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Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons
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Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound
and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to
be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly bound
neutrons. Compared with Nilsson diagrams in textbooks that are constructed using modified oscillator potentials,
we point out a systematic change of the shell structure in connection with both weakly bound and resonant
one-particle levels related to small orbital angular momenta �. Then, it is seen that weakly bound neutrons
in nuclei such as 15−19C and 33−37Mg may prefer being deformed as a result of the Jahn-Teller effect, due to
the near degeneracy of the 1d5/2-2s1/2 levels and the 1f7/2-2p3/2 levels in the spherical potential, respectively.
Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in textbooks
is illustrated.
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I. INTRODUCTION

The study of one-particle motion in spheroidal potentials,
which is the basis for the understanding of deformed nuclei,
started in the fifties [1–4]. In particular, the work by S. G.
Nilsson [3] played an important role for years in providing
the basis for the classification of experimental data on the
spectra of stable odd-A deformed nuclei [5]. Because the
nucleon separation energy in stable nuclei is 7–10 MeV,
the spectroscopic analysis around the ground state of those
nuclei has been successfully performed in terms of harmonic-
oscillator wave functions. In contrast, the recent study of
nuclear structure close to the neutron drip line points out
the unique role of weakly bound neutrons with small angular
momentum � and the importance of coupling to the nearby
continuum of unbound states. Due to the absence of the
Coulomb barrier, weakly bound neutrons with small � have
an appreciable probability of being outside the core nucleus.
Thus, those neutrons are insensitive to the strength of the
potential provided by the well-bound nucleons in the system.
In particular, the behavior of s1/2 neutrons is an extreme
example because of the absence of the centrifugal barrier for
the � = 0 orbit, compared with weakly-bound large � neutrons,
of which wave functions stay mostly inside the potential.
The �(� + 1) dependence of the height of the centrifugal
barrier affects sharply the presence (or absence) of one-particle
resonant levels at a given positive energy. Taking spheroidal
Woods-Saxon potentials, the properties of both weakly bound
neutron orbits and one-neutron resonant levels are studied in
Refs. [6–8].

There have been a number of self-consistent Hartree-Fock
(HF) calculations of light neutron-rich nuclei, in many of
which deformed HF solutions are indeed obtained. (As a
classic work we refer the reader to Ref. [9].) However,
almost all those calculations have been done either using the
expansion in terms of harmonic oscillator bases or confining
the system in a finite box. To our knowledge, no deformed HF
calculation is yet available that is carried out by integrating

in mesh of space coordinate with proper asymptotic behavior
for r = Rmax, at which the nuclear potential is negligible. If
deformed HF calculations are carried out in the latter way, the
numerical results are totally independent of the values of Rmax

and, furthermore, it becomes possible to estimate one-particle
resonant levels without any ambiguity.

The effective interactions to be used in HF calculations of
nuclei far away from the stability line are not yet properly
fixed. Thus, if the interaction chosen is not appropriate for
those nuclei away from the stability line, the answer is not
reliable. Moreover, one HF solution gives one self-consistent
deformation, which is determined by the two-body interaction
selected, assuming that all technical problems in obtaining HF
solutions are solved. Thus, it is not easy either to pin down the
origin of the deformation obtained or to evaluate the ambiguity
coming from the choice of the two-body interaction.

In the analysis of observed spectroscopic properties of
light neutron-rich nuclei with weakly bound neutrons the
shell model is so far used in most cases. The shell model
should be applicable to those nuclei if the configuration
space is sufficiently large and the weakly bound particles
are properly treated. The latter condition is usually not
satisfied, because harmonic-oscillator wave functions in a
limited space are used in most cases. The work summarized
in Ref. [10] is an exception among the calculations that can
be systematically compared with experiments; however, the
complicated calculations have so far been carried out only for
the helium and oxygen isotopes. In any case, some physically
interesting quantities such as one-particle energies (or shell
structure) or nuclear shape (or deformation) are not directly
obtained from shell model calculations.

Recognizing how useful it was to have Nilsson diagrams in
the study of stable deformed nuclei [5], which are constructed
using modified oscillator potentials, in this article we present
some “Nilsson diagrams” that are relevant especially to some
light neutron-rich nuclei toward the neutron drip line. Taking
the Woods-Saxon potentials with the parameters adjusted to
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some particular nuclei, both bound and resonant one-neutron
levels are calculated as a function of quadrupole deformation.
The change of nuclear shell structure for neutrons is seen in
both negative and positive one-particle energies of the Nilsson
diagrams. The change comes from the unique behavior of
neutron orbits with small � values, in particular � = 0 and 1.
The modified shell structure has direct relevance to the ground
and low-lying states of neutron-drip-line nuclei, in which
weakly bound neutrons are present. Considering the possible
absence of many-body pair-field in light nuclei, the study of
the present type of Nilsson diagrams can definitely help us to
understand the origin of possible deformation and the related
spectroscopic properties of light neutron-drip-line nuclei.

In Sec. II some points of our model are summarized.
Numerical results are presented in Sec. III. Conclusions and
discussions are given in Sec. IV.

II. MODEL

The occupancy of weakly bound one-particle levels has
a contribution especially to the tail of the self-consistent
potentials. However, even for light nuclei presently considered
the number of weakly bound neutron(s) is much smaller than
that of well-bound core nucleons. In other words, the major part
of the nuclear potential is provided by well-bound nucleons.
Thus, for simplicity, the parameters of Woods-Saxon potentials
are taken from the standard ones [11] for stable nuclei except
for the depth, VWS. Namely, the diffuseness, the strength
of spin-orbit potentials, and the radius parameter are taken
from those on p. 239 of Ref. [11]. The depth is adjusted so
that a particular one-neutron level obtains a given desirable
binding-energy in respective examples.

The way in which bound one-particle levels are calculated
is described in Ref. [6], while the eigenphase formalism that
is used to estimate one-particle resonant levels for a deformed
potential is given in Refs. [7,8]. The essential point is that
the coupled equations obtained from the Schrödinger equation
are solved in coordinate space with the correct asymptotic
behavior of wave functions for r → ∞. The solution obtained
in this way is totally independent of the upper limit of radial
integration, Rmax, if both the potential and the coupling term
are already negligible at r = Rmax. One-particle resonant
energy for β �= 0 is defined as the energy at which one of
the eigenphases increases through π/2 as energy increases. In
the limit of β → 0 this definition in the eigenphase formalism
is in agreement with the definition of one-particle resonance
in spherical potentials described in textbooks [12]; the phase
shift increases through π /2 as energy increases.

One-particle resonance is not obtained if none of the
calculated eigenphases do not increase through π/2 as energy
increases. For example, we have no corresponding resonance
in the case where a calculated eigenphase starts to decrease
before reaching π/2 as energy increases. Even if one fails to
obtain one-particle resonance defined in terms of eigenphase,
for a certain small region of energy just after the disappearance
of resonance the concentration of the wave functions inside
the potential may still be found. However, the concentration
will easily disappear after a short time if a resonance is no
longer obtained in the eigenphase formalism. This situation is

analogous to the case of the spherical potential, in which the
phase shift starts to decrease before reaching π/2 as energy
increases [12].

Compared with the Nilsson diagram based on modified
oscillator potentials, the striking difference of the level scheme
obtained in the present work comes from the behavior of levels
with low � values (in particular, � = 0 and 1) for β = 0 and
those with small � values (mainly �π = 1/2+, 1/2−, and
3/2−) for β �= 0, in both the weakly bound and positive-
energy regions. Note that the minimum � value of possible
components of �π = 1/2+, 1/2−, and 3/2− levels is equal to
0, 1 and 1, respectively. The absence of the centrifugal barrier
for the � = 0 channel produces the unique behavior of weakly
bound and positive-energy �π = 1/2+ orbits. However, we
find that some �π = 1/2+ resonant levels survive in a higher-
energy region (see, for example, the [200 1/2] level in Fig. 1)
if the relative probability of the s1/2 component inside the
potential is smaller than a certain critical value [8]. Because
the height of the centrifugal barrier becomes lower for a larger
nuclear radius, the unique behavior of � = 1 components will
be more easily seen in nuclei with larger mass.

III. NUMERICAL RESULTS

A. Neutron-rich C isotopes

Taking VWS = −40.0 MeV and the radius parameter for
A = 17, at β = 0 in Fig. 1 we obtain ε(1d5/2) = −560 keV
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FIG. 1. Neutron one-particle levels as a function of quadrupole
deformation. Parameters of the Woods-Saxon potential are designed
approximately for the nucleus 17C. One-particle levels are denoted
by the asymptotic quantum numbers [N nz��]. The � values are
denoted for four positive-parity levels for β < 0, because it may be
difficult to see the connection to the levels for β > 0. One-particle
levels appearing at β = 0 are 1p1/2, 1d5/2, 2s1/2, and 1d3/2 levels at
−6.77, −0.56, −0.42, and +5.60 MeV, respectively. One-particle
levels in the positive-energy region, of which the phase shift (one of
the eigenphases) for β = 0 (β �= 0) does not increase through π/2
as energy increases, are not plotted. The neutron numbers 8 and 16,
which are obtained by filling in all lower-lying levels, are indicated
with circles.
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and ε(2s1/2) = −415 keV. The resonant energy of the 1d3/2

level is 5.60 MeV. The near degeneracy of the 1d5/2 and 2s1/2

levels compared to the high-lying 1d3/2 level exhibits that for
the spherical shape the neutron number N = 16 may behave
like a magic number. For β �= 0 the s1/2, d3/2, d5/2, g7/2, and
g9/2 channels are included in the calculation of positive-
parity levels, while the p1/2, p3/2, f5/2, and f7/2 channels are
included for negative-parity levels. The parameters are chosen
approximately for neutrons in the nucleus 17

6C11, because the
observed neutron separation energy of 17C is −730 keV and
the nucleus is presumably prolately deformed. Examining the
Nilsson diagram in Fig. 1, it is seen that a few neutrons
occupying the weakly bound almost-degenerate 1d5/2-2s1/2

shells at β = 0 may prefer being deformed to gain the total
energy. This may be the case for neutrons in 15,17,19C, in which
the neutron separation energy is small. It is also noticed that
the observed ground states of 17

6C11 and 19
6C13 with Iπ = 3/2+

and 1/2+, respectively, may be in a natural way interpreted
as the bandheads of the intrinsic [211 3/2] and [211 1/2]
configurations for prolate deformation, when the level scheme
in the Nilsson diagram is applied to those nuclei. For some
experimental evidence for the deformation of those C isotopes,
see, for example, Refs. [13,14].

The [220 1/2] resonant level is not obtained for β < −0.12
and ε� > 0.22 MeV, because the predominant component of
the [220 1/2] wave function inside the nuclear radius is s1/2

and thus decays very quickly [8]. Due to the same reason, the
continuation of the [200 1/2] resonant level cannot be found for
β > 0.46 and 0 < ε� < 1.82 MeV, while for smaller β values
the predominant component of the [200 1/2] level inside the
nuclear radius is d3/2 and thus the resonant level is sufficiently
well defined.

To illustrate the near degeneracy of the 2s1/2 and 1d5/2

levels at β = 0 in Fig. 1, in Fig. 2 the energy eigenvalues of
Woods-Saxon potentials are shown, which were obtained by
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FIG. 2. Neutron one-particle levels as a function of the depth of
Woods-Saxon potential, VWS, for β = 0. All parameters other than
VWS are the same as those in Fig. 1. Note that VWS = −40 MeV is
used in Fig. 1. The � = 2 one-particle resonant level continues to be
well defined above ε = 2 MeV.

varying the depth while keeping other parameters the same as
those in Fig. 1. The 2s1/2 level crosses with the 1d5/2 level for
|VWS| slightly smaller than 40 MeV. For reference, the value
of VWS that is obtained by applying Eq. (2–182) of Ref. [11]
to 17

6C11 is −41.3 MeV.
If a larger diffuseness, a > 0.72 fm, is used in Fig. 1,

keeping other parameters of the Woods-Saxon potential
unchanged, for β = 0 the 2s1/2 level appears lower than the
1d5/2 level. Nevertheless, in the region of an appreciable size of
deformation the structure of the Nilsson diagram coming from
the 2s1/2 and 1d5/2 levels remains approximately the same.

B. Neutron-rich Mg isotopes

Taking VWS = −40.0 MeV, in Fig. 3 the Nilsson diagram
for neutrons is plotted for the radius appropriate for A = 31.
For the parameters of Fig. 3 the 2s1/2 level for β = 0 is well
bound and, therefore, it lies approximately in the middle of
the 2d5/2 and 2d3/2 levels just as obtained from the level
scheme in the modified oscillator potential [5], in contrast
to the near degeneracy of the 2s1/2-1d5/2 levels shown in
Fig. 1. For β �= 0 the s1/2, d3/2, d5/2, g7/2, and g9/2 channels
are included in the calculation of positive-parity levels, while
the p1/2, p3/2, f5/2, f7/2, h9/2, and h11/2 channels are included
for negative-parity levels. The value of VWS is chosen so that
the spin parities of the ground state of nuclei 31

12Mg19 and
33
12Mg21, 1/2+ [15] and 3/2− [16], respectively, are obtained
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FIG. 3. Neutron one-particle levels as a function of quadrupole
deformation. Parameters of the Woods-Saxon potential are designed
approximately for the nucleus 31Mg. The �π = 1/2− levels are
denoted by dotted curves, the 3/2− levels by dashed curves, the 5/2−

levels by dot-dashed curves, and the 7/2− levels by dot-dot-dashed
curves, while positive-parity levels are plotted by solid curves.
One-particle levels appearing at β = 0 are 1d5/2, 2s1/2, 1d3/2, and
1f7/2 levels, from the bottom to the top. Neither 2p3/2 nor 2p1/2 levels
are obtained at β = 0 as one-particle resonant levels and, thus, they
are not plotted in the figure. The next low-lying one-particle resonant
level for β = 0 is the 1f5/2 level at 8.96 MeV that lies outside the
range of the figure. See the text for details and also the legend to
Fig. 1.
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FIG. 4. Neutron one-particle levels as a function of the depth of
Woods-Saxon potential, VWS, for β = 0. All parameters other than
VWS are the same as those in Fig. 3. Note that VWS = −40 MeV is used
in Fig. 3. The � = 3 one-particle resonant levels continue to be well
defined above ε = 2 MeV, while the 2p3/2 and 2p1/2 resonant levels
do not survive for ε > 0.80 MeV and ε > 0.62 MeV, respectively.

for β ≈ 0.5 [17–19], which may be identified as the bandheads
of the [200 1/2] and [321 3/2] configurations with observed
energies of about −2 MeV.

The 1f7/2 resonant level at β = 0 is obtained at ε� =
1.59 MeV. In contrast, the 2p3/2 and 2p1/2 resonant levels
are not obtained, while the trace of the 2p3/2 resonant level is
expected to lie below the 1f7/2 resonant level (see Fig. 4).
Nevertheless, the energy is too high for the existence of
a resonance with � = 1. The complicated behavior of the
energies of the �π = 1/2− and 3/2− levels for β < 0 and
below 2 MeV in Fig. 3 indicates the influence of the 2p3/2 and
2p1/2 levels, which do not appear as resonant states around
β = 0. More precisely speaking, if we take the �π = 1/2−
level plotted by the dotted curve as an example, the slope
in the region of β < −0.3 indicates the 2p3/2 level at β = 0
lying lower than the 1f7/2 level, while the slope for −0.2 <

β < −0.14 denotes the 2p1/2 level at β = 0 lying higher than
the 1f7/2 level. This illustrates the fact that the coupling of
the resonant �π = 1/2− level with other �π = 1/2− levels,
which are not obtained as resonant levels and thus are not
plotted in Fig. 3 for ε� > 0, is properly taken into account in
the present work, as a result of obtaining the Nilsson levels by
solving the coupled differential equations.

To locate the trace of the 2p3/2 and 2p1/2 levels for
VWS = −40 MeV in Fig. 3, in Fig. 4 the energy eigenvalues of
Woods-Saxon potentials are shown as a function of VWS while
keeping other parameters the same as those in Fig. 3. The 2p3/2

and 2p1/2 resonant levels are not obtained for ε > 0.80 MeV
and ε > 0.62 MeV, respectively, while the � = 3 one-particle
resonant levels continue to be well defined above ε = 2 MeV.
From Fig. 4 it is seen that the 2p3/2 resonant level crosses with
the 1f7/2 resonant level around VWS = −42 MeV. Because
in the present parametrization of Woods-Saxon potential the
strength of the spin-orbit potential is proportional to VWS, it
is somewhat misleading to draw the figure like Fig. 4 for a

large variation of VWS. Nevertheless, using Fig. 4 it is easy
to locate the trace of the 2p3/2 resonant level for VWS =
−40 MeV, which is the depth used in Fig. 3.

The fact that the trace of the 2p3/2 resonant level is expected
to lie below the 1f7/2 level in the positive energy region of
Fig. 3 indicates that N = 28 is not a magic number in the
example. The near degeneracy of the 1f7/2 and 2p3/2 levels in
the positive-energy region is indeed similar to the level scheme
of almost degenerate 1d5/2 and 2s1/2 bound levels in Fig. 1.
This near degeneracy gives certainly the origin of possible
deformation when a few weakly bound neutrons occupy the
1f7/2-2p3/2 shell. Namely, the degeneracy can be used to take
a particular combination of the components so as to lower
some level energy as deformation sets in. This situation may
correspond to neutron-rich Mg isotopes.

In Fig. 3 the level coming from the 2p1/2 level is totally
missing because it does not exist as a resonant level. The level
denoted as [321 1/2] is obtained as a resonant level only for
β > 0.24 and ε� < 1.67 MeV. For β < 0.24 the energy of the
level becomes larger than 1.67 MeV, and the width becomes
extremely large because � = 1 is the predominant component
of the wave function inside the nuclear radius. Therefore, the
level cannot be identified as a resonance. The one-particle
resonant level obtained for β = 0, which lies next lowest to
1f7/2, is the 1f5/2 level found at 8.96 MeV that lies outside
the range of Fig. 3.

Taking VWS = −40.0 MeV, in Fig. 5 the Nilsson diagram
is plotted for the radius appropriate for A = 37. The 1f5/2 and
2p3/2 resonances at β = 0 are found at 5.22 and 0.018 MeV
with the widths 2.08 and 0.005 MeV, respectively. Using
ε(1f7/2) = −0.66 MeV, the distance between the 1f7/2 and
2p3/2 levels is 680 keV, which is again very small compared
with the distance obtained in the case where both levels are
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FIG. 5. Neutron one-particle levels as a function of quadrupole
deformation. Parameters of the Woods-Saxon potential are designed
approximately for the nucleus 37Mg. One-particle levels appearing at
β = 0 are 2s1/2, 1d3/2, 1f7/2, 2p3/2, and 1f5/2 levels at −7.02, −5.28,
−0.66, +0.018 and +5.22 MeV, respectively. The 2p1/2 level is not
obtained as a one-particle resonant level. See the legend to Fig. 3 and
the text for details.
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well bound. This near degeneracy of the 1f7/2 and 2p3/2 levels
at β = 0 suggests that weakly bound neutrons in nuclei with
N = 21–26 may prefer being deformed. In the calculation of
Fig. 5 for β �= 0 the s1/2, d3/2, d5/2, g7/2, and g9/2 channels
are included in the calculation of positive-parity levels, while
the p1/2, p3/2, f5/2, f7/2, h9/2, and h11/2 channels are included
for negative-parity levels. The value of VWS is chosen so as
to simulate the nucleus 37

12Mg25, which may have a neutron
separation energy of a few hundreds keV.

The 2p1/2 resonant level is not obtained at β = 0, and
for β �= 0 no �π = 1/2− one-particle level connected to the
possible 2p1/2 level can survive as a resonant level. The
�π = 3/2− resonant level (denoted by the dashed curve in
Fig. 5) connected to the 2p3/2 level at β = 0 cannot survive
for β > 0.21 and ε� > 1.31 MeV, because the predominant
component of the wave function inside the nuclear radius is
� = 1 and the level decays out quickly because of the low
centrifugal barrier. The �π = 1/2− resonant level (denoted
by the dotted curve in Fig. 5) coming from the 1f5/2 level
cannot survive as a resonance for β > 0.12 because of the
increasing � = 1 component inside the nuclear radius.

In the region of a few MeV excitation energy of Fig. 5,
for both spherical and prolate shapes, we find no well defined
one-neutron resonant levels except the [303 7/2] level, because
Nilsson levels expected in the region have either �π = 1/2−
or 3/2−.

It is noted that the energy distance between the 1f7/2 and
2p3/2 levels at β = 0 in the Woods-Saxon potential becomes
as large as several MeV when both levels are well bound, as
known from the presence of the magic number N = 28 in
stable nuclei.

IV. CONCLUSIONS AND DISCUSSIONS

A few examples of Nilsson diagrams with both bound and
resonant levels are given, the parameters of which are chosen
to be appropriate for some light neutron-rich nuclei with
weakly bound neutrons, using Woods-Saxon potentials. The
absence of centrifugal barrier (very low centrifugal barrier)
for � = 0 (� = 1) neutrons produces the 2s1/2(2p3/2) level
close to the 1d5/2(1f7/2) level, for both weakly bound and
low-lying resonant neutrons. This near degeneracy of the
2s1/2-1d5/2 and 2p3/2-1f7/2 levels at β = 0 is recognized as a
basic element of producing deformation for some neutron-rich
C-Mg isotopes, in the case that the proton configuration
allows the deformation. Here the simple argument that a
larger one-particle level density around the Fermi level at the
spherical point may lead to a possible deformation is based on
the following known fact: In very light nuclei the many-body
pair correlation may be neglected in a good approximation.
If pair correlation is neglected, nuclei with a few nucleons
outside a closed shell are already deformed, because using
the near degeneracy of one-particle levels those nucleons
have a possibility of gaining energy by breaking spherical
symmetry (the Jahn-Teller effect). To quantify this statement
on the deformation of weakly bound nuclei, the deformed HF
calculations with an appropriate two-body interaction have
to be performed, taking properly into account the weakly

bound and positive-energy nucleons without expanding the
wave functions in terms of harmonic-oscillator wave func-
tions and without restricting the system in a small finite
box.

One-neutron resonant levels for β �= 0 are estimated using
the eigenphase formalism. The �π = 1/2+ resonant level can
hardly survive when the predominant component of the wave
function inside the potential is s1/2, while the �π = 1/2−
and 3/2− resonant levels are not obtained if the predominant
component has � = 1 and the energy is higher than 2 MeV in
nuclei with A > 16. Nevertheless, the coupling of the bound
(or resonant) �π level with other �π levels, which are not
obtained as resonant levels, is properly taken into account
in the present work, because we obtain the Nilsson levels
by solving coupled differential equations. In some nuclei the
absence of those �π = 1/2+, 1/2−, and 3/2− resonant levels
produces a low density of one-neutron resonant levels in the
region of several MeV. How much the low density affects the
many-body correlation such as pair correlation in nuclei toward
the neutron drip line is a future problem to be studied and may
be properly studied only when the many-body correlation is
studied treating the nearby continuum in a reasonable manner
without discretizing the spectra. However, the absence (or
presence) of those one-particle resonant levels may be checked
by experiments such as one-nucleon resonant scattering and
one-nucleon transfer reactions. It is noted that the neutron
one-particle levels obtained from Nilsson diagrams for β �= 0
are those to be recognized as bandhead configurations of
odd-N nuclei. Thus, rotational states, which are constructed
based on those bandhead states, should be in principle observed
using a proper experimental method and those high-spin states
will have narrow widths if they appear in the low-energy
region.

If one fails to treat properly weakly bound neutrons or
low-energy neutron resonant levels with small �, the HF
2p3/2(2s1/2) level will not come down close to the 1f7/2(1d5/2)
level. In any case, if the 1f7/2 or 1d5/2 level is appreciably
isolated, in the absence of pair correlation it may be possible
to obtain an oblate shape as the deformation of the system
with a few neutrons in the 1f7/2 or 1d5/2 shell. This is because
a preferred deformation is oblate at the beginning of the
shell filling if a single j shell is isolated (for example, see
Refs. [20,21]), while it is prolate if shells with different j

values are nearly degenerate as in the harmonic-oscillator
potential [22]. It is an interesting question whether any oblate
shape is observed around the ground state of light neutron-
drip-line nuclei of C-Mg isotopes.

A systematic change of the shell structure in the spherical
potential discussed in the present article is strictly related to
the characteristic feature of the weakly bound and resonant
one-particle orbits with small � values. On the other hand,
in some recent literature [23] related to the shell model the
change of the shell structure of neutrons (protons) as the proton
(neutron) number varies is discussed, considering the tensor
force between protons and neutrons using harmonic-oscillator
wave functions. Though some of the shell structure change
discussed in Ref. [23] looks formally similar to that studied in
the present article, the mechanism of the change of the shell
structure is quite different.
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