constructed negative-parity bands
and the excited β bands, which are of great interest lately in
the nuclear structure.
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