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Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models
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Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions,
models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields,
we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In
particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic
mean-field models and compared the results with the constraints recently extracted from analyses of experimental
data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured
isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the
relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give
symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry
potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find
that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin
splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions
but also on the definition of the nucleon optical potential.
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I. INTRODUCTION

Besides the many existing radioactive beam facilities and
their upgrades, many more are being constructed or planned,
including the Cooling Storage Ring (CSR) facility at HIRFL
in China [1], Radioactive Ion Beam (RIB) Factory at RIKEN
in Japan [2], FAIR/GSI in Germany [3], SPIRAL2/GANIL in
France [4], and Facility for Rare Isotope Beams (FRIB) in the
U.S. [5]. These new facilities offer the possibility of studying
the properties of nuclear matter or nuclei under the extreme
condition of large isospin asymmetry. As a result, the study of
the isospin degree of freedom in nuclear physics has recently
attracted much attention. The ultimate goal of such study is to
extract information on the isospin dependence of in-medium
nuclear effective interactions as well as the equation of state
(EOS) of isospin asymmetric nuclear matter, particularly
its isospin-dependent term or the density dependence of
the nuclear symmetry energy. This knowledge, especially the
latter, is important for understanding not only the structure
of radioactive nuclei, the reaction dynamics induced by rare
isotopes, and the liquid-gas phase transition in asymmetric
nuclear matter, but also many critical issues in astrophysics
[6–13]. Unfortunately, the density dependence of the nuclear
symmetry energy, especially its behavior at high densities,
is largely unknown and is regarded as the most uncertain
among all the properties of isospin asymmetric nuclear matter.
Although the nuclear symmetry energy at normal nuclear
matter density ρ0 ≈ 0.16 fm−3 is known to be around 30 MeV
from the empirical liquid-drop mass formula [14,15], its
values at other densities are poorly known [6,7]. Various
microscopic and phenomenological models, such as the
relativistic Dirac-Brueckner-Hartree-Fock (DBHF) [16–22]
and nonrelativistic Brueckner-Hartree-Fock (BHF) [23,24]
approaches, the relativistic mean-field (RMF) model based

on nucleon-meson interactions [12], and the nonrelativis-
tic mean-field model based on Skyrme-like interactions
[25–31], have been used to study the isospin-dependent
properties of asymmetric nuclear matter, such as the nuclear
symmetry energy, nuclear symmetry potential, and isospin
splitting of nucleon effective mass, but the predicted results
vary widely. In fact, even the sign of the symmetry energy
above 3ρ0 is uncertain [32]. The theoretical uncertainties
are mainly due to the lack of knowledge about the isospin
dependence of in-medium nuclear effective interactions and
the limitations in the techniques for solving the nuclear many-
body problem. As to the incompressibility of asymmetric
nuclear matter, it is essentially undetermined [33], even after
about 30 years of studies. For comparison, the incom-
pressibility of symmetric nuclear matter at its saturation
density ρ0 has been determined to be 231 ± 5 MeV
from the nuclear giant monopole resonances (GMR) [34],
and the EOS at densities of 2ρ0 < ρ < 5ρ0 has also
been constrained by measurements of collective flows [8]
and subthreshold kaon production [35] in nucleus-nucleus
collisions.

As a phenomenological approach, the RMF model has
achieved great success during the last decade in describing
many nuclear phenomena [36–43]. For example, it provides a
novel saturation mechanism for nuclear matter, an explanation
of the strong spin-orbit interaction in finite nuclei, and a
natural energy dependence of the nucleon optical potential.
The RMF approach is generally based on effective interaction
Lagrangians that involve nucleon and meson fields. In this
approach, a number of parameters are adjusted to fit the
properties of many nuclei. As such, these models usually give
excellent descriptions of nuclear properties around or below
the saturation density.
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Since the original Lagrangian proposed by Walecka more
than 30 years ago [36], there have been a lot of different
treatments, extensions, and applications of the RMF model.
The three main versions are the nonlinear models [37–40],
models with density-dependent meson-nucleon couplings
[44–48], and point-coupling models without mesons [49–54].
For each version of the RMF model, there are also many
different parameter sets with their values fitted to the binding
energies and charge radii of a large number of nuclei in the
periodic table. Including isovector mesons in the effective
interaction Lagrangians further allows the RMF model to
describe successfully the properties of nuclei far from the
β-stability line. With recent developments in constraining the
isospin-dependent properties of asymmetric nuclear matter,
especially the density dependence of the nuclear symmetry
energy, it is of great interest to see to what extent the results
from different versions of the RMF model are consistent with
these constrains.

In the present work, based on 23 different commonly used
parameter sets in three different versions of the RMF model,
we carry out a systematic study of the isospin-dependent
bulk and single-particle properties of asymmetric nuclear
matter. In particular, we study the density dependence of
the nuclear symmetry energy from these RMF models and
compare the results with the constraints recently extracted
from analyses of the isospin diffusion data from heavy-ion
collisions based on the isospin and momentum-dependent
IBUU04 transport model with in-medium nucleon-nucleon
(NN ) cross sections [55–57], isoscaling analyses of isotope
ratios in intermediate energy heavy-ion collisions [58], and
measured isotopic dependence of the GMR in even-A Sn
isotopes [59]. Among these 23 commonly used interactions
in nuclear structure studies, only a few are found to give
symmetry energies that are consistent with the empirically
extracted one. Furthermore, we study the nuclear symmetry
potential and the isospin splitting of the nucleon effective
mass in isospin asymmetric nuclear matter. Our results indicate
that the nuclear symmetry potential at fixed baryon density
may increase or decrease with increasing nucleon momentum
depending on the definition of the nucleon optical potential
and the interactions used. This dependence is also seen in the
isospin splitting of the nucleon effective mass in neutron-rich
nuclear matter. In addition, the isospin splitting of the nucleon
scalar density in neutron-rich nuclear matter is also studied.

The paper is organized as follows. In Sec. II, we discuss
some isospin-dependent bulk and single-particle properties
of asymmetric nuclear matter, such as the nuclear symmetry
energy, nuclear symmetry potential, and isospin splitting of nu-
cleon effective mass as well as current experimental and/or em-
pirical constraints on these quantities. The theoretical frame-
works for the different versions of RMF models, i.e., nonlinear
RMF models, models with density-dependent nucleon-meson
coupling, and nonlinear and density-dependent point-coupling
models, are briefly reviewed in Sec. III. Results on the
isospin-dependent properties of asymmetric nuclear matter,
i.e., the nuclear symmetry energy, nuclear symmetry potential,
and isospin splitting of nucleon effective mass and the nucleon
scalar densities in neutron-rich nuclear matter, from different
versions of RMF models are presented and discussed in

Sec. IV. A summary is then given in Sec. V. For complete-
ness, the isospin- and momentum-dependent MDI interaction,
which will be used as a reference in some cases for comparison,
is briefly described in the Appendix.

II. ISOSPIN-DEPENDENT PROPERTIES OF
ASYMMETRIC NUCLEAR MATTER

A. Nuclear symmetry energy

The EOS of isospin asymmetric nuclear matter, given by
its binding energy per nucleon, can be generally written as

E(ρ, α) = E(ρ, α = 0) + Esym(ρ) α2 + O(α4), (1)

where ρ = ρn + ρp is the baryon density, with ρn and ρp

denoting the neutron and proton densities, respectively; α =
(ρn − ρp)/(ρp + ρn) is the isospin asymmetry; E(ρ, α = 0) is
the binding energy per nucleon in symmetric nuclear matter;
and

Esym(ρ) = 1

2

∂2E(ρ, α)

∂α2

∣∣∣∣
α=0

(2)

is the nuclear symmetry energy. The absence of odd-order
terms in α in Eq. (1) is due to the exchange symmetry between
protons and neutrons in nuclear matter when one neglects
the Coulomb interaction and assumes the charge symmetry of
nuclear forces. The higher-order terms in α are negligible, e.g.,
the magnitude of the α4 term at ρ0 is estimated to be less than
1 MeV [60–62]. Neglecting the contribution from higher-order
terms in Eq. (1) leads to the well-known empirical parabolic
law for the EOS of asymmetric nuclear matter, which has
been verified by all many-body theories to date, at least for
densities up to moderate values. As a good approximation, the
density-dependent symmetry energy Esym(ρ) can be extracted
from Esym(ρ) ≈ E(ρ, α = 1) − E(ρ, α = 0), i.e., the energy
change per nucleon when all protons in the symmetric nuclear
matter are converted to neutrons while keeping the total nuclear
density fixed. In this sense, the nuclear symmetry energy gives
an estimation of the binding energy difference between the
pure neutron matter without protons and the symmetric nuclear
matter with equal numbers of protons and neutrons. It should
be mentioned that the possible presence of the higher-order
terms in α at supra-normal densities can significantly modify
the proton fraction in β-equilibrium neutron-star matter
and the critical density for the direct Urca process which can
lead to faster cooling of neutron stars [63,64].

Around the nuclear matter saturation density ρ0, the nuclear
symmetry energy Esym(ρ) can be expanded to second order in
density as

Esym(ρ) = Esym(ρ0) + L

3

(
ρ − ρ0

ρ0

)
+ Ksym

18

(
ρ − ρ0

ρ0

)2

,

(3)

where L and Ksym are the slope and curvature parameters of
the nuclear symmetry energy at ρ0, i.e.,

L = 3ρ0
∂Esym(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

, (4)

Ksym = 9ρ2
0

∂2Esym(ρ)

∂2ρ

∣∣∣∣
ρ=ρ0

. (5)
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The L and Ksym characterize the density dependence of
the nuclear symmetry energy around normal nuclear matter
density and thus carry important information on the properties
of nuclear symmetry energy at both high and low densities. In
particular, the slope parameter L has been found to correlate
linearly with the neutron-skin thickness of heavy nuclei
and thus can in principle be determined from the measured
thickness of the neutron skin of such nuclei [65–72]. Unfortu-
nately, because of the large uncertainties in the experimental
measurements, this has not yet been possible so far.

At the nuclear matter saturation density and around α = 0,
the isobaric incompressibility of asymmetric nuclear matter
can also be expressed to second order in α as [73,74]

K(α) ≈ K0 + Kasy α2, (6)

where K0 is the incompressibility of symmetric nuclear matter
at the nuclear matter saturation density, and the isospin-
dependent part [75]

Kasy ≈ Ksym − 6L (7)

characterizes the density dependence of the nuclear symmetry
energy. Information on Kasy can in principle be extracted
experimentally by measuring the GMR in neutron-rich nuclei.
Earlier attempts based on this method have given, however,
widely different values. For example, a value of Kasy =
−320 ± 180 MeV with a large uncertainty was obtained in
Ref. [76] from a systematic study of the GMR in the isotopic
chains of Sn and Sm. In this analysis, the value of K0 was
found to be 300 ± 25 MeV, which is somewhat larger than the
commonly accepted value of 230 ± 10 MeV. In a later study,
an even less stringent constraint of −566 ± 1350 < Kasy <

139 ± 1617 MeV was extracted from the GMR of finite nuclei,
depending on the mass region of nuclei and the number
of parameters used in parametrizing the incompressibility
of finite nuclei [33]. Most recently, a much more stringent
constraint of Kasy = −550 ± 100 MeV has been obtained in
Ref. [59] from measurements of the isotopic dependence of
the GMR in even-A Sn isotopes.

Besides studies of nuclear structure, heavy-ion reactions,
especially those induced by radioactive beams, also provide
a useful means to investigate in terrestrial laboratories the
isospin-dependent properties of asymmetric nuclear matter,
particularly the density dependence of the nuclear symme-
try energy. Indeed, significant progress has recently been
made both experimentally and theoretically in extracting the
information on the behaviors of nuclear symmetry energy
at subsaturation density from the isospin diffusion data in
heavy-ion collisions from the National Superconducting Cy-
clotron Laboratory at Michigan State University (NSCL/MSU)
[55–57]. Based on the isospin and momentum-dependent
IBUU04 transport model with in-medium NN cross sec-
tions, it has been found that the isospin diffusion data
are consistent with a density-dependent symmetry energy
of Esym(ρ) ≈ 31.6(ρ/ρ0)γ with γ = 0.69–1.05 at subnor-
mal density [56,57], which has led to the extraction of
a value of L = 88 ± 25 MeV for the slope parameter of
the nuclear symmetry energy at saturation density and a
value of Kasy = −500 ± 50 MeV for the isospin-dependent
part of the isobaric incompressibility of isospin asymmetric

nuclear matter [56,57,71]. This has further imposed stringent
constraints on both the parameters in the isospin-dependent
nuclear effective interactions and the neutron skin thickness
of heavy nuclei. Among the 21 sets of Skyrme interactions
commonly used in nuclear structure studies, only the four
sets SIV, SV, Gσ , and Rσ have been found to give symmetry
energies that are consistent with the above extracted one.
Using these Skyrme interactions, the neutron-skin thickness
of heavy nuclei calculated within the Hartree-Fock approach
is consistent with available experimental data [71,72] and
also that from a relativistic mean-field model based on an
accurately calibrated parameter set that reproduces the GMR
in 90Zr and 208Pb as well as the isovector giant dipole resonance
of 208Pb [77]. The extracted symmetry energy further agrees
with the symmetry energy Esym(ρ) = 31.6(ρ/ρ0)0.69 recently
obtained from the isoscaling analyses of isotope ratios in
intermediate energy heavy-ion collisions [58], which gives
L ≈ 65 MeV and Kasy ≈ −453 MeV. The extracted value
of Kasy = −500 ± 50 MeV from the isospin diffusion data
is also consistent with the value Kasy = −550 ± 100 MeV
obtained from recently measured isotopic dependence of the
GMR in even-A Sn isotopes [59]. We note that the GMR only
allows us to extract the value of Kasy but not that of L. These
empirically extracted values for L and Kasy represent the best
and most stringent phenomenological constraints available so
far on the nuclear symmetry energy at subnormal densities.
Although the behavior of the symmetry energy at high densities
is presently largely undetermined, much of this information is
expected to be obtained from future high energy radioactive
beam facilities.

B. Nuclear symmetry potential

The nuclear symmetry potential refers to the isovector part
of the nucleon mean-field potential in isospin asymmetric
nuclear matter. Besides the nuclear density, the symmetry
potential of a nucleon in nuclear matter also depends on the
momentum or energy of the nucleon. The nuclear symmetry
potential is different from the nuclear symmetry energy, as
the latter involves the integration of the isospin-dependent
mean-field potential of a nucleon over its momentum. The
nuclear symmetry potential is thus a dynamical quantity, while
the nuclear symmetry energy is a thermodynamic quantity, and
both are essential for understanding many important questions
in nuclear physics and astrophysics. Various microscopic
and phenomenological models have been used to study the
symmetry potential [12,16–31], and the predicted results
vary widely as in the case of the nuclear symmetry energy.
In particular, whereas most models predict a decreasing
symmetry potential with increasing nucleon momentum albeit
at different rates, a few nuclear effective interactions used in
some models give an opposite behavior.

The nuclear symmetry potential was originally defined in
nonrelativistic models. In particular, the nuclear symmetry
potential can be evaluated from

Usym(ρ, �p) = Un(ρ, �p) − Up(ρ, �p)

2α
, (8)
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where Un(ρ, �p) and Up(ρ, �p) represent, respectively, the
neutron and proton single-particle or mean-field potentials.
In relativistic models, the nuclear symmetry potential can
be similarly defined by using the nonrelativistic reduction
of the relativistic single-nucleon potentials. The nuclear
symmetry potential in relativistic models therefore depends
on the definition of the real part of the nonrelativistic optical
potential or the nucleon mean-field potential deduced from
the relativistic effective interactions, which are characterized
by Lorentz covariant nucleon self-energies. In the relativistic
mean-field approximation, these self-energies appear in the
single-nucleon Dirac equation

[
γµ

(
i∂µ − �µ

τ

) − (
Mτ + �S

τ

)]
ψτ = 0, τ = n, p (9)

as the isospin-dependent nucleon vector self-energy �µ
τ and

scalar self-energy �S
τ . In the Hartree approximation at the

static limit, there are no currents in a nucleus or nuclear matter,
and the spatial vector components vanish and only the timelike
component of the vector self-energy �0

τ remains. Furthermore,
the nucleon self-energy is an energy-independent real and local
quantity in the standard RMF model.

There are different methods of deriving the real part of the
nonrelativistic optical potential based on the Dirac equation
with Lorentz covariant nucleon vector and scalar self-energies.
The most popular one is the so-called Schrödinger-equivalent
potential (SEP). From the nucleon scalar self-energy �S

τ and
the timelike component of the vector self-energy �0

τ , the SEP
is given by [78]

USEP,τ = �S
τ + 1

2Mτ

[(
�S

τ

)2 − (
�0

τ

)2] + �0
τ

Mτ

Eτ

= �S
τ + �0

τ + 1

2Mτ

[(
�S

τ

)2 − (
�0

τ

)2] + �0
τ

Mτ

Ekin,

(10)

where Ekin is the kinetic energy of a nucleon, i.e., Ekin = Eτ −
Mτ with Eτ being its total energy. Equation (10) shows that
USEP,τ increases linearly with the nucleon energy Eτ or kinetic
energy Ekin if the nucleon self-energies are independent of
energy. We note that by construction, solving the Schrödinger
equation with the above SEP gives the same bound-state
energy eigenvalues and elastic phase shifts as the solution
of the upper component of the Dirac spinor in the Dirac
equation with the same nucleon scalar self-energy and timelike
component of the vector self-energy [78]. The above SEP thus
best represents the real part of the nucleon optical potential
in nonrelativistic models [20,79]. The corresponding nuclear
symmetry potential is given by

USEP
sym = USEP,n − USEP,p

2α
, (11)

with α being the isospin asymmetry.
Another popular alternative for deriving the nonrelativistic

nucleon optical potential in relativistic models is to take it as
the difference between the total energy Eτ of a nucleon with
momentum �p in the nuclear medium and its energy at the same

momentum in free space [80], i.e.,

UOPT,τ = Eτ −
√

p2 + M2
τ

= Eτ −
√(

Eτ − �0
τ

)2 − �S
τ

(
2Mτ + �S

τ

)
. (12)

In obtaining the last step in above equation, the dispersion
relation

Eτ = �0
τ +

√
p2 + (

Mτ + �S
τ

)2
(13)

has been used. This definition for the nucleon optical potential
has also been extensively used in microscopic DBHF cal-
culations [81] and transport models for heavy-ion collisions
[82]. For energy-independent nucleon self-energies, UOPT,τ

approaches a constant value of �0
τ when | �p| → ∞, unlike

the linear increase of USEP,τ with the nucleon energy. For
| �p| = 0, we have UOPT,τ = �S

τ + �0
τ while USEP,τ = �S

τ +
�0

τ + (�S
τ + �0

τ )2/(2Mτ ). Therefore, UOPT,τ displays a more
reasonable high energy behavior than USEP,τ . We note that
unlike USEP,τ , UOPT,τ does not give the same bound-state
energy eigenvalues and elastic phase shifts as the solution
of the upper component of the Dirac equation. As in the case
of USEP,τ , the symmetry potential in this approach is defined
by

UOPT
sym = UOPT,n − UOPT,p

2α
. (14)

In Ref. [83], another optical potential was introduced based
on the second-order Dirac (SOD) equation, and it corresponds
to multiplying Eq. (10) by the factor Mτ/Eτ , i.e.,

USOD,τ =
[
�S

τ + 1

2Mτ

[(
�S

τ

)2 − (
�0

τ

)2] + �0
τ

Mτ

Eτ

]
Mτ

Eτ

= �0
τ + Mτ

Eτ

�S
τ + 1

2Eτ

[(
�S

τ

)2 − (
�0

τ

)2]
. (15)

For energy-independent nucleon self-energies, USOD,τ has
the same asymptotical value of �0

τ as UOPT,τ when | �p| →
∞. For | �p| = 0, we have USOD,τ = �0

τ + Mτ

�S
τ +�0

τ +Mτ
�S

τ +
1

2(�S
τ +�0

τ +Mτ ) [(�
S
τ )2 − (�0

τ )2]. The symmetry potential based
on the optical potential of Eq. (15) is given by

USOD
sym = USOD,n − USOD,p

2α
. (16)

The above discussions thus show that the optical potentials
defined in Eqs. (12) and (15) have similar high energy
behaviors, but they may be very different from that defined
in Eq. (10). If we assume that �S

τ + �0
τ � Mτ and |�S

τ | ≈
|�0

τ |, which has been shown to be generally valid in the
RMF model even at higher baryon densities, we have, how-
ever, USEP,τ ≈ USOD,τ ≈ UOPT,τ = �S

τ + �0
τ at low momenta

(| �p| ≈ 0), indicating that above three definitions for the optical
potential in the RMF model behave similarly at low energies.
However, it should be stressed that among the three optical
potentials defined above, only USEP,τ is obtained from a well-
defined theoretical procedure and is Schrödinger-equivalent,
whereas UOPT,τ and USOD,τ are used here for heuristic reasons,
because they are of practical interest in microscopic DBHF
calculations, transport models for heavy-ion collisions, and
Dirac phenomenology.
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Empirically, a systematic analysis of a large number of
nucleon-nucleus scattering experiments and (p, n) charge-
exchange reactions at beam energies up to about 100 MeV
has shown that the data can be very well described by
the parametrization Usym = a − bEkin with a ≈ 22–34 MeV
and b ≈ 0.1–0.2 [84–87]. Although the uncertainties in both
parameters a and b are large, the nuclear symmetry potential at
nuclear matter saturation density, i.e., the Lane potential ULane

[88], clearly decreases approximately linearly with increasing
beam energy Ekin. This provides a stringent constraint on
the low energy behavior of the nuclear symmetry potential at
saturation density. As we will see in the following, although the
predicted energy dependence of nuclear symmetry potential at
low energy from the RMF models does not agree with the
empirical Lane potential, it is consistent with results from
microscopic DBHF [17], the extended BHF with three-body
forces [24], and chiral perturbation theory calculations [89],
which give a Lane potential that also stays as a constant or
increases slightly with momentum for nucleons with momenta
less than about 250–300 MeV/c or with kinetic energies
Ekin < 0 but decreases with momentum when the momentum
is larger than about 250–300 MeV/c.

Recently, the high energy behavior of the nuclear sym-
metry potential has been studied in the relativistic impulse
(t-ρ) approximation based on the empirical NN scattering
amplitude [90]. The results indicate that the nuclear symmetry
potential derived from the Schrödinger-equivalent potential at
a fixed density becomes almost constant when the nucleon
kinetic energy is greater than about 500 MeV, independent of
the parameters used in the analysis. It is further shown that for
such high energy nucleons, the nuclear symmetry potential
is slightly negative at baryon densities below about ρ =
0.22 fm−3 and then increases almost linearly to positive values
at high densities. These results provide important constraints
on the high energy behavior of the nuclear symmetry potential
in asymmetric nuclear matter. Furthermore, with the Love-
Franey NN scattering amplitude developed by Murdock
and Horowitz [91,92], the intermediate energy (100 � Ekin �
400 MeV) behavior of the nuclear symmetry potential con-
structed from the Schrödinger-equivalent potential in isospin
asymmetric nuclear matter has also been investigated recently
[93]. It shows that the nuclear symmetry potential at fixed
baryon density decreases with increasing nucleon energy.
In particular, the nuclear symmetry potential at saturation
density changes from positive to negative values at nucleon
kinetic energy of about 200 MeV. Such an energy and
density dependence of the nuclear symmetry potential is
consistent with those from the isospin- and momentum-
dependent MDI interaction with x = 0 (see the Appendix
for details on this interaction). These results thus provide
an important consistency check for the energy/momentum
dependence of the nuclear symmetry potential in asymmetric
nuclear matter, particularly the MDI interaction with x = 0.
On the other other, the low energy behavior of the nuclear
symmetry potential at densities away from normal nuclear
density is presently not known empirically. Experimental
determination of both the density and momentum depen-
dence of the nuclear symmetry potential is thus of great
interest, and heavy-ion reactions with radioactive beams

provides a unique tool to extract this information in terrestrial
laboratories.

C. Nucleon effective mass

Many different definitions for the nucleon effective mass
can be found in the literature [20,79]. In the present work,
we mainly focus on the following three effective masses: the
Dirac mass M∗

Dirac (also denoted as M∗ in the present work), the
Landau mass M∗

Landau, and the Lorentz mass M∗
Lorentz. The Dirac

mass M∗
Dirac is defined through the nucleon scalar self-energy

in the Dirac equation, i.e.,

M∗
Dirac,τ = Mτ + �S

τ . (17)

It is directly related to the spin-orbit potential in finite
nuclei and is thus a genuine relativistic quantity without
nonrelativistic correspondence. We note that the difference
between the nucleon vector and scalar self-energies determines
the spin-orbit potential, whereas their sum defines the effective
single-nucleon potential and is constrained by the nuclear
matter binding energy at saturation density. From the energy
spacings between spin-orbit partner states in finite nuclei, the
constraint 0.55M � M∗

Dirac � 0.6M has been obtained on the
value of the Dirac mass [94,95].

The Landau mass M∗
Landau is defined as M∗

Landau,τ = p
dp

dEτ
in

terms of the single-particle density of state dEτ/dp at energy
Eτ and thus characterizes the momentum dependence of the
single-particle potential. In the relativistic model, it is given
by [94]

M∗
Landau,τ = (

Eτ − �0
τ

) (
1 − d�0

τ

dEτ

)
− (

Mτ + �S
τ

)d�S
τ

dEτ

.

(18)

Since dp/dEτ is in principle measurable, the Landau mass
from the relativistic model should have a value comparable
to that in the nonrelativistic model. Empirically, based on
nonrelativistic effective interactions such as the Skyrme-type
interactions, calculations of the ground-state properties and
the excitation energies of quadrupole giant resonances have
shown that a realistic choice for the nucleon Landau mass
is M∗

Landau/M = 0.8 ± 0.1 [95–98]. The smaller Landau mass
than that of the nucleon free mass would lead to a smaller level
density at the Fermi energy and much spread single-particle
levels in finite nuclei [94].

The Lorentz mass M∗
Lorentz characterizes the energy depen-

dence of the Schrödinger-equivalent potential USEP,τ in the
relativistic model and is defined as [79]

M∗
Lorentz,τ = Mτ

(
1 − dUSEP,τ

dEτ

)

= (
Eτ − �0

τ

) (
1 − d�0

τ

dEτ

)
− (

Mτ + �S
τ

)d�S
τ

dEτ

+Mτ − Eτ

= M∗
Landau,τ + Mτ − Eτ . (19)

It has been argued in Ref. [79] that it is the Lorentz mass
M∗

Lorentz that should be compared with the usual nonrelativistic
nucleon effective mass extracted from analyses carried out in
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the framework of nonrelativistic optical and shell models. It
can be easily seen that in the nonrelativistic approximation
(Eτ ≈ Mτ ), the Lorentz mass M∗

Lorentz reduces to the Landau
mass M∗

Landau.
In relativistic models, the nucleon effective mass has

sometimes also been introduced via the energy dependence
of the optical potential in Eq. (12) and the second-order Dirac
optical potential in Eq. (15), i.e.,

M∗
OPT,τ = Mτ

(
1 − dUOPT,τ

dEτ

)

= Mτ

(
Eτ − �0

τ

) (
1 − d�0

τ

dEτ

)
+ (

Mτ − �S
τ

) d�S
τ

dEτ√(
Eτ − �0

τ

)2 − �S
τ

(
2Mτ + �S

τ

)
= Mτ

M∗
Landau,τ√(

Eτ − �0
τ

)2 − �S
τ

(
2Mτ + �S

τ

) (20)

and

M∗
SOD,τ = Mτ

(
1 − dUSOD,τ

dEτ

)
= Mτ

[
M∗

Landau,τ

Eτ

+
(
Mτ + �S

τ

)2 − (
Eτ − �0

τ

)2 + E2
τ − M2

τ

2E2
τ

]
,

(21)

respectively.
The isospin splitting of the nucleon effective mass in asym-

metric nuclear matter, i.e., the difference between the neutron
and proton effective masses is currently not known empirically
[99]. Previous theoretical investigations have indicated that
most RMF calculations with the isovector δ meson predict
M∗

Dirac,n < M∗
Dirac,p while in the microscopic DBHF approach,

M∗
Dirac,n can be larger or smaller than M∗

Dirac,p depending on the
approximation schemes and methods used for determining the
Lorentz and isovector structure of the nucleon self-energy [20].
For the nucleon Lorentz mass, the microscopic DBHF or
BHF approach and most nonrelativistic Skyrme-Hartree-Fock
calculations predict M∗

Lorentz,n > M∗
Lorentz,p, while most RMF

and a few Skyrme-Hartree-Fock calculations give opposite
predictions.

III. RELATIVISTIC MEAN-FIELD MODELS

For completeness, we briefly introduce in the following the
main ingredients in the nonlinear RMF model, the density-
dependent RMF model, the nonlinear point-coupling RMF
model, and the density-dependent point-coupling RMF model.
We neglect the electromagnetic field, because in the present
work we are interested in the properties of the infinite nuclear
matter. Furthermore, besides the mean-field approximation
in which operators of meson fields are replaced by their
expectation values (the fields are thus treated as classical
c-numbers), we also use the non-sea approximation which
neglects the effect due to negative energy states in the Dirac
sea.

A. The nonlinear RMF model

1. Lagrangian density

The Lagrangian density in the nonlinear RMF model gen-
erally includes the nucleon field ψ , the isoscalar-scalar meson
field σ , the isoscalar-vector meson field ω, the isovector-vector
meson field �ρ, and the isovector-scalar meson field �δ, i.e.,

LNL = ψ̄
[
γµ(i∂µ − gωωµ) − (M − gσσ )

]
ψ

+ 1
2

(
∂µσ∂µσ − m2

σ σ 2
) − 1

4ωµνω
µν + 1

2m2
ωωµωµ

− 1
3bσ M(gσσ )3 − 1

4cσ (gσσ )4 + 1
4cω

(
g2

ωωµωµ
)2

+ 1
2

(
∂µ

�δ · ∂µ�δ − m2
δ
�δ2) + 1

2m2
ρ �ρµ · �ρµ − 1

4 �ρµν · �ρµν

+ 1
2

(
g2

ρ �ρµ · �ρµ
)(


Sg
2
σ σ 2 + 
V g2

ωωµωµ
)

− gρ �ρµ · ψ̄γ µ�τψ + gδ
�δ · ψ̄ �τψ, (22)

where the antisymmetric field tensors ωµν and �ρµν are given by
ωµν ≡ ∂νωµ − ∂µων and �ρµν ≡ ∂ν �ρµ − ∂µ �ρν , respectively,
and other symbols have their usual meanings. Also, vectors in
isospin space are denoted by arrows. This model also contains
cross interactions between the isovector meson ρ and isoscalar
σ and ω mesons through the cross-coupling constants 
S

and 
V [67,100]. In addition, we include the isovector-scalar
channel (δ meson) which is important for the saturation of
asymmetric nuclear matter and has also been shown to be an
important degree of freedom in describing the properties of
asymmetric nuclear matter [101,102]. The above Lagrangian
density is quite general and allows us to use most of the
presently popular parameter sets in the nonlinear RMF model.

2. Equation of motion and nucleon self-energies

With the standard Euler-Lagrange formalism, we can
deduce from the Lagrangian density equations of motion for
the nucleon and meson fields. The resulting Dirac equation for
the nucleon field is[

γµ

(
i∂µ − �µ

τ

) − (
M + �S

τ

)]
ψ = 0, (23)

with the following nucleon scalar and vector self-energies:

�S
τ = −gσσ − gδ

�δ · �τ , (24)

�µ
τ = gωωµ + gρ �ρµ · �τ . (25)

For the isoscalar meson fields σ and ω, they are described
by the Klein-Gordon and Proca equations, respectively, i.e.,(

∂µ∂µ + m2
σ

)
σ = gσ

[
ψ̄ψ − bσ M(gσσ )2 − cσ (gσσ )3

+
S(gσσ )g2
ρ �ρµ · �ρµ

]
, (26)

∂µωµν + m2
ωων = gω

[
ψ̄γ νψ − cωg3

ω(ωµωµων)

−
V g2
ρ �ρµ · �ρµgωων

]
. (27)

Analogous equations for the isovector δ and ρ meson fields
are (

∂µ∂µ + m2
δ

)�δ = gδψ̄ �τψ, (28)

∂µ �ρµν + m2
ρ �ρν = gρ

[
ψ̄γ ν �τψ − 
S(gρ �ρν)(gσσ )2

−
V (gρ �ρν)g2
ωωµωµ

]
. (29)
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For a static, homogenous infinite nuclear matter, all deriva-
tive terms drop out and the expectation values of spacelike
components of vector fields vanish (only zero components �ρ0

and ω0 survive) due to translational invariance and rotational
symmetry of the nuclear matter. In addition, only the third
component of isovector fields (δ(3) and ρ(3)) needs to be
considered because of the rotational invariance around the third
axis in the isospin space. In the mean-field approximation,
meson fields are replaced by their expectation values, i.e.,
σ → σ̄ , ωµ → ω̄0, �δ → δ̄(3), and �ρµ → ρ̄

(3)
0 , and the meson

field equations are reduced to

m2
σ σ̄ = gσ

[
ρS − bσ M(gσ σ̄ )2 − cσ (gσ σ̄ )3

+
S(gσ σ̄ )
(
gρρ̄

(3)
0

)2]
, (30)

m2
ωω̄0 = gω

[
ρB − cω(gωω̄0)3 − 
(gωω̄0)

(
gρρ̄

(3)
0

)2]
, (31)

m2
δ δ̄

(3) = gδ(ρS,p − ρS,n). (32)

m2
ρρ̄

(3)
0 = gρ

[
ρB,p − ρB,n − 
S

(
gρρ̄

(3)
0

)
(gσσ )2

−
V

(
gρρ̄

(3)
0

)
(gωω̄0)2

]
. (33)

In the above, the nucleon scalar density ρS is defined as

ρS = 〈ψ̄ψ〉 = ρS,p + ρS,n, (34)

with the proton (p) and neutron (n) scalar densities given by

ρS,i = 2

(2π )3

∫ ki
F

0
d3k

M∗
i√

�k2 + (
M∗

i

)2

= M∗
i

2π2

[
ki
F Ẽi

F − (M∗
i )2 ln

ki
F + Ẽi

F

M∗
i

]
, i = p, n,

(35)

where

Ẽi
F =

√(
ki
F

)2 + (M∗
i )2, (36)

with M∗
p and M∗

n denoting the proton and neutron Dirac
masses, respectively, i.e.,

M∗
p = M − gσ σ̄ − gδδ̄

(3), M∗
n = M − gσ σ̄ + gδδ̄

(3).

(37)

The nucleon scalar and vector self-energies are then given by

�S
τ = −gσ σ̄ − gδδ̄

(3)τ3, (38)

�0
τ = gωω̄0 + gρρ̄

(3)
0 τ3, (39)

with τ3 = 1 and −1 for protons and neutrons, respectively.

3. Nuclear matter equation of state

The set of coupled equations for the nucleon and meson
fields can be solved self-consistently using the iteration
method, and the properties of the nuclear matter can then
be obtained from these fields. From the resulting energy-
momentum tensor, we can calculate the energy density ε and
pressure P of asymmetric nuclear matter, and the results are

given by

ε = εn
kin + ε

p

kin

+ 1
2

[
m2

σ σ̄ 2 + m2
ωω̄2

0 + m2
δ δ̄

(3)2 + m2
ρρ̄

(3)2
0

]
+ 1

3bσM(gσ σ̄ )3 + 1
4cσ (gσ σ̄ )4 + 3

4cω(gωω̄0)4

+ 1
2

(
gρρ̄

(3)
0

)2[

S(gσ σ̄ )2 + 3
V (gωω̄0)2

]
(40)

and

P = P n
kin + P

p

kin

− 1
2

[
m2

σ σ̄ 2 − m2
ωω̄2

0 + m2
δ δ̄

(3)2 − m2
ρρ̄

(3)2
0

]
− 1

3bσM(gσ σ̄ )3 − 1
4cσ (gσ σ̄ )4 + 1

4cω(gωω̄0)4

+ 1
2

(
gρρ̄

(3)
0

)2[

S(gσ σ̄ )2 + 
V (gωω̄0)2

]
. (41)

In the above, εi
kin and P i

kin are, respectively, the kinetic
contributions to the energy densities and pressure of protons
and neutrons in nuclear matter, and they are given by

εi
kin = 2

(2π )3

∫ ki
F

0
d3k

√
�k2 + (M∗

i )2

= 1

4

[
3Ẽi

F ρB,i + M∗
i ρS,i

]
, i = p, n, (42)

and

P i
kin = 2

3(2π )3

∫ ki
F

0
d3k

�k2√
�k2 + (M∗

i )2

= 1

4

[
Ẽi

F ρB,i − M∗
i ρS,i

]
, i = p, n. (43)

The binding energy per nucleon can be obtained from the
energy density via

E = ε

ρB

− M,

while the symmetry energy is given by

Esym(ρB) = k2
F

6ẼF

+ 1

2

(
gρ

m∗
ρ

)2

ρB − 1

2

(
gδ

mδ

)2

× M∗2ρB

Ẽ2
F

[
1 +

(
gδ

mδ

)2
A(kF ,M∗)

] , (44)

with the effective ρ-meson mass given by [67]

m∗
ρ

2 = m2
ρ + g2

ρ[
S(gσ σ̄ )2 + 
V (gωω̄0)2] (45)

and

A(kF ,M∗) = 4

(2π )3

∫ kF

0
d3k

�k2

(�k2 + (M∗)2)3/2

= 3

(
ρS

M∗ − ρB

ẼF

)
, (46)

where ẼF =
√

k2
F + M∗2 and M∗ is the nucleon Dirac mass

in symmetric nuclear matter.
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B. The density-dependent RMF model

1. Lagrangian density

In the density-dependent RMF model, instead of intro-
ducing terms involving self-interactions of the scalar meson
field and cross-interactions of meson fields as in the nonlinear
RMF model, the coupling constants are density dependent.
The Lagrangian density in this model is generally written as

LDD = ψ̄[γµ(i∂µ − �ωωµ − �ρ �ρµ · �τ )

− (M − �σσ − �δ
�δ · �τ )]ψ + 1

2

(
∂µσ∂µσ − m2

s σ
2)

+ 1
2

(
∂µ

�δ · ∂µ�δ − m2
δ
�δ2

) − 1
4ωµνω

µν + 1
2m2

ωωµωµ

− 1
4 �ρµν · �ρµν + 1

2m2
ρ �ρµ · �ρµ. (47)

The symbols used in this equation have their usual meanings,
as in Eq. (22), but the coupling constants �σ , �ω, �δ, and
�ρ now depend on the (baryon) density and are usually
parametrized as

�i(ρ) = �i(ρsat)hi(x), x = ρ/ρsat, (48)

with

hi(x) = ai

1 + bi(x + di)2

1 + ci(x + ei)2
, i = σ, ω, δ, ρ, (49)

and ρsat being the saturation density of symmetric nuclear
matter. In some parameter sets,

hρ(x) = exp[−aρ(x − 1)] (50)

is used for the ρ meson.

2. Equation of motion and nucleon self-energies

Since the coupling constants in the density-dependent RMF
model depend on the baryon fields ψ̄ and ψ through the
density, additional terms besides the usual ones in the nonlinear
RMF model appear in the field equations of motion when the
partial derivatives of LDD are carried out with respect to the
fields ψ̄ and ψ in the Euler-Lagrange equations. The resulting
Dirac equation for the nucleon field now reads[

γµ

(
i∂µ − �µ

τ

) − (
M + �S

τ

)]
ψ = 0, (51)

with the following nucleon scalar and vector self-energies:

�S
τ = −�σσ − �δ

�δ · �τ , (52)

�µ
τ = �ωωµ + �ρ �ρµ · �τ + �µ(R). (53)

The new term �µ(R) in the vector self-energy, which is called
the rearrangement self-energy [44,45], is given by

�µ(R) = jµ

ρ

(
∂�ω

∂ρ
ψ̄γνψων + ∂�ρ

∂ρ
ψ̄ �τγ νψ · �ρν

−∂�σ

∂ρ
ψ̄ψσ − ∂�δ

∂ρ
ψ̄ �τψ �δ

)
, (54)

with jµ = ψ̄γ µψ . The rearrangement self-energy plays an
essential role in the application of the theory since it guar-
antees both the thermodynamic consistency and the energy-
momentum conservation [44,45].

For the meson fields, the equations of motion are(
∂µ∂µ + m2

σ

)
σ = �σ ψ̄ψ, (55)

∂νω
µν + m2

ωωµ = �ωψ̄γ µψ, (56)(
∂µ∂µ + m2

δ

)�δ = �δψ̄ �τψ, (57)

∂ν �ρµν + m2
ρ �ρµ = �ρψ̄ �τγ µψ. (58)

In the static case for an infinite nuclear matter, the meson
equations of motion become

m2
σ σ̄ = �σρS, (59)

m2
ωω̄0 = �ωρB, (60)

m2
ρρ̄

(3)
0 = �ρ(ρp − ρn), (61)

m2
δ δ̄

(3) = �δ(ρS,p − ρS,n), (62)

so the nucleon scalar and vector self-energies are

�S
τ = −�σ σ̄ − �δδ̄

(3)τ3, (63)

�0
τ = �ωω̄0 + �ρρ̄

(3)
0 τ3 + �0(R), (64)

with

�0(R) = ∂�ω

∂ρ
ω̄0ρB + ∂�ρ

∂ρ
ρ̄

(3)
0 (ρp − ρn)

−∂�σ

∂ρ
σ̄ρS − ∂�δ

∂ρ
δ̄(3)(ρS,p − ρS,n). (65)

3. Nuclear matter equation of state

From the energy-momentum tensor in the density-
dependent RMF model, the energy density and pressure of
nuclear matter can be derived, and they are given by

ε = εn
kin + ε

p

kin + 1
2

[
m2

σ σ̄ 2 + m2
ωω̄2

0 + m2
δ δ̄

(3)2 + m2
ρρ̄

(3)2
0

]
(66)

and

P = P n
kin + P

p

kin + ρB�0(R)

− 1
2

[
m2

σ σ̄ 2 − m2
ωω̄2

0 + m2
δ δ̄

(3)2 − m2
ρρ̄

(3)2
0

]
. (67)

It is seen that the rearrangement self-energy does not affect
the energy density but contributes explicitly to the pressure.
Furthermore, the symmetry energy can be written as

Esym(ρB) = k2
F

6ẼF

+ 1

2

(
�ρ

mρ

)2

ρB − 1

2

(
�δ

mδ

)2

× M∗2ρB

Ẽ2
F

[
1 +

(
�δ

mδ

)2
A(kF ,M∗)

] , (68)

with notations similarly defined as in the nonlinear RMF
model.

C. The nonlinear point-coupling RMF model

1. Lagrangian density

The point-coupling model is defined by a Lagrangian
density that consists of only nucleon fields. In the present study,
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we use the Lagrangian density of the nonlinear point-coupling
model of Refs. [49,50], i.e.,

LNLPC = Lfree + L4f + Lhot + Lder, (69)

with

Lfree = ψ̄(iγµ∂µ − M)ψ, (70)

L4f = − 1
2 αS(ψ̄ψ)(ψ̄ψ) − 1

2 αV (ψ̄γµψ)(ψ̄γ µψ)

− 1
2 αT S(ψ̄ �τψ) · (ψ̄ �τψ) − 1

2 αT V (ψ̄ �τγµψ)

· (ψ̄ �τγ µψ), (71)

Lhot = − 1
3 βS(ψ̄ψ)3 − 1

4γS(ψ̄ψ)4 − 1
4 γV [(ψ̄γµψ)(ψ̄γ µψ)]2

− 1
4 γT V [(ψ̄ �τγµψ) · (ψ̄ �τγ µψ)]2, (72)

Lder = − 1
2 δS(∂νψ̄ψ)(∂νψ̄ψ) − 1

2 δV (∂νψ̄γµψ)(∂νψ̄γ µψ)

− 1
2 δT S(∂νψ̄ �τψ) · (∂νψ̄ �τψ) − 1

2 δT V (∂νψ̄ �τγµψ)

· (∂νψ̄ �τγ µψ). (73)

In the above, Lfree is the kinetic term of nucleons and
L4f describes the four-fermion interactions, while Lhot and
Lder contain, respectively, higher-order terms involving more
than four fermions and derivatives in the nucleon field.
For the 12 coupling constants in the Lagrangian density,
αS, αV , αT S, αT V , βS, γS, γV , γT V , δS, δV , δT S , and δT V , the
subscripts denote the tensor structure of a coupling with S, V ,
and T standing for scalar, vector, and isovector, respectively.
The symbols αi, δi, βi , and γi refer, respectively, to four-
fermion or second-order terms, derivative couplings, and third-
and fourth-order terms [49,50].

2. Equation of motion and nucleon self-energies

From the variation of the Lagrangian density Eq. (69) with
respect to ψ̄ , we obtain the following Dirac equation for the
nucleon field:

[γµ(i∂µ − �µ) − (M + �S)]ψ = 0, (74)

where the nucleon scalar and vector self-energies are, respec-
tively,

�S = VS + �VT S · �τ , (75)

�µ = V µ + �V µ

T · �τ , (76)

with

VS = αS(ψ̄ψ) + βS(ψ̄ψ)2 + γS(ψ̄ψ)3 − δS�(ψ̄ψ), (77)
�VT S = αT S(ψ̄ �τψ) − δT S�(ψ̄ �τψ), (78)

V µ = αV (ψ̄γ µψ) + γV (ψ̄γ µψ)(ψ̄γµψ)(ψ̄γ µψ)

− δV �(ψ̄γ µψ), (79)
�V µ

T = αT V (ψ̄ �τγ µψ) + γT V (ψ̄ �τγ µψ) · (ψ̄ �τγµψ)(ψ̄ �τγ µψ)

−δT V �(ψ̄ �τγ µψ). (80)

In the above, � = ∂2/(c2∂t2 − 
) denotes the four-
dimensional D’Alembertian. In the translationally invariant
infinite nuclear matter, all terms involving derivative couplings
drop out, and the spatial components of the four-currents also
vanish. In terms of the baryon density ρB and scalar density
ρS as well as the isospin baryon density ρ3 = ρp − ρn and the

isospin scalar density ρS3 = ρS,p − ρS,n, the nucleon scalar
and vector self-energies in asymmetric nuclear matter can be
rewritten as

�S
τ = αSρS + βSρ

2
S + γSρ

3
S + αT SρS3τ3, (81)

�0
τ = αV ρB + γVρ3

B + αT V ρ3τ3 + γT V ρ3
3τ3. (82)

3. Nuclear matter equation of state

The energy density ε and the pressure P derived from
the energy-momentum tensor in the nonlinear point-coupling
RMF model are given by

ε = εn
kin + ε

p

kin − 1
2αSρ

2
S − 1

2αT Sρ
2
S3 + 1

2αV ρ2 + 1
2αT V ρ2

3

− 1
3βSρ

3
S − 3

4γSρ
4
S + 1

4γV ρ4 + 1
4γT V ρ4

3 , (83)

P = Ẽ
p

F ρp + Ẽn
F ρn − ε

p

kin − εn
kin + 1

2αSρ
2
s + 1

2αT Sρ
2
s3

+ 1
2αV ρ2 + 1

2αT V ρ2
3 + 2

3βSρ
3
s + 3

4γSρ
4
s + 3

4γV ρ4

+ 3
4γT V ρ4

3 , (84)

where Ẽ
p

F and Ẽn
F are defined as in Eq. (36) with the nucleon

Dirac masses

M∗
p = αSρS + βSρ

2
S + γSρ

3
S + αT SρS3, (85)

M∗
n = αSρS + βSρ

2
S + γSρ

3
S − αT SρS3. (86)

Furthermore, the symmetry energy in this model can be
expressed as

Esym(ρB) = k2
F

6ẼF

+ 1

2
αT V ρB + 1

2
αT S

× M∗2ρB

Ẽ2
F [1 − αT SA(kF ,M∗)]

, (87)

with notations again similarly defined as in the nonlinear RMF
model.

D. The density-dependent point-coupling RMF model

1. Lagrangian density

For the density-dependent point-coupling RMF model, we
use the Lagrangian density of Refs. [53,54], i.e.,

LDDPC = Lfree + L4f + Lder, (88)

with

Lfree = ψ̄(iγµ∂µ − M)ψ, (89)

L4f = − 1
2GS(ρ̂)(ψ̄ψ)(ψ̄ψ) − 1

2GV (ρ̂)(ψ̄γµψ)(ψ̄γ µψ)

− 1
2GT S(ρ̂)(ψ̄ �τψ) · (ψ̄ �τψ) − 1

2GT V (ρ̂)(ψ̄ �τγµψ)

· (ψ̄ �τγ µψ), (90)

Lder = − 1
2DS(ρ̂)(∂νψ̄ψ)(∂νψ̄ψ). (91)

In the above, Lfree is the kinetic term of the nucleons, L4f

is a four-fermion interaction, and Lder represents derivatives
in the nucleon scalar densities. Unlike in the nonlinear point-
coupling RMF model, the density-dependent point-coupling
RMF model used here includes only second-order interaction
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terms with density-dependent couplings Gi(ρ̂) and Di(ρ̂) that
are determined from finite-density QCD sum rules and in-
medium chiral perturbation theory [53,54].

2. Equation of motion and nucleon self-energies

Variation of the Lagrangian density Eq. (88) with respect
to ψ̄ leads to the single-nucleon Dirac equation

[γµ(i∂µ − �µ) − (M + �S)]ψ = 0, (92)

with the nucleon scalar and vector self-energies given, respec-
tively, by

�S = VS + �VT S · �τ + �rS, (93)

�µ = V µ + �V µ

T · �τ + �µ
r , (94)

where

VS = GS(ψ̄ψ) − DS�(ψ̄ψ), (95)
�VT S = GT S(ψ̄ �τψ), (96)

V µ = GV (ψ̄γ µψ), (97)
�V µ

T = GT V (ψ̄ �τγ µψ), (98)

�rS = −∂DS

∂ρ̂
(∂νj

µ)uµ(∂ν(ψ̄ψ)), (99)

and

�µ
r = uµ

2

(
∂GS

∂ρ̂
(ψ̄ψ)(ψ̄ψ) + ∂GT S

∂ρ̂
(ψ̄ �τψ) · (ψ̄ �τψ)

+ ∂GV

∂ρ̂
(ψ̄γ µψ)(ψ̄γµψ) + ∂GT V

∂ρ̂
(ψ̄ �τγ µψ)

· (ψ̄ �τγµψ) + ∂DS

∂ρ̂
(∂ν(ψ̄ψ))(∂ν(ψ̄ψ))

)
. (100)

In the above, we have ρ̂uµ = ψ̄γ µψ , where the four-velocity
uµ is defined as (1 − v2)−1/2(1, v) with v being the three-
velocity vector, and �rS and �

µ
r represent the rearrangement

contributions resulting from the variation of the vertex func-
tionals with respect to the nucleon fields in the density operator
ρ̂. The latter coincides with the baryon density in the nuclear
matter rest frame.

In the translationally invariant infinite asymmetric nuclear
matter, the nucleon scalar and vector self-energies become

�S
τ = GSρS + GT SρS3τ3 (101)

�0
τ = GV ρB + GT V ρ3τ3 + �0(R), (102)

with the rearrangement contribution to the self-energy

�0(R) = 1

2

[
∂GS

∂ρ
ρ2

S + ∂GT S

∂ρ
ρ2

S3 + ∂GV

∂ρ
ρ2 + ∂GT V

∂ρ
ρ2

3

]
.

(103)

3. Nuclear matter equation of state

For asymmetric nuclear matter, the energy density ε and
the pressure P derived from the energy-momentum tensor in
the density-dependent point-coupling RMF model are

ε = εn
kin + ε

p

kin − 1
2GSρ

2
S − 1

2GT Sρ
2
S3

+ 1
2GV ρ2 + 1

2GT V ρ2
3 , (104)

and

P = Ẽ
p

F ρp + Ẽn
F ρn − ε

p

kin − εn
kin + 1

2
GV ρ2 + 1

2
GT V ρ2

3

+ 1

2
GSρ

2
S + 1

2
GT Sρ

2
S3 + 1

2

∂GS

∂ρ
ρ2

Sρ + 1

2

∂GV

∂ρ
ρ3

+ 1

2

∂GT V

∂ρ
ρ2

3ρ + 1

2

∂GT S

∂ρ
ρ2

S3ρ, (105)

where Ẽ
p

F and Ẽn
F are defined as in Eq. (36) with the effective

nucleon masses

M∗
p = M + GSρS + GT SρS3, (106)

M∗
n = M + GSρS − GT SρS3. (107)

As in the density-dependent RMF model, rearrangement
contributions appear explicitly in the expression for the
pressure. Finally, the symmetry energy can be written as

Esym(ρB) = k2
F

6ẼF

+ 1

2
GT V ρB

+ 1

2
GT S

M∗2ρB

Ẽ2
F [1 − GT SA(kF ,M∗)]

, (108)

with similar notation as in the nonlinear RMF model.

IV. RESULTS AND DISCUSSIONS

Using these models, we have studied the isospin-dependent
properties of asymmetric nuclear matter. In the following,
we focus on results regarding the nuclear symmetry energy,
nuclear symmetry potential, isospin splitting of nucleon
effective mass, and isospin-dependent nucleon scalar density
in asymmetric nuclear matter. For the different versions of
the RMF model considered in the present work, we mainly
consider parameter sets commonly and successfully used in
nuclear structure studies. In particular, we select the parameter
sets NL1 [103], NL2 [103], NL3 [104], NL-SH [105], TM1
[106], PK1 [107], FSU-Gold [77], HA [108], NLρ [101],
NLρδ [101] for the nonlinear RMF model; TW99 [47],
DD-ME1 [109], DD-ME2 [110], PKDD [107], DD [94], DD-F
[111], and DDRH-corr [48] for the density-dependent RMF
model; and PC-F1 [50], PC-F2 [50], PC-F3 [50], PC-F4 [50],
PC-LA [50], and FKVW [54] for the point-coupling RMF
model. There are a total of 23 parameter sets, most of which
can describe reasonably well the binding energies and charge
radii of a large number of nuclei in the periodic table except
for parameter set HA, for which to our knowledge there are no
calculations for finite nuclei.

We note that all selected parameter sets include the
isovector-vector channel involving either the isovector-vector
ρ meson or the isovector-vector interaction vertices in the
Lagrangian. The HA parameter set further includes the
isovector-scalar meson field �δ and fits successfully some
results obtained from the more microscopic DBHF approach
[108]. The parameter sets NLρδ and DDRH-corr also include
the isovector-scalar meson field �δ, while PC-F2, PC-F4,
PC-LA, and FKVW include the isovector-scalar interaction
vertices. The parameter sets NLρδ and NLρ are obtained
by fitting the empirical properties of asymmetric nuclear
matter [101] and describe reasonably well the binding energies
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and charge radii of a large number of nuclei [112]. For
the DDRH-corr, its parameters are determined from the
density-dependent meson-nucleon vertices extracted from
the self-energies of asymmetric nuclear matter calculated in
the microscopic DBHF approach with momentum corrections,
and it reproduces satisfactorily the properties of finite nuclei
and the EOS from the DBHF approach [48]. In the parameter
sets PC-F1, PC-F2, PC-F3, PC-F4, and PC-LA for the
nonlinear point-coupling model, their coupling constants are
determined in a self-consistent procedure that solves the
model equations for representative nuclei simultaneously in a
generalized nonlinear least-squares adjustment algorithm [50].
The parameters of set FKVW for the density-dependent point-
coupling model are determined by the constraints derived
from the finite-density QCD sum rules, in-medium chiral
perturbation theory, and experimental data of a number of
finite nuclei [54].

A. Nuclear symmetry energy

Figure 1 displays the density dependence of the nuclear
symmetry energy Esym(ρ) for the 23 parameter sets in
the nonlinear, density-dependent, and point-coupling RMF
models. For comparison, we also show in Fig. 1 results from
the phenomenological parametrization of the momentum-
dependent nuclear mean-field potential based on the Gogny
effective interaction [25], i.e., the MDI interactions with
x = −1 (open squares) and 0 (solid squares), where different
x values correspond to different density dependence of the
nuclear symmetry energy but keep other properties of the
nuclear EOS the same [56] (see the Appendix for details).

FIG. 1. (Color online) Density dependence of the nuclear sym-
metry energy Esym(ρ) for the parameter sets NL1, NL2, NL3, NL-SH,
TM1, PK1, FSU-Gold, HA, NLρ, and NLρδ in the nonlinear RMF
model (a); TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and
DDRH-corr in the density-dependent RMF model (b); and PC-F1,
PC-F2, PC-F3, PC-F4, PC-LA, and FKVW in the point-coupling
RMF model (c). For comparison, results from the MDI interaction
with x = −1 and 0 are also shown.

From analyzing the isospin diffusion data from NSCL/MSU
using the IBUU04 transport model with in-medium NN cross
sections, it has been found that the MDI interactions with
x = −1 and 0 give, respectively, the upper and lower bounds
for the stiffness of the nuclear symmetry energy at densities
up to about 1.2ρ0 [56,57].

It is seen from Fig. 1 that the density dependence of
symmetry energy varies drastically among different interac-
tions. In the nonlinear RMF model, while the dependence
on density is almost linear for most parameter sets, it is
much softer for the parameter sets FSU-Gold and HA. The
softening of the symmetry energy from the latter two parameter
sets is due to the mixed isoscalar-isovector couplings 
S

and 
V [67,100] which modifies the density dependence of
symmetry energy as seen in Eq. (44). For parameter set NLρδ,
it gives a symmetry energy that depends linearly on density
at low densities but becomes stiffer at high densities due to
inclusion of the isovector-scalar δ meson. The approximate
linear density-dependent behavior of the symmetry energy for
other parameter sets in the nonlinear RMF model can also
be understood from Eq. (44), which shows that the symmetry
energy at high densities is dominated by the potential energy
that is proportional to the baryon density if the mixed isoscalar-
isovector coupling and the isovector-scalar δ meson are not
included in the model.

The density dependence of the symmetry energy in the
density-dependent RMF model is essentially determined by
the density dependence of the coupling constants �ρ and
�δ of isovector mesons. Most parameter sets in this case
give similar symmetry energies except parameter sets PKDD
and DDRH-corr. Compared with other parameter sets in the
density-dependent RMF model, PKDD gives a very large while
DDRH-corr gives a very small value for the symmetry energy
at saturation density. For point-coupling models, all parameter
sets (PC-F1, PC-F2, PC-F3, PC-F4, and PC-LA) in the
nonlinear point-coupling RMF model predict almost linearly
density-dependent symmetry energies, while the parameter set
FKVW in the density-dependent point-coupling RMF model
gives a somewhat softer symmetry energy.

Figure 1 thus shows that only a few parameter sets can
give symmetry energies that are consistent with the constraint
from the isospin diffusion data in heavy-ion collisions, which
is given by results from the MDI interactions with x = −1 and
0. The main reason for this is that most parameter sets in the
RMF model have saturation densities and symmetry energies at
their saturation densities which are significantly different from
the empirical saturation density of 0.16 fm−3 and symmetry
energy of 31.6 MeV at this saturation density. To show this
more clearly, we list in Table I the bulk properties of nuclear
matter at saturation density: the binding energy per nucleon
−B/A (MeV), the saturation density of symmetric nuclear
matter ρ0 (fm−3), the incompressibility of symmetric nuclear
matter K0 (MeV), the symmetry energy Esym(ρ0) (MeV), Ksym

(MeV), L (MeV), and Kasy (MeV) using the 23 parameter sets
in the nonlinear, density-dependent, and point-coupling RMF
models. It is seen that these parameter sets give saturation
densities varying from ρ0 = 0.145 to ρ0 = 0.180 fm−3 and
nuclear symmetry energies Esym(ρ0) (MeV) ranging from 26.1
to 44.0 MeV.
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To remove the effect due to differences in the saturation
densities among different parameter sets, we show in Fig. 2
both the symmetry energy Esym(ρ) and the symmetry energy
scaled by its value at corresponding saturation density, i.e.,
Esym(ρ)/Esym(ρ0) as functions of the scaled baryon density
ρ/ρ0 for different parameter sets. For comparison, we also
plot in the inset in panel (b) of Fig. 2 the symmetry energy
Esym(ρ) as a function of the baryon density ρ without scaling.
It is seen that more parameter sets among the 23 sets become
consistent with the constraint from the isospin diffusion data
in heavy-ion collisions after scaling the baryon density by the
saturation density; and with further scaling of the symmetry
energy by its value at corresponding saturation density, most of
the parameter sets agree with the constraint from the isospin
diffusion data. It is also interesting to see from the inset in
Fig. 2 that most of the parameter sets obtained from fitting
the properties of finite nuclei give roughly the same value of
about 26 MeV for the nuclear symmetry energy at the same
baryon density of ρ = 0.1 fm−3. This interesting feature is
very similar to that found with Skyrme interactions [65,71].
It implies that the constraint on the symmetry energy from
fitting the properties of finite nuclei is particularly sensitive to
the nuclear properties at lower densities, i.e., at density slightly
above half-saturation density.

For the density dependence of the nuclear symmetry energy
around saturation density, a more reasonable and physically
meaningful comparison is through the values of L and Kasy

given by these parameter sets, since the L parameter is
correlated linearly to the neutron-skin thickness of finite nuclei
while the Kasy parameter determines the isotopic dependence
of the GMR for a fixed element. From Table I, we see that the
values of L,Ksym, and Kasy vary drastically, and they are in the
range of 51∼140 MeV, −140∼143 MeV, and −750 ∼ −151
MeV, respectively. The extracted values of L = 88 ± 25 MeV
and Kasy = −500 ± 50 MeV from the isospin diffusion data,
L ≈ 65 MeV and Kasy ≈ −453 MeV from the isoscaling data,
and Kasy = −550 ± 100 MeV from the isotopic dependence
of the GMR in even-A Sn isotopes give a rather stringent
constraint on the density dependence of the nuclear symmetry
energy and thus put strong constraints on the nuclear effective
interactions as well. To see this constraint more clearly, we
collect in Fig. 3 the values of L and Kasy obtained from the
23 parameter sets in the nonlinear, density-dependent, and
point-coupling RMF models together with the constraints from
the isospin diffusion data, isoscaling data, and the isotopic
dependence of the GMR in even-A Sn isotopes. From Fig. 3
as well as Table I, we see clearly that among the 23 parameter
sets considered here, only six sets, i.e., TM1, NLρ, NLρδ,
PKDD, PC-LA, and FKVW, have nuclear symmetry energies
that are consistent with the extracted L value of 88 ± 25
MeV while 15 sets, i.e., NL3, NL-SH, TM1, PK1, HA,
NLρ, NLρδ, TW99, PKDD, DD-F, PC-F1, PC-F2, PC-F3,
PC-F4, and FKVW, have nuclear symmetry energies that are
consistent with the extracted Kasy value of −500 ± 50 or

TABLE I. Bulk properties of nuclear matter at the saturation point: −B/A (MeV), ρ0 (fm−3 ), K0 (MeV),
Esym (ρ0) (MeV), Ksym (MeV), L (MeV), and Kasy (MeV) using the 23 parameter sets in the nonlinear,
density-dependent, and point-coupling RMF models. The last column gives the references for corresponding
parameter sets.

Model −B/A ρ0 K0 Esym L Ksym Kasy Ref.

NL1 16.4 0.152 212 43.5 140 143 −697 [103]
NL2 17.0 0.146 401 44.0 130 20 −750 [103]
NL3 16.2 0.148 271 37.3 118 100 −608 [104]
NL-SH 16.3 0.146 356 36.1 114 80 −604 [105]
TM1 16.3 0.145 281 36.8 111 34 −632 [106]
PK1 16.3 0.148 282 37.6 116 55 −641 [107]
FSUGold 16.3 0.148 229 32.5 60 −52 −412 [77]
HA 15.6 0.170 233 30.7 55 −135 −465 [108]
NLρ 16.1 0.160 240 30.3 85 3 −507 [101]
NLρδ 16.1 0.160 240 30.7 103 127 −491 [101]

TW99 16.2 0.153 241 32.8 55 −124 −454 [47]
DD-ME1 16.2 0.152 245 33.1 55 −101 −431 [109]
DD-ME2 16.1 0.152 251 32.3 51 −87 −393 [110]
PKDD 16.3 0.150 263 36.9 90 −80 −620 [107]
DD 16.0 0.149 241 31.7 56 −95 −431 [94]
DD-F 16.0 0.147 223 31.6 56 −140 −476 [111]
DDRH-corr 15.6 0.180 281 26.1 51 155 −151 [48]
PC-F1 16.2 0.151 255 37.8 117 75 −627 [50]
PC-F2 16.2 0.151 256 37.6 116 65 −631 [50]
PC-F3 16.2 0.151 256 38.3 119 74 −640 [50]
PC-F4 16.2 0.151 255 37.7 119 98 −616 [50]
PC-LA 16.1 0.148 263 37.2 108 −61 −709 [50]
FKVW 16.2 0.149 379 33.1 80 11 −469 [54]
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FIG. 2. (Color online) Symmetry energy Esym(ρ) (a) and the
scaled symmetry energy Esym(ρ)/Esym(ρ0) (b) as functions of the
scaled baryon density ρ/ρ0 for the 23 parameter sets in the nonlinear,
density-dependent, and point-coupling RMF models. Results of the
MDI interaction with x = −1 and 0 are also included for comparison.
The inset in panel (b) shows the symmetry energy Esym(ρ) as a
function of the baryon density ρ without scaling.

−550 ± 100 MeV. Among the latter 15 sets, only six sets, i.e.,
HA, NLρ, NLρδ, TW99, DD-F, and FKVW, are consistent
with Kasy = −500 ± 50 MeV. It is interesting to see that
most parameter sets in the nonlinear and point-coupling RMF

FIG. 4. (Color online) Correlation between L and Kasy for the
23 parameter sets in the nonlinear, density-dependent, and point-
coupling RMF models. The constraints from the isospin diffusion
data (shaded band), the isoscaling data (stars), and the isotopic
dependence of the GMR in even-A Sn isotopes (dashed rectangle
with L constrained by the isospin diffusion data) are also included.

models predict stiffer symmetry energies (i.e., larger values for
the L parameter and larger magnitudes for Kasy ), while those
in the density-dependent RMF model give softer symmetry
energies (i.e., smaller values for the L parameter and smaller
magnitudes for Kasy).

We also see from Table I that only five parameter sets,
i.e., TM1, NLρ, NLρδ, PKDD, and FKVW, have nuclear
symmetry energies that are consistent with the extracted values
for both L and Kasy (−500 ± 50 or −550 ± 100 MeV). This
can be seen more clearly in Fig. 4 where the correlation

FIG. 3. (Color online) Values of L and Kasy for the 23 parameter sets in the nonlinear, density-dependent, and point-coupling RMF models.
The constraints from the isospin diffusion data (shaded band), the isoscaling data (solid circles), and the isotopic dependence of the GMR in
even-A Sn isotopes (dashed rectangle) are also included.
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between L and Kasy is displayed for the 23 parameter sets
together with the constraints from the isospin diffusion data,
the isoscaling data, and the isotopic dependence of the GMR
in even-A Sn isotopes. Figure 4 further shows that there exists
an approximately linear correlation between L and Kasy, i.e.,
a larger L leads to a larger magnitude for Kasy. A similar
approximately linear correlation between L and Kasy has
also been observed in Ref. [56] for the phenomenological
MDI interactions, and this correlation can be understood from
Eq. (7) which shows that the value of Kasy is more sensitive to
the value of L than to that of Ksym.

The above comparisons thus indicate that the extracted
values of L = 88 ± 25 MeV and Kasy = −500 ± 50 MeV
from the isospin diffusion data, L ≈ 65 MeV and Kasy ≈
−453 MeV from the isoscaling data, and Kasy = −550 ±
100 MeV from the isotopic dependence of the GMR in even-A
Sn isotopes indeed put a very stringent constraint on the values
of the parameters in different RMF models. The fact that most
of the 23 parameter sets considered in the present work give
symmetry energies that are inconsistent with the constraints
of L = 88 ± 25 MeV and Kasy = −500 ± 50 or −550 ±
100 MeV is probably related to the rather limited flexibility
in the parametrization of the isovector channel in all RMF
models. They are also probably connected to the fact that
most of the parameter sets are obtained from fitting properties
of finite nuclei, which are mostly near the β-stability line
and thus are not well constrained by the isospin-dependent
properties of nuclear EOS. Also, we are interested here in the
density-dependent behavior of the symmetry energy around
saturation density, as both L and Kasy are defined at saturation
density, while the behavior of the nuclear EOS at subsaturation
density may be more relevant when the parameter sets are
obtained from fitting the properties of finite nuclei.

B. Nuclear symmetry potential

Using the parameter sets NL1, NL2, NL3, NL-SH, TM1,
PK1, FSU-Gold, HA, NLρ, and NLρδ in the nonlinear RMF
model, we have evaluated the energy dependence of the three
different nucleon optical potentials, i.e., the Schrödinger-
equivalent potential USEP [Eq. (10)], the optical potential
from the difference between the total energy of a nucleon
in nuclear medium and its energy at the same momentum in
free space UOPT [Eq. (12)], and the optical potential based on
the second-order Dirac equation USOD [Eq. (15)], at a fixed
baryon density ρB = 0.16 fm−3 (roughly corresponding to
the saturation densities obtained from various RMF models).
For their corresponding symmetry potentials USEP

sym , UOPT
sym , and

USOD
sym , we have evaluated instead their dependence on the

nucleon momentum in asymmetric nuclear matter at baryon
density ρB = 0.16 fm−3 and with isospin asymmetry α = 0.5.
We note that in contrast to the energy dependence of the
nuclear symmetry potential, the momentum dependence of
the nuclear symmetry potential is almost independent of the
isospin asymmetry of nuclear matter. These results are shown
in Fig. 5. Corresponding results for the parameter sets TW99,
DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr in
the density-dependent RMF model and for PC-F1, PC-F2,

FIG. 5. (Color online) Energy dependence of the three different
nucleon optical potentials, i.e., USEP [Eq. (10)], UOPT [Eq. (12)], and
USOD [Eq. (15)] (left panels) as well as their corresponding symmetry
potentials USEP

sym , UOPT
sym , and USOD

sym as functions of momentum (right
panels), at a fixed baryon density ρB = 0.16 fm−3 for parameter
sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA, NLρ,
and NLρδ in the nonlinear RMF model. For comparison, the energy
dependence of the real part of the optical potential in symmetric
nuclear matter at saturation density extracted from two different fits
of the proton-nucleus scattering data in the Dirac phenomenology are
also included (left panels).

PC-F3, PC-F4, PC-LA, and FKVW in the point-coupling
RMF model are shown in Figs. 6 and 7, respectively. For
comparison, we also include in these figures results for the
energy dependence of the real part of the different optical
potentials in symmetric nuclear matter at saturation density
that are extracted from the proton-nucleus scattering data based
on the Dirac phenomenology [83,113].

We see that different optical potentials in symmetric nuclear
matter at ρB = 0.16 fm−3 exhibit similar energy dependence
at low energies but have different behaviors at high energies. In
particular, at high energies, USEP continues to increase linearly
with energy while UOPT and USOD seem to saturate at high
energies and thus display a more satisfactory high-energy limit,
similar to what is observed in the nuclear optical potential
that is extracted from the experimental data based on the
Dirac phenomenology. The critical energy at which the optical
potential changes from negative to positive values is between
about 130 and 270 MeV, depending on the parameter sets
used. These features are easy to understand from the fact
that the scalar and vector potentials are momentum/energy
independent in the RMF models considered here. Analysis
of experimental data from the proton-nucleus scattering in
the Dirac phenomenology also indicates that the extracted
different nucleon optical potentials in symmetric nuclear
matter at normal nuclear density change from negative to
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FIG. 6. (Color online) Same as Fig. 5, but for TW99, DD-ME1,
DD-ME2, PKDD, DD, DD-F, and DDRH-corr in the density-
dependent RMF models.

positive values at a nucleon energy of about 208 MeV.
Furthermore, it is seen that the different optical potentials
from all 23 parameter sets are consistent with the experimental
data at lower energies, i.e., Ekin < 100–200 MeV, but are
generally too repulsive at higher energies, especially for the
Schrödinger-equivalent potential USEP. These features imply
that the RMF models with parameters fitted to the properties

FIG. 7. (Color online) Same as Fig. 5, but for PC-F1, PC-F2, PC-
F3, PC-F4, PC-LA, and FKVW in the point-coupling RMF models.

of finite nuclei can only give reasonable descriptions of the
low energy behavior of the isoscalar optical potentials. On the
other hand, it should be mentioned that for optical potentials at
high energies, contributions from dispersive processes such as
dynamical polarization by inelastic excitations, inelastic isobar
resonance excitation above the pion threshold, and particle
production become important [114,115]. Including such con-
tinuum excitations is expected to improve significantly the high
energy behavior of the optical potential [114]. Such studies are,
however, beyond the RMF model based on the Hartree level
as considered here.

For the momentum dependence of the symmetry potential,
all 23 parameter sets display similar behaviors in USEP

sym , i.e.,
increasing with momentum, albeit at different rates. This can
be qualitatively understood as follows. Expressing Eq. (10) as

USEP,τ = 1

2Mτ

[
E2

τ − (
M2

τ + �p2
)]

, (109)

and neglecting the difference in neutron and proton masses,
we can rewrite Eq. (11) as

USEP
sym = E2

n − E2
p

4Mτα

= 1

4Mτα

[(
�0

n

)2 + 2�0
n

√
�p2 + (

Mn + �S
n

)2

+ (
Mn + �S

n

)2 − (
�0

p

)2 − 2�0
p

√
�p2 + (

Mp + �S
p

)2

− (
Mp + �S

p

)2
]

= 1

4Mτα

[(
�0

n

)2 − (
�0

p

)2

+ (M∗
Dirac,n)2 − (M∗

Dirac,p)2 + 2�0
n

√
�p2 + (M∗

Dirac,n)2

− 2�0
p

√
�p2 + (M∗

Dirac,p)2

]
. (110)

In the simple case of the nonlinear RMF model without the
isovector-scalar δ meson, the neutron Dirac mass is the same
as that of the proton. In this case, USEP

sym is reduced to

USEP
sym = 1

4Mτα

[(
�0

n

)2 − (
�0

p

)2 + 2
(
�0

n − �0
p

)
×

√
�p2 + (M∗

Dirac)2

]
. (111)

Since it can be shown from Eqs. (31), (33), and (39) that

�0
n − �0

p = 2

(
gρ

mρ

)2

(ρn − ρp), (112)

we thus have �0
n > �0

p and an increase of USEP
sym with the

momentum of a nucleon in neutron-rich nuclear matter. The
same argument applies to density-dependent RMF models and
to point-coupling models if the coupling constant αT V or GT V

in the point-coupling models is positive (at saturation density)
so that the potential energy part of the symmetry energy at
saturation density is also positive.

For UOPT
sym , whether it increases or deceases with nucleon

momentum depends on the isospin splitting of the nucleon
scalar self-energy (scalar potential) or Dirac mass in neutron-
rich nuclear matter. This can be seen from Eq. (14) if it is
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reexpressed as

UOPT
sym = En − Ep

2α

= 1

2α

[
�0

n − �0
p +

√
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n )2

−
√
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p)2

]

= 1

2α
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�0
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√
�p2 + (M∗
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−
√

�p2 + (M∗
Dirac,p)2

]
. (113)

We note that UOPT
sym increases with momentum for the parameter

sets HA, NLρδ, DDRH-corr, and PC-F4, while the opposite
behavior is observed for the parameter sets PC-F2, PC-LA,
and FKVW.

The momentum dependence of USOD
sym is similar to that of

UOPT
sym if we rewrite Eq. (16) as

USOD
sym =

En − Ep − (
M2

τ + �p2
)(

1
En

− 1
En

)
4α

= UOPT
sym

2
−

(
M2

τ + �p2
)(

1
En

− 1
En

)
4α

. (114)

In this case, USOD
sym increases with nucleon momentum for the

parameter sets HA, NLρδ, and DDRH-corr, while it decreases
for other parameter sets considered here.

In Ref. [79], it has been argued that it is the Schrödinger-
equivalent potential USEP [Eq. (10)] and thus its corresponding
symmetry potential USEP

sym that should be compared with the
results from nonrelativistic models. As discussed before, the
experimental data indicate that the nuclear symmetry potential
at nuclear matter saturation density, i.e., the Lane potential
ULane, clearly decreases at low energies (beam energy Ekin

up to about 100 MeV and corresponding momentum values
ranging from about 300 to 470 MeV/c), which is obviously
contradictory to the results for USEP

sym from all 23 parameter
sets considered here. On the other hand, UOPT

sym and USOD
sym for

some parameter sets can decrease with nucleon momentum,
which is qualitatively consistent with experimental results.

For nucleons with momenta less than about 250–300 MeV/c
or Ekin < 0, although the observed increase of USEP

sym with
momentum for all 23 parameter sets, and UOPT

sym as well as
USOD

sym with some parameter sets, seems to be consistent with the
results from the microscopic DBHF [17], the extended BHF
with three-body forces [24], and chiral perturbation theory
calculations [89], i.e., the symmetry potential stays as a con-
stant or slightly increases with momentum before decreasing at
high momenta, it fails to describe the high momentum/energy
behaviors of the nuclear symmetry potential extracted from
nucleon-nucleus scattering experiments and (p, n) charge
exchange reactions at beam energies up to about 100 MeV.

We note that in studies based on the relativistic impulse
approximation with empirical NN scattering amplitude and
the nuclear scalar and vector densities from the RMF model,
the Schrödinger-equivalent nuclear symmetry potential at fixed

TABLE II. Values of different nucleon effective masses in sym-
metric nuclear matter at saturation density using the 23 parameter
sets in the nonlinear, density-dependent, and point-coupling RMF
models. The last column gives the references for corresponding
parameter sets.

Model
M∗

Dirac
M

M∗
Landau
M

M∗
Lorentz
M

M∗
OPT
M

M∗
SOD
M

Ref.

NL1 0.57 0.64 0.65 0.61 0.59 [103]
NL2 0.67 0.72 0.74 0.70 0.68 [103]
NL3 0.60 0.66 0.67 0.63 0.61 [104]
NL-SH 0.60 0.66 0.67 0.63 0.61 [105]
TM1 0.63 0.69 0.71 0.67 0.65 [106]
PK1 0.61 0.66 0.68 0.64 0.62 [107]
FSUGold 0.61 0.67 0.69 0.65 0.62 [77]
HA 0.68 0.74 0.75 0.71 0.69 [108]
NLρ 0.75 0.80 0.82 0.77 0.76 [101]
NLρδ 0.75 0.80 0.82 0.77 0.76 [101]

TW99 0.55 0.62 0.64 0.60 0.57 [47]
DD-ME1 0.58 0.64 0.66 0.62 0.59 [109]
DD-ME2 0.57 0.63 0.65 0.61 0.59 [110]
PKDD 0.57 0.63 0.65 0.61 0.59 [107]
DD 0.56 0.63 0.64 0.61 0.58 [94]
DD-F 0.56 0.62 0.64 0.60 0.57 [111]
DDRH-
corr

0.55 0.63 0.64 0.60 0.58 [48]

PC-F1 0.61 0.67 0.69 0.64 0.62 [50]
PC-F2 0.61 0.67 0.69 0.64 0.62 [50]
PC-F3 0.61 0.67 0.69 0.64 0.62 [50]
PC-F4 0.61 0.67 0.69 0.64 0.62 [50]
PC-LA 0.58 0.64 0.65 0.61 0.59 [50]
FKVW 0.62 0.68 0.70 0.65 0.63 [54]

baryon density is found to decrease with increasing nucleon
energy in the range of 100 � Ekin � 400 MeV [93] and becomes
essentially constant once the nucleon kinetic energy is greater
than about 500 MeV [90].

C. Nucleon effective mass

For the different nucleon effective masses in symmetric
nuclear matter at saturation density, we show in Table II the
results from the 23 parameter sets in the nonlinear, density-
dependent, and point-coupling RMF models. It is seen that
the values of M∗

Dirac/M,M∗
Landau/M,M∗

Lorentz/M,M∗
OPT/M ,

and M∗
SOD/M are in the range of 0.55∼0.75, 0.62∼0.80,

0.64∼0.80, 0.60∼0.77, and 0.57∼0.76, respectively. The
parameter sets NL2, HA, NLρ, and NLρδ seem to give too
large values, i.e., 0.67, 0.68, 0.75, and 0.75, respectively, for
the M∗

Dirac/M , as values in the range of 0.55∼0.60 are needed
to describe reasonably the spin-orbit splitting in finite nuclei
using the RMF models. On the other hand, the larger Dirac
masses lead to larger Landau masses M∗

Landau/M of 0.72,
0.74, 0.80, and 0.80, respectively, for the parameter sets NL2,
HA, NLρ, and NLρδ, which are consistent with the empirical
constraint of M∗

Landau/M = 0.8 ± 0.1 [95–98].
The density dependence of the different nucleon effective

masses in symmetric nuclear matter and corresponding isospin
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FIG. 8. (Color online) Density dependence of different nucleon effective masses, i.e., M∗
Dirac/M , M∗

Landau/M , M∗
Lorentz/M , M∗

OPT/M , and
M∗

SOD/M in symmetric nuclear matter as well as their corresponding isospin splittings in neutron-rich nuclear matter with isospin asymmetry
α = 0.5 for the parameter sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA, NLρ, and NLρδ in the nonlinear RMF model.

splitting (M∗
n − M∗

p)/M in asymmetric nuclear matter with
isospin asymmetry α = 0.5 are shown in Fig. 8 for the
parameter sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-
Gold, HA, NLρ, and NLρδ in the nonlinear RMF model.
Figures 9 and 10 display the same results as in Fig. 8 but
for the parameter sets TW99, DD-ME1, DD-ME2, PKDD,
DD, DD-F, and DDRH-corr in the density-dependent RMF
models and for PC-F1, PC-F2, PC-F3, PC-F4, PC-LA, and
FKVW in the point-coupling RMF model, respectively. It
is seen that different parameter sets in the nonlinear RMF
model give significantly different density dependence for the
nucleon effective masses while the different parameter sets
in the density-dependent and point-coupling RMF models
predict roughly the same density dependence for the nucleon
effective masses, except that parameter set PC-LA gives very
large values for the nucleon effective masses at high densities.
This unusual behavior for PC-LA was also observed in
Ref. [50], and it occurs because the coupling constant γS for
the higher-order interaction term in PC-LA is positive [49]
and dominates at high density, leading thus to the very large
nucleon effective mass.

For the Landau mass at a fixed baryon density, its value
M∗

Landau/M is generally larger than M∗
Dirac/M . This can be

seen from Eq. (18) if it is rewritten as

M∗
Landau,τ = (

Eτ − �0
τ

) =
√

p2
F ,τ + (

Mτ + �S
τ

)2

=
√

p2
F,τ + M∗2

Dirac,τ , (115)

which shows that M∗
Landau,τ � M∗

Dirac,τ if nucleon self-energies
are independent of momentum/energy.

For the Lorentz mass, M∗
Lorentz/M depends almost linearly

on density and thus has a stronger density dependence than the
Dirac and Landau masses. We note from Eqs. (13) and (115)
that Eq. (19) can be reduced to

M∗
Lorentz,τ = Mτ − �0

τ , (116)

if nucleon self-energies are independent of momentum/energy.
Therefore, the density dependence of M∗

Lorentz is determined
uniquely by the density dependence of the nucleon vector self-
energy. In the nonlinear RMF model, most of the parameter sets
(except for TM1, PK1, and FSU-Gold, which include the self-
coupling of the ω meson field) give a linear density dependence
for �0

τ , leading thus to the observed linear density dependence
of M∗

Lorentz. As for the nonlinear density dependence of M∗
Lorentz

in the density-dependent RMF model and point-coupling
models, it is due to the nonlinear density dependence of the
coupling constant or the inclusion of higher-order couplings.

M∗
OPT/M and M∗

SOD/M are seen to have roughly the same
magnitude and the same density dependence as M∗

Landau/M .
This feature can be understood from the fact that with
the dispersion relation of Eqs. (13), (20) and (21) can be
reexpressed as

M∗
OPT,τ = Mτ√

p2
F,τ + M2

τ

M∗
Landau,τ (117)

and

M∗
SOD,τ = Mτ

[
M∗

Landau,τ

Eτ

+ E2
τ − (

p2
F,τ + M2

τ

)
2E2

τ

]
, (118)
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FIG. 9. (Color online) Same as Fig. 8, but for TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr in the density-dependent
RMF model.

respectively. Since p2
F,τ � M2

τ (for example, pF ≈
385 MeV/c at ρB = 0.5 fm−3), we have Mτ/

√
p2

F,τ + M2
τ ≈ 1

(with an error of a few percent) and thus M∗
OPT,τ ≈ M∗

Landau,τ .
Furthermore, the second term in Eq. (118) can be neglected
compared with the first term as Mτ/Eτ ∼ 1 (it is a good

approximation at low densities and with an error of about
20% at high densities, e.g., ρB = 0.5 fm−3). As a result, we
have M∗

SOD,τ ∼ M∗
Landau,τ .

From the Dirac equation, one sees that condensed scalar
fields (scalar self-energies) lead to a shift of nucleon mass
such that the nuclear matter is described as a system of

FIG. 10. (Color online) Same as Fig. 8, but for PC-F1, PC-F2, PC-F3, PC-F4, PC-LA, and FKVW in the point-coupling RMF model.
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pseudonucleons with masses M∗ (Dirac mass) moving in
classical vector fields with δ meson field or isovector-scalar
potential further generating the splitting of the proton and
neutron Dirac masses in asymmetric nuclear matter. For the
isospin splitting of M∗

Dirac in neutron-rich nuclear matter, it is
interesting to see that the parameter sets HA, NLρδ, DDRH-
corr, and PC-F4 give M∗

Dirac,p > M∗
Dirac,n while PC-F2, PC-

LA, and FKVW exhibit the opposite behavior of M∗
Dirac,p <

M∗
Dirac,n. This feature implies that the isospin-dependent

scalar potential can be negative or positive depending on the
parameter set used. In the nonlinear RMF model, we obtain
from Eqs. (32) and (37)

M∗
Dirac,n − M∗

Dirac,p = −2

(
gδ

mδ

)2

(ρS,n − ρS,p), (119)

which indicates that we always have M∗
Dirac,p > M∗

Dirac,n in the
neutron-rich nuclear matter where ρS,n > ρS,p. This argument
is also applicable to the density-dependent RMF model by
replacing gδ with the density-dependent �δ . For the nonlinear
point-coupling models, we have, on the other hand,

M∗
Dirac,n − M∗

Dirac,p = 2αT S(ρS,n − ρS,p). (120)

A similar equation can be obtained for the density-dependent
point-coupling models with the replacement of αT S by the
density-dependent GT S . Therefore, the isospin splitting of
M∗

Dirac in neutron-rich nuclear matter depends on the sign of
the isovector-scalar coupling constant αT S and GT S in the
point-coupling models. Since the value of αT S in PC-F2 and
PC-LA and the value of GT S in FKVW are positive, these
parameter sets lead to the isospin splitting M∗

Dirac,n > M∗
Dirac,p

in neutron-rich nuclear matter, which is opposite to that in other
parameter sets considered here. The isospin splitting of M∗

Dirac
is directly related to the isovector spin-orbit potential that
determines the isospin-dependent spin-orbit splitting in finite
nuclei. Unfortunately, there is no clear experimental indication
about the isospin dependence of the spin-orbit splitting in finite
nuclei [48], so detailed experimental data on the single-particle
energy levels in exotic nuclei are needed to pin down the
isospin splitting of M∗

Dirac in asymmetric nuclear matter.
For the isospin splitting of M∗

Landau in neutron-rich nuclear
matter, most parameter sets give M∗

Landau,n > M∗
Landau,p, which

is consistent with the usual results in nonrelativistic models.
The parameter sets NLρδ and DDRH-corr give, however,
the opposite result because of the strong isospin splitting of
M∗

Dirac with M∗
Dirac,n < M∗

Dirac,p for NLρδ and DDRH-corr and
because M∗

Landau is related to the Fermi momentum and M∗
Dirac

according to Eq. (115). The isospin splitting M∗
Landau,n >

M∗
Landau,p implies that neutrons have a larger level density

at the Fermi energy and thus more compressed single-particle
levels in finite nuclei than protons.

For the isospin splitting of M∗
Lorentz in neutron-rich nuclear

matter, all parameter sets give M∗
Lorentz,p > M∗

Lorentz,n, except
that PC-L3 gives M∗

Lorentz,p < M∗
Lorentz,n at high densities.

From Eq. (116), we have

M∗
Lorentz,n − M∗

Lorentz,p = −(
�0

n − �0
p

)
, (121)

which leads to the observed isospin splitting M∗
Lorentz,p >

M∗
Lorentz,n as we generally have �0

n > �0
p as discussed above.

For the parameter set PC-L3, it includes a higher-order
isovector-vector term through the parameter γT V . Since the
latter has a negative value and dominates at high densi-
ties according to Eq. (82), it leads to �0

n < �0
p and thus

M∗
Lorentz,p < M∗

Lorentz,n at high densities. The isospin splittings
of M∗

OPT/M and M∗
SOD/M in neutron-rich nuclear matter show

a similar behavior as that for M∗
Landau as expected from the

discussions following Eqs. (117) and (118).

D. Nucleon scalar density

The nucleon scalar density as defined in Eq. (34) is the
source for the nucleon scalar self-energy (scalar potential). In
the RMF model, the isospin-dependent nucleon scalar density
is uniquely related to the nucleon Dirac mass as shown in
Eq. (35). The latter equation also shows that the scalar
density is less than the baryon density due to the factor

M∗
i /

√
�k2 + (M∗

i )2 which causes a reduction of the contribution
of rapidly moving nucleons to the scalar source term. This
mechanism is responsible for nuclear matter saturation in
the mean-field theory and essentially distinguishes relativistic
models from nonrelativistic ones. In practice, the isospin-
dependent nucleon scalar density is also an essential ingredient
for evaluating the relativistic optical potential for neutrons and
protons in the relativistic impulse approximation (see, e.g.,
Refs. [90,93] and references therein).

In Fig. 11, we show the neutron and proton scalar densities
as functions of the baryon density ρB in nuclear matter with

FIG. 11. (Color online) Neutron and proton scalar densities as
functions of baryon density in nuclear matter with isospin asymmetry
α = 0 and 0.5 for the parameter sets NL1, NL2, NL3, NL-SH, TM1,
PK1, FSU-Gold, HA, NLρ, and NLρδ of the nonlinear RMF model
(a); TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr
of the density-dependent RMF model (b); PC-F1, PC-F2, PC-F3,
PC-F4, PC-LA, and FKVW of the point-coupling RMF model (c).
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isospin asymmetry α = 0 and 0.5 for the 23 parameter sets
from the nonlinear, density-dependent, and point-coupling
RMF models. It is seen that the neutron scalar density is larger
than that of protons in neutron-rich nuclear matter at a fixed
baryon density. Although results for different parameter sets
are almost the same at lower baryon densities, they become
different when ρB >∼ 0.25 fm−3, and this is consistent with the
conclusions of Refs. [90,93]. In particular, different parameter
sets in the nonlinear RMF model predict a larger uncertainty
for the value of the nucleon scalar density at high baryon
density, while all the parameter sets (except PC-LA) in the
density-dependent RMF model and point-coupling models
give roughly the same results for the nucleon scalar density.
These features are consistent with the results for the density
dependence of nucleon Dirac mass shown in Figs. 8–10. At
low baryon densities, neutron and proton scalar densities are
seen to increase roughly linearly with baryon density, and
this can be easily understood from Eq. (35), which is reduced
to the following expression at low densities (|�k| → 0 due to
kF → 0):

ρS,i ≈ 2

(2π )3

∫ ki
F

0
d3k

M∗
i

M∗
i

= 2

(2π )3

∫ ki
F

0
d3k = ρB,i, i = p, n. (122)

Therefore, neutron and proton scalar densities generally
approach their respective baryon densities in asymmetric
nuclear matter at low baryon densities.

V. SUMMARY AND CONCLUSIONS

Using different versions of relativistic mean-field models
that are commonly used in current nuclear structure studies,
i.e., the nonlinear model, the model with density-dependent
nucleon-meson coupling, and the point-coupling model, we
have investigated systematically the isospin-dependent bulk
and single-particle properties of isospin-asymmetric nuclear
matter. In particular, we considered 23 parameter sets com-
monly and successfully used in nuclear structure studies,
i.e., NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA,
NLρ, NLρδ for the nonlinear RMF model; TW99, DD-ME1,
DD-ME2, PKDD, DD, DD-F, and DDRH-corr for the density-
dependent RMF model; and PC-F1, PC-F2, PC-F3, PC-F4,
PC-LA, and FKVW for the point-coupling RMF model. Most
of the parameter sets are obtained from fitting the binding
energies and charge radii of a large number of nuclei in
the periodic table or the results from the microscopic DBHF
approach, which have been shown to describe successfully a
number of the properties of finite nuclei.

Using these models, we have studied the density depen-
dence of nuclear symmetry energy and compared the results
with the symmetry energy recently extracted from the analyses
of the isospin diffusion data from heavy-ion collisions based
on an isospin- and momentum-dependent transport model
with in-medium NN cross sections, the isoscaling analyses
of isotope ratios in intermediate energy heavy-ion collisions,
and measured isotopic dependence of the giant monopole
resonances in even-A Sn isotopes. These analyses have led

to the extraction of L = 88 ± 25 MeV for the slope parameter
of the nuclear symmetry energy at saturation density and
Kasy = −500 ± 50 or −550 ± 100 MeV for the isospin-
dependent part of the isobaric incompressibility of isospin
asymmetric nuclear matter, which may represent the most
stringent phenomenological constraints available so far on
the nuclear symmetry energy at subsaturation densities. Using
these constraints, we have found that among the 23 parameter
sets considered in the present work, only six sets, i.e.,
TM1, NLρ, NLρδ, PKDD, PC-LA, and FKVW, have nuclear
symmetry energies that are consistent with the extracted L

value of 88 ± 25 MeV, while 15 sets, i.e., NL3, NL-SH, TM1,
PK1, HA, NLρ, NLρδ, TW99, PKDD, DD-F, PC-F1, PC-F2,
PC-F3, PC-F4, and FKVW, have nuclear symmetry energies
that are consistent with the extracted Kasy value of −500 ± 50
or −550 ± 100 MeV. Furthermore, we have found surprisingly
that only five of the 23 parameter sets, i.e., TM1, NLρ, NLρδ,
PKDD, and FKVW, have nuclear symmetry energies that are
consistent with the extracted values for both L and Kasy.
We have noted that most parameter sets in the nonlinear and
point-coupling RMF models predict stiffer symmetry energies,
while those in the density-dependent RMF model give softer
symmetry energies. These features are probably related to the
rather limited flexibility in the parametrization of the isovector
channel in all RMF models and also the fact that most of the
parameter sets are obtained from fitting properties of finite
nuclei which are mostly near the β-stability line and thus
have less constraint on the isospin-dependent properties of
asymmetric nuclear matter. Moreover, we have focused here
on the behavior of the symmetry energy around saturation
density while the parameter sets in RMF models are fitted to
the properties of finite nuclei that are more sensitive to the
properties of the nuclear symmetry energy at subsaturation
densities.

We have also investigated the energy dependence of three
different nucleon optical potentials, i.e., the Schrödinger-
equivalent potential USEP [Eq. (10)], the optical potential
from the difference between the total energy of a nucleon
in nuclear medium and its energy at the same momentum in
free space UOPT [Eq. (12)], and the optical potential based
on the second-order Dirac equation USOD [Eq. (15)], as well
as their corresponding symmetry potentials USEP

sym , UOPT
sym , and

USOD
sym as functions of momentum. The results indicate that

different optical potentials in symmetric nuclear matter exhibit
similar energy dependence at low energies but have different
high energy behaviors. In particular, at high energies, USEP

continues to increase linearly with momentum, while UOPT and
USOD seem to saturate and thus display a more satisfactory high
energy limit compared to the optical potentials extracted from
proton-nucleus scatterings using the Dirac phenomenology.
On the other hand, the nuclear symmetry potential at a
fixed baryon density can increase or decrease with increasing
nucleon momentum depending on the definition for the
nucleon optical potential and the interactions used. For USEP

sym

at ρB = 0.16 fm−3, results from all 23 parameter sets show
that it increases with momentum, which is consistent with
the predictions of microscopic DBHF and chiral perturbation
calculations at low momenta (less than about 300 MeV/c) but
is inconsistent with the experimental result that the nuclear
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symmetry potential at saturation density (the Lane potential
ULane) decreases at low energies (beam energy Ekin above 0
and less than about 100 MeV and corresponding momentum
values are from about 300 to 470 MeV/c) and predictions of
the relativistic impulse approximation at higher energies. For
UOPT

sym and USOD
sym , they can, however, decrease with momentum

for some parameter sets, which is qualitatively consistent
with the experimental constraint. Again, we emphasize that
for the three definitions of the optical potential and thus
their corresponding nuclear symmetry potentials, only USEP,τ

is well-defined theoretically and is Schrödinger-equivalent,
whereas UOPT,τ and USOD,τ are used here for reference, be-
cause UOPT,τ has been extensively used in microscopic DBHF
calculations [81] and transport models for heavy-ion collisions
[82] and USOD,τ has been used in analyses of the relativistic
optical potential based on the Dirac phenomenology [83].

We have further explored different nucleon effective
masses, i.e., M∗

Dirac,M
∗
Landau,M

∗
Lorentz,M

∗
OPT, and M∗

SOD in
symmetric nuclear matter as well as their isospin splittings
in neutron-rich nuclear matter. Most of the parameter sets
give reasonable values for M∗

Dirac as required by the spin-
orbit splitting data in finite nuclei but too small values for
M∗

Landau, implying that they would give too small a level
density at the Fermi energy and too large a spread of the
single-particle levels in finite nuclei. M∗

Lorentz is found to
display the strongest (almost linear) density dependence even
at high densities. Interestingly, including the isovector-scalar
channel leads to the isospin splitting of M∗

Dirac, and M∗
Dirac,n >

M∗
Dirac,p is always obtained in neutron-rich nuclear matter

for the nonlinear and density-dependent RMF models, but an
opposite result can be observed in the point-coupling model.
For M∗

Landau, most parameter sets give the isospin splitting
M∗

Landau,n > M∗
Landau,p in neutron-rich nuclear matter, which

is consistent with the usual results in nonrelativistic models,
while an opposite isospin splitting is observed for M∗

Lorentz.
In addition, M∗

OPT and M∗
SOD are found to display behaviors

similar to that of M∗
Landau.

Finally, we have studied the baryon density dependence of
the nucleon scalar density and its isospin splitting in neutron-
rich nuclear matter. The results indicate that the neutron
scalar density is larger than that of proton in neutron-rich
nuclear matter at a fixed baryon density. At low baryon
densities, the neutron and proton scalar densities generally ap-
proach their respective baryon densities in asymmetric nuclear
matter.

In the present work, we have focused on three versions of
standard RMF models, i.e., the nonlinear, density-dependent,
and point-coupling RMF models. We note that some recent
works [116–120] have extended the standard RMF models
to include density-dependent hadron masses and meson
coupling constants via the Brown-Rho (BR) scaling [121].
In particular, the parameter sets SLC and SLCd constructed in
Refs. [118,119] not only are consistent with current exper-
imental results for symmetric matter at normal and supra-
normal densities and the symmetry energy constrained by the
isospin diffusion data at subsaturation densities but also give
a fairly satisfactory description of the ground state properties
of finite nuclei, including binding energies, charge radii, and
neutron skin thickness.

In all standard RMF models, the nucleon self-energies
are independent of momentum/energy. As a result, the Dirac
and Landau masses obtained from these models cannot be
simultaneously consistent with experimental data [see, e.g.,
Eq. (115)]. Also, the Schrödinger-equivalent potential USEP

[Eq. (10)] in these models increases linearly with nucleon
energy even at high energies. Recently, momentum-dependent
nucleon self-energies have been introduced in the RMF model
by including in the Lagrangian density the couplings of meson
fields to the derivatives of nucleon densities [94,122], and the
results indicate that a reasonable energy dependence of the
Schrödinger-equivalent potential in symmetric nuclear matter
at saturation density can be obtained, and the Landau mass can
also be increased to a more reasonable value while keeping
the Dirac mass unchanged, which further leads to an improved
description of β-decay half-lives of neutron-rich nuclei in the
Z ≈ 28 and Z ≈ 50 regions [95]. In the framework of density-
functional theory, including the couplings of meson fields to
the derivatives of nucleon densities in the Lagrangian density
provides an effective way to take into account higher-order
effects. Another way to introduce the momentum dependence
in nucleon self-energies is to include the Fock exchange terms
by means of the relativistic Hartree-Fock (RHF) approxima-
tion, even though in practice the inclusion of the Fock terms
would increase significantly the numerical complexity such
that it would be very difficult to find appropriate effective La-
grangians for the RHF model to give a satisfactory quantitative
description of the nuclear structure properties compared with
standard RMF models [74,123–132]. Recently, there have been
some developments in the density-dependent RHF approach
[133–135]. It has been shown that the density-dependent RHF
model can describe the properties of both finite nuclei and
nuclear matter with results comparable to those from standard
RMF models. A more phenomenological way to improve
the results of RMF models is to introduce momentum- as
well as isospin-dependent form factors in the meson-nucleon
coupling constants. It has been shown in Refs. [136–138] that
the empirically observed energy dependence of the nuclear
optical potential in symmetric nuclear matter at saturation
density can be reproduced by relativistic mean-field models
with momentum-dependent form factors. Finally, to better
understand the isospin-dependent properties of asymmetric
nuclear matter, it is crucial to investigate the density and
momentum dependence of the underlying isovector nuclear
effective interaction. To reach this ultimate goal, we need
not only more advanced theoretical approaches but also more
experimental data both on finite nuclei, especially those far
from β-stability line, and from heavy-ion reactions induced
by high energy neutron-rich nuclei.
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APPENDIX: ISOSPIN- AND MOMENTUM-DEPENDENT
MDI INTERACTION

The isospin- and momentum-dependent MDI interaction is
based on a modified finite-range Gogny effective interaction
[25]. In the MDI interaction, the potential energy density
V (ρ, α) of an asymmetric nuclear matter at total density ρ

and isospin asymmetry α is expressed as [25,56]

V (ρ, α) = Auρnρp

ρ0
+ Al

2ρ0

(
ρ2

n + ρ2
p

) + B

σ + 1

ρσ+1

ρσ
0

× (1 − xα2) + 1

ρ0

∑
τ,τ ′

Cτ,τ ′

×
∫ ∫

d3pd3p′ fτ (�r, �p)fτ ′(�r, �p′)
1 + ( �p − �p′)2/
2

. (A1)

In the mean-field approximation, Eq. (A1) leads to the follow-
ing single-particle potential for a nucleon with momentum �p
and isospin τ in asymmetric nuclear matter [25,56]:

U (ρ, α, �p, τ )

= Au(x)
ρ−τ

ρ0
+ Al(x)

ρτ

ρ0
+ B

(
ρ

ρ0

)σ

(1 − xα2)

− 8τx
B

σ + 1

ρσ−1

ρσ
0

αρ−τ + 2Cτ,τ

ρ0

×
∫

d3p′ fτ (�r, �p′)
1 + ( �p − �p′)2/
2

+ 2Cτ,−τ

ρ0

×
∫

d3p′ f−τ (�r, �p′)
1 + ( �p − �p′)2/
2

. (A2)

In the above, τ = 1/2 (−1/2) for neutrons (protons);
σ = 4/3; fτ (�r, �p) is the phase-space distribution func-
tion at coordinate �r and momentum �p. The parameters
Au(x), Al(x), B,Cτ,τ , Cτ,−τ , and 
 are obtained by fitting the
momentum dependence of U (ρ, α, �p, τ ) to that predicted by
the Gogny Hartree-Fock and/or the Brueckner-Hartree-Fock
calculations, the saturation properties of symmetric nuclear
matter and the symmetry energy of 31.6 MeV at normal nuclear
matter density ρ0 = 0.16 fm−3 [25]. The incompressibility K0

of cold symmetric nuclear matter at saturation density ρ0 is set
to be 211 MeV. The parameters Au(x) and Al(x) depend on
the x parameter according to

Au(x) = −95.98 − x
2B

σ + 1
,

(A3)
Al(x) = −120.57 + x

2B

σ + 1
.

The different x values in the MDI interaction are introduced to
vary the density dependence of the nuclear symmetry energy
while keeping other properties of the nuclear equation of state
fixed [56], and they can be adjusted to mimic the predictions of
microscopic and/or phenomenological many-body theories on
the density dependence of nuclear matter symmetry energy.
The last two terms in Eq. (A2) contain the momentum
dependence of the single-particle potential. The momentum
dependence of the symmetry potential stems from the different
interaction strength parameters Cτ,−τ and Cτ,τ for a nucleon
of isospin τ interacting, respectively, with unlike and like
nucleons in the background fields. More specifically, we use
Cτ,−τ = −103.4 MeV and Cτ,τ = −11.7 MeV.

With fτ (�r, �p) = 2
h3 �(pf (τ ) − p) for nuclear matter at

zero temperature, the integrals in Eqs. (A1) and (A2) can be
calculated analytically, and we find∫ ∫

d3pd3p′ fτ (�r, �p)fτ ′(�r, �p′)
1 + ( �p − �p′)2/
2

= 1

6

(
4π

h3

)2


2

{
pf (τ )pf (τ ′)

[
3
(
p2

f (τ ) + p2
f (τ ′)) − 
2

]

+ 4


[(
p3

f (τ ) − p3
f (τ ′)

)
tan−1 pf (τ ) − pf (τ ′)




− (
p3

f (τ ) + p3
f (τ ′)

)
tan−1 pf (τ ) + pf (τ ′)




]

+ 1

4

[

4 + 6
2

(
p2

f (τ ) + p2
f (τ ′)

)

− 3
(
p2

f (τ ) − p2
f (τ ′)

)2 ]
ln

(
pf (τ ) + pf (τ ′)

)2 + 
2(
pf (τ ) − pf (τ ′)

)2 + 
2

}

(A4)

and∫
d3p′ fτ (�r, �p′)

1 + ( �p − �p′)2/
2

= 2

h3
π
3

[
p2

f (τ ) + 
2 − p2

2p

ln

(
p + pf (τ )

)2 + 
2(
p − pf (τ )

)2 + 
2

+ 2pf (τ )



− 2 tan−1 p + pf (τ )




− 2 tan−1 p − pf (τ )




]
. (A5)

With these results as well as the well-known contribution from
nucleon kinetic energies in the free Fermi gas model, we can
thus easily obtain the EOS of asymmetric nuclear matter at
zero temperature.

We note that the MDI interaction has been extensively
used in the transport model for studying isospin effects in
intermediate energy heavy-ion collisions induced by neutron-
rich nuclei [26,28,56,139–144] and in the study of the
thermal properties of asymmetric nuclear matter [145,146].
In particular, the isospin diffusion data from NSCL/MSU have
constrained the value of x to between 0 and −1 for nuclear
matter densities less than about 1.2ρ0 [56,57].
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A. Lang, and U. Mosel, Nucl. Phys. A539, 713 (1992).

[137] T. Maruyama, W. Cassing, U. Mosel, S. Teis, and K. Weber,
Nucl. Phys. A573, 653 (1994).

[138] P. K. Sahu, W. Cassing, U. Mosel, and A. Ohnishi, Nucl. Phys.
A672, 376 (2000).

[139] B. A. Li, G. C. Yong, and W. Zuo, Phys. Rev. C 71, 014608
(2005).

[140] B. A. Li, G. C. Yong, and W. Zuo, Phys. Rev. C 71, 044604
(2005).

054316-24



ISOSPIN-DEPENDENT PROPERTIES OF ASYMMETRIC . . . PHYSICAL REVIEW C 76, 054316 (2007)

[141] B. A. Li, L. W. Chen, G. C. Yong, and W. Zuo, Phys. Lett.
B634, 378 (2006).

[142] G. C. Yong, B. A. Li, L. W. Chen, and W. Zuo, Phys. Rev. C
73, 034603 (2006).

[143] G. C. Yong, B. A. Li, and L. W. Chen, Phys. Rev. C 74, 064617
(2006).

[144] G. C. Yong, B. A. Li, and L. W. Chen, Phys. Lett. B650, 344
(2007).

[145] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Rev. C 75,
014607 (2007).

[146] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Lett. B650,
348 (2007).

054316-25


