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Particle-number projection and the density functional theory
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5Department of Physics, P. O. Box 35 (YFL), FI-40014, University of Jyväskylä, Finland
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In the framework of the density functional theory for superconductors, we study the restoration of the particle-
number symmetry by means of the projection technique. Conceptual problems are outlined and numerical
difficulties are discussed. Both are related to the fact that neither the many-body Hamiltonian nor the wave
function of the system appear explicitly in the density functional theory. Similar obstacles are encountered in
self-consistent theories utilizing density-dependent effective interactions.
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I. INTRODUCTION

Superconductivity plays a central role in describing low-
temperature properties of correlated many-fermion systems.
Within the mean-field theory, fermionic pairing is best treated
in the Hartree-Fock-Bogoliubov (HFB) [1] or Bogoliubov-
de Gennes (BdG) [2] formalism. In the presence of su-
perconducting condensate, the standard product state ansatz
for the nuclear wave function breaks the particle-number
(PN) symmetry [1,3]. In principle, the broken symmetry
needs to be restored, especially if one looks at observables
that strongly depend on PN. The many-body correlations
associated with symmetry breaking are particularly important
for small systems where the finite-size effects are appreciable,
such as atomic nuclei or metallic grains, or in the limit of weak
pairing where pairing correlations have dynamic character.

For complex superconducting systems, a theoretical tool
of choice is the density functional theory (DFT) [4,5].
The theory is built on theorems showing the existence of
energy functionals for many-body systems, which include,
in principle, all many-body correlations. The generalization
of the DFT to the case of fermionic pairing was formulated
for electronic superconductors in Refs. [6–8]. The resulting
HFB/BdG equations can be viewed as the generalized Kohn-
Sham equations of the standard DFT.

In the nuclear case, the DFT is the only tractable theory that
can be applied across the entire table of nuclides. Historically,
the first nuclear energy density functionals appeared long
ago [9–11] in the context of the Hartree-Fock (HF) method
used with zero-range, density-dependent interactions such as
the Skyrme force. The main ingredient of the nuclear DFT [12]
is the energy density functional that depends on densities and
currents representing distributions of nucleonic matter, spins,
momentum, and kinetic energy, as well as their derivatives
(gradient terms). To account for nuclear superfluidity, the
functional is augmented by the pairing term (see Ref. [13]
for a review). The challenges faced by the nuclear DFT are

(i) the existence of two kinds of fermions, (ii) the essential role
of pairing, and (iii) the need for symmetry restoration in finite,
self-bound systems. The two latter points are of particular
importance in the context of this study. Features (i) and (iii)
are specifically nuclear; with very few exceptions, they are not
present in the electronic Coulomb problem.

It is important to recall that the realistic energy density
functional does not have to be related to any given effective
Hamiltonian; i.e., an effective interaction could be secondary
to the functional. This strategy is used in all modern nuclear
DFT applications. In the absence of a Hamiltonian (and wave
function), the restoration of spontaneously broken symmetries
in DFT poses a conceptional dilemma [14–17] and a serious
challenge that needs to be properly addressed. One important
question related to DFT for self-bound systems concerns the
functional itself: how do you construct it in terms of intrinsic
(body-fixed) densities? While it is possible to formulate the
Kohn-Sham procedure in the language of intrinsic densities
[18,19], the pathway to practical applications is still not
clear.

Sticking to DFT for superconductors and PN symmetry,
several schemes can be adopted. One is to formulate the theory
in the language of the usual (particle) density only, without
explicitly invoking the anomalous (pair) density that is at the
heart of the PN symmetry violation [20,21]. Another strategy
is to incorporate the PN restoration procedure into the DFT
framework. This can be done by employing the generalized
Wick’s theorem (see, e.g., Refs. [22–24]). Recently, full PN
projection before variation has been carried out for the first
time within the Skyrme-DFT framework employing zero-
range pairing [23,25,26]. It was demonstrated that the resulting
projected DFT equations (similar to the PN-conserving HFB
equations originally proposed in Refs. [27,28]) can be obtained
from the standard Skyrme-HFB equations in coordinate
space by replacing the intrinsic densities and currents by
their gauge-angle-dependent counterparts. Using the variation-
after-projection method, one can properly describe transitions
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between normal and superconducting phases in finite systems,
which are inherent in atomic nuclei.

As mentioned above, the restoration of broken symmetries
in the framework of DFT generates a number of questions,
mainly related to the density dependence of the underlying
interaction and to the different treatment of particle-hole
and particle-particle channels [22,25,29]. For instance, it
has been realized for some time [22,25,29–32] that the PN
projection applied within the DFT framework is plagued
with difficulties related to vanishing overlaps between gauge-
rotated intrinsic states. This concerns any functional that uses
density-dependent terms and thus is not related to an average
of a Hamiltonian. In particular, the most frequently used
approaches based on the Skyrme, Gogny, or relativistic-mean-
field functionals all fall into this category.

In this study, we investigate the analytic structure of the
projected DFT, focusing on origins of difficulties. In recent
works [33,34], a way to remedy some of the problems has
been proposed. The PN-projected Skyrme-DFT formalism
employed in our work has been outlined in Ref. [23], and we
follow their notation. Our manuscript is organized as follows.
The analytic structure of the projected HFB is discussed
in Sec. II. The DFT extension of the formalism is described in
Sec. III. Numerical examples are contained in Sec. IV. Finally,
Sec. V contains conclusions of this work.

II. PARTICLE-NUMBER-PROJECTED HFB

In the context of HFB theory [1], the particle-number-
projected (PNP) state is given by the standard expression

|�N 〉 ≡ P̂N |�〉 = 1

2π

∫ 2π

0
dφ eiφ(N̂−N)|�〉, (1)

where N̂ is the PN operator, φ is the gauge angle, P̂N is
the projection operator for N particles, and |�〉 is the HFB
wave function (generalized product state) which does not
have a well-defined particle number. This expression, after
the integral is discretized, is most often used in practical
calculations. However, it only constitutes a specific realization
of a more general form [35] given by the contour integral

|�N 〉 ≡ P̂N |�〉 = 1

2πi

∮
C

dz zN̂−N−1|�〉, (2)

where C is an arbitrary closed contour encircling the origin
z = 0 of the complex plane.

A. Shifted HFB states

Let us introduce several useful notations that will be used
later. First, we call the operator appearing under the integral in
Eq. (2) the shift operator,

ẑ(z) = zN̂ = e(η+iφ)N̂ , (3)

parametrized by means of a single complex number
z, ln(z) = η + iφ. The shift operator constitutes a non-unitary
Bogoliubov transformation (in fact, a non-unitary single-

particle basis transformation) of the simple kind, i.e.,

ẑa+
n ẑ−1 = za+

n ,
(4)

ẑanẑ
−1 = z−1an

or

ẑ−1a+
n ẑ = z−1a+

n ,
(5)

ẑ−1anẑ = zan.

Obviously, for z = 1, the shift operator is equal to identity.
Second, we define the shifted HFB states as

|�(z)〉 = ẑ(z)|�〉. (6)

When the HFB state |�〉 is expressed through the Thouless
theorem [1] (we assume an even number of particles for
simplicity),

|�〉 = N exp

(
1

2

∑
mn

Z∗
mna

+
ma+

n

)
|0〉, (7)

the shifted HFB states read

|�(z)〉 = N exp

(
1

2
z2

∑
mn

Z∗
mna

+
ma+

n

)
|0〉, (8)

where N is the normalization constant of the HFB state (7).
Similarly, for the HFB state expressed in the canonical basis
or for a BCS state,

|�〉 =
∏
n>0

(un + vna
+
n a+

n̄ )|0〉, (9)

the shifted state reads

|�(z)〉 =
∏
n>0

(un + z2 vna
+
n a+

n̄ )|0〉, (10)

where un and vn are the real HFB occupation amplitudes in the
canonical basis, and the product

∏
n>0 involves only one state

from each pair of canonical partners (see Ref. [1] for details).
We call ẑ(z) a shift, because it moves the HFB state |�〉 =

|�(1)〉 from its original position at z = 1 to a different point z

in the complex plane. Since consecutive shift transformations
correspond to products of the shift parameters z, the parameters
η and φ in Eq. (3) are additive.

B. Projected HFB states

The Thouless theorem (7) allows us to express the HFB
state |�〉 and shifted HFB state |�(z)〉 as sums of components
having different particle numbers,

|�〉 = N
∞∑

k=0

(Ẑ+)k

k!
|0〉, (11)

|�(z)〉 = N
∞∑

k=0

z2k (Ẑ+)k

k!
|0〉, (12)

where Ẑ+ = 1
2

∑
mn Z∗

mna
+
ma+

n is the Thouless pair-creation
operator. It then trivially follows that the shift transformation

054315-2



PARTICLE-NUMBER PROJECTION AND THE DENSITY . . . PHYSICAL REVIEW C 76, 054315 (2007)

does not change any of the particle-number-projected states of
Eq. (2),

|�N 〉 = N (Ẑ+)N/2

(N/2)!
|0〉, (13)

but only scales the coefficients in the sum of Eq. (12).
Since the shifted states (12) are manifestly analytical in z,

all closed contours C in Eq. (2) give, by the Cauchy theorem,
the same result. Among them, the integral in Eq. (1) simply
corresponds to the unit circle.

The analyticity of |�(z)〉 results in a simple and elegant
representation of the projected state:

|�N 〉 ≡ P̂N |�〉 = Res
z=0

z−N−1|�(z)〉. (14)

Indeed, in the sum of Eq. (12), only the term with N = 2k

particles is multiplied by 1/z and thus contributes to the
residue at z = 0. This observation allowed Dietrich, Mang,
and Pradal [36] to formulate the so-called method of residues
for calculating all kinds of matrix elements involving the
projected state |�N 〉. For example, the average HFB energy of
the projected state can be written as a ratio of two residues:

EN
HFB = 〈�|Ĥ |�N 〉

〈�|�N 〉 =
Res
z=0

z−N−1〈�|Ĥ |�(z)〉
Res
z=0

z−N−1〈�|�(z)〉 . (15)

The invariance of the projected state with respect to the
integration contour can be formulated in another way; namely,
one can utilize the property that an arbitrarily shifted HFB
state can be equally well used to project the particle number.
Indeed, for

|�N (z0)〉 ≡ P̂N |�(z0)〉 = 1

2πi

∮
C

dz zN̂−N−1|�N (z0)〉, (16)

we trivially have

|�N (z0)〉 = zN
0 |�N 〉; (17)

i.e., projection from a shifted HFB state changes only the
phase and normalization of the projected state. We refer to this
property as shift invariance.

C. HFB sum rules

Since the HFB state in Eq. (11) is a superposition of the
projected states in Eq. (13), that is,

|�〉 =
∞∑

N=0

|�N 〉, (18)

then the HFB energy EHFB,

EHFB = 〈�|Ĥ |�〉, (19)

can be expressed as the sum of the projected energies from
Eq. (15), i.e.,

EHFB =
∞∑

N=0

〈�N |�N 〉EN
HFB, (20)

weighted by the probabilities 〈�N |�N 〉 = 〈�|�N 〉 =
〈�|P̂N |�〉 of finding a given PN component in the HFB

state. Expression (20) constitutes a useful sum-rule condition,
which has to be obeyed by any Hamiltonian-based HFB+PNP
approach, and can be used to test the numerical precision of
PNP techniques.

A similar sum rule holds for any shifted state

|�(z0)〉 =
∞∑

N=0

|�N (z0)〉, (21)

i.e.,

〈�(z0)|Ĥ |�(z0)〉 =
∞∑

N=0

|z0|2N 〈�N |�N 〉EN
HFB, (22)

where the average energy of the shifted and unnormalized HFB
state is related to its HFB energy EHFB(z0) as

EHFB(z0) = 〈�(z0)|Ĥ |�(z0)〉
〈�(z0)|�(z0)〉 . (23)

Finally, the sum rule for the nondiagonal matrix elements can
be written as

〈�|Ĥ |�(z0)〉 =
∞∑

N=0

zN
0 〈�N |�N 〉EN

HFB. (24)

D. Transition matrix elements and transition densities

Calculation of the matrix elements in Eq. (15) between the
original and shifted HFB states is straightforward, because the
shifted states also belong to the family of the HFB states. In
particular, their overlap is given by the Onishi formula [1],
which in the canonical basis reduces to a simple expression,

〈�|�(z)〉 =
∏
n>0

(
u2

n + z2v2
n

)
. (25)

Similarly, the generalized Wick’s theorem [1] can be used for
evaluation of Hamiltonian matrix elements,

〈�|Ĥ |�(z)〉 = 〈�|�(z)〉EHFB(ρz, χz, χ̄z), (26)

where the so-called HFB transition energy density
EHFB(ρz, χz, χ̄z) is a function of the shifted particle and pairing
transition density matrices

ρz(rσ, r′σ ′) = 〈�|a+
r′σ ′arσ |�(z)〉/〈�|�(z)〉

=
∑

n

z2v2
n

u2
n + z2v2

n

ϕn(rσ )ϕ∗
n(r′σ ′),

χz(rσ, r′σ ′) = 〈�|ar′σ ′arσ |�(z)〉/〈�|�(z)〉
(27)

=
∑

n

z2unvn

u2
n + z2v2

n

ϕn(rσ )2σ ′ϕ∗
n(r′,−σ ′),

χ̄z(rσ, r′σ ′) = 〈�|a+
rσ a+

r′σ ′ |�(z)〉/〈�|�(z)〉

=
∑

n

unvn

u2
n + z2v2

n

ϕ∗
n(rσ )2σ ′ϕn(r′,−σ ′).

The transition density matrices become the standard density
matrices in the limit of z → 1. For simplicity, we do not
explicitly show the isospin variables; this is not essential in
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the context of the present work. (See Ref. [13] for a complete
formulation.)

E. Poles of transition densities

It is seen immediately from Eq. (27) that the transition
density matrices have imaginary axis poles at

zn = ±i|un/vn| (28)

and, therefore, are not analytical. These poles carry over
to the HFB transition energy density as well. The poles
appear beyond the origin, zn �= 0, provided all amplitudes
un are nonzero; we assume this hereafter, i.e., none of the
canonical states is being blocked. We can also safely assume
that all amplitudes vn are nonzero, because otherwise the
corresponding states would not contribute to the density
matrices at all. Of course, if there exist poles in the HFB
transition energy density, they must be canceled by the norm
overlap 〈�|�(z)〉, because the Hamiltonian matrix element
〈�|Ĥ |�(z)〉 is an analytical function of z.

However, as we discuss in the next section, whenever the
transition energy density is not related to a Hamiltonian,
or some approximations are involved in Hamiltonian’s con-
struction, the presence of the poles in Eq. (28) requires
special attention. For example, the exact HFB transition energy
density,

EHFB(ρz, χz, χ̄z) = Ekin(τz) + Efield(ρz) + Epair(χz, χ̄z),

(29)

is often split into the kinetic term Ekin(τz) that depends on
the kinetic transition density, the mean-field term Efield that
depends on the particle transition density, and the pairing term
Epair that depends on the pairing transition densities. It was
first realized in Ref. [30], and then discussed by several authors
[31,32,37], that the poles are not canceled separately in Efield

and Epair, but only in the sum thereof, i.e., for the total HFB
energy calculated for a given Hamiltonian.

As the origin of the pairing interaction is believed to
be different from that of the effective interaction in the
particle-hole direction, it is customary to employ different
Hamiltonians to calculate Efield and Epair. This, however, leads
to a nonanalytical behavior of EHFB due to the presence
of poles in the complex z plane and, hence, to a priori
contour-dependent projected HFB energies. We discuss this
question in the next section in the more general context of the
DFT energy functional.

III. PARTICLE-NUMBER-PROJECTED DFT

According to the DFT, the energy density of the system,
EDFT(ρ, χ, χ∗), can be written as a function of the local
particle ρ(r) and pairing χ (r) densities obtained as the diagonal
elements of the corresponding density matrices:

ρ(r) ≡
∑

σ

ρ(rσ, rσ ) =
∑
nσ

v2
n|ϕn(rσ )|2

(30)
χ (r) ≡

∑
σ

(−2σ )χ (rσ, r,−σ ) =
∑
nσ

unvn|ϕn(rσ )|2.

The nuclear density functionals for time-even systems also
depend on kinetic τ and spin-orbit J densities. An even larger
set of densities enters the energy density for time-odd systems
[13,38]. For simplicity, we discuss here the dependence on the
particle density only, because extension to other densities is
straightforward.

We note in passing that the densities corresponding to the
shifted HFB state |�(z)〉 in Eq. (6) can be written as

ρz(r) =
∑

n

|z|4v2
n

u2
n + |z|4v2

n

∑
σ

|ϕn(rσ )|2,
(31)

χz(r) =
∑

n

z2unvn

u2
n + |z|4v2

n

∑
σ

|ϕn(rσ )|2.

A. Transition energy density

In the DFT approach, the Hamiltonian of the system does
not appear explicitly; hence, the projected energy cannot be
calculated as its expectation value in the projected state.
However, since the DFT energy density is most often pos-
tulated, not derived, we can apply the same philosophy to
the projected energy, i.e., we can postulate the projected
functional. In doing so, we have to guarantee that it reverts
to the projected HFB energy [Eq. (15)] when the system is
described by a Hamiltonian. In the present study, we do not
discuss the construction of the projected DFT functional, but
simply assume, as in most calculations up to now, that the DFT
transition energy density EDFT(ρz, χz, χ̄z) is the same as the
DFT energy density EDFT(ρ, χ, χ∗) but with densities ρ, χ ,
and χ∗ [Eq. (30)] replaced by the transition densities ρz, χz,
and χ̄z [Eq. (27)]. This guarantees that in the limit of z → 1,
the projected functional gets back to the usual form.

Since the overlap [Eq. (25)] and HFB transition energy
density [Eq. (26)] depend only on the shift parameter z and
not on its complex conjugation z∗, it is natural to restrict
further considerations to the DFT transition energy density
parametrized in the same way, i.e.,

E∗
DFT(z) = EDFT(z∗). (32)

Moreover, by construction, the DFT transition energy density
depends only on z2, and therefore it must be a symmetric
function of z,

EDFT(−z) = EDFT(z). (33)

B. Projected DFT energy

Based on the above discussion, we postulate the projected
DFT energy in the form

EN
DFT =

∮
C

dzz−N−1〈�|�(z)〉EDFT(ρz, χz, χ̄z)

2πiRes
Z=0

z−N−1〈�|�(z)〉 . (34)

At variance with the Hamiltonian-based HFB theory, the
projected DFT energy may depend on the integration contour
C. Moreover, the numerator in Eq. (34) is, in general, not
equal to the residue at z = 0 as in Eq. (15). Consequently,
both the transition energy density and the contour C define
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the projected energy in DFT. Since the projected DFT energy
in Eq. (34) must be real, in view of the condition in Eq. (32),
we restrict further considerations only to contours which are
symmetric with respect to the real z axis. Accordingly, only the
upper-half contour C+ above the real axis can be considered,
and

∮
C

dz . . . = 2Re[
∮
C+

dz . . .].

C. Analytic properties

To proceed further, we must investigate the analytic
structure of the integrand EN (z) appearing in the numerator
of Eq. (34), that is,

EN (z) = z−N−1〈�|�(z)〉EDFT(ρz, χz, χ̄z). (35)

Let us first discuss the case when the DFT energy density
EDFT(ρ, χ, χ∗) is a polynomial in local densities; hence,
the DFT transition energy density EDFT(ρz, χz, χ̄z) is a
polynomial in transition densities. The case of fractional power
dependence requires special attention and will be discussed in
Sec. III F.

Within the polynomial assumption, poles of the transition
densities [Eq. (28)] do or do not appear as poles of the integrand
[Eq. (35)], depending on the structure of the DFT transition
energy density. [For instance, quadratic (p = 2) and cubic
(p = 3) terms are characteristic of two-body and three-body
interactions, respectively.] On the one hand, each polynomial
term of the order p in the densities in Eq. (30) brings about a
pole of the order p. On the other hand, each term in the overlap
of Eq. (28) produces a zero of the order q, where q is the
degeneracy factor of the HFB density matrix with the two-fold
Kramers degeneracy not counted. [Note that the product in
Eq. (28) contains only one term for each canonical pair.] In
particular, for the spherical shell of angular momentum j , the
degeneracy is q = j + 1

2 .
When the poles of transition densities and zeros of the

overlap 〈�|�(z)〉 are combined, the poles in EN (z) are of the
order p − q. For single-particle states that have only two-fold
Kramers degeneracy (q = 1), and for the terms with p = 2,
one obtains the first-order poles in EN (z) with, in general,
nonzero residues. Nonvanishing residues may also appear for
higher order poles corresponding to terms with p > 2. On the
other hand, for fourfold degenerate states with q = 2, terms
with p = 2 do not produce poles in EN (z), and only terms with
p > 2 may give rise to poles with nonvanishing residues. As
discussed in detail in Ref. [30], for the energy density derived
from a Hamiltonian, additional cancellations between terms
originating from particle-hole and particle-particle channels
occur, and the first-order poles disappear.

In Fig. 1, we schematically illustrate the analytic structure
of the integrand of Eq. (35). Crossed circles on the imaginary
axis represent poles of EN (z). Apart from the pole at z = 0, the
integrand may have poles [Eq. (28)] distributed symmetrically
in pairs with respect to the real axis. Poles located within the
unit circle (C0 in Fig. 1) correspond to the canonical states with
occupation numbers larger than 0.5, or with un/vn � 1, i.e.,
with canonical energies below the Fermi energy λ. Similarly,
poles outside the unit circle correspond to canonical states
lying above the Fermi energy.

z    iu/v
below λ

=

z   -iu/v
above λ

=

z   -iu/v
below λ

=

z    iu/v
above λ

=

z    0=

z    1=

HFB state |Φ>>| >|| >

Im[z]

Re[z]

C0

C1

C2

FIG. 1. (Color online) Schematic illustration of the analytic
structure of the integrand in Eq. (35) in the complex z plane (see text).
Small crossed circles denote imaginary axis poles. Three integration
contours (C0, C1, C2), symmetric with respect to the real axis, are
indicated. The poles having particle character (corresponding to
canonical states lying above the chemical potential λ) are located
outside the unit circle C0, while the hole poles lie inside C0. The
unprojected ground state wave function corresponds to z = 1.

The unprojected HFB ground state |�〉, located at z = 1,
is shifted along the integration contour C, and its overlap and
DFT transition energy contribute to the integrand of Eq. (35).
Standard projection formula (1) corresponds to the unit circle
C0. Contours C1 and C2 encircle a fewer number of poles
in EN (z), with contour C2 surrounding only the single pole at
the origin. Shapes of these contours are irrelevant, and only
the points at which they cross the imaginary axis matter. For
example, contours C1 and C2, shown in Fig. 1, are equivalent
to circular contours C1′ and C2′ of Fig. 2, the latter being more
practical in calculations. If the residues of the poles inside the
unit circle are nonzero, the three integration contours shown
in Fig. 1 may give different projected energies. Of course,
contours including poles located outside the unit circle (not
shown in Fig. 1) may still give different results.

D. Residues

Let us now discuss the residues of the integrand in Eq. (35).
From Eqs. (25) and (33), we see that the integrand is an odd
function of z,

EN (−z) = −EN (z). (36)

This is obvious for even particle numbers N , for which
Eq. (25) has been derived, while for odd N , an additional
power of z appears when shifting the blocked HFB state,

|�odd〉 = a+
n0

∏
n�=n0>0

(un + vna
+
n a+

n̄ )|0〉, (37)

054315-5



DOBACZEWSKI, STOITSOV, NAZAREWICZ, AND REINHARD PHYSICAL REVIEW C 76, 054315 (2007)

FIG. 2. Schematic illustration of analytic structure of the particle
transition density at a fixed point in space r. The poles (crossed
circles) and zeros (dots) of ρz are located on the imaginary z axis.
The regions of real negative ρz are shaded. Three circular integration
contours C0, C1′, and C2′ are indicated. See text for details.

i.e., ∣∣�odd
N (z)

〉 = za+
n0

∏
n�=n0>0

(un + z2 vna
+
n a+

n̄ )|0〉, (38)

which gives

〈�odd|�odd
N (z)〉 = z

∏
n�=n0>0

(
u2

n + z2v2
n

)
, (39)

and renders the integrand of Eq. (35) an odd function of z also
for odd systems.

Near the pole of Eq. (28), the term in the integrand that
produces the residue has the structure

EN (z) 	 Rn(z)

u2
n + z2v2

n

, (40)

where Rn(z) is an odd function of z, regular at the pole.
Similarly, for the pole at z = 0, we have

EN (z) 	 R0(z)

z
. (41)

Therefore, for pairs of poles that are symmetric with respect
to z = 0, the residues,

Res
z=±i|un/vn|

EN (z) = lim
z→±i|un/vn|

(z ∓ i|un/vn|)Rn(z)

u2
n + z2v2

n

= Rn(i|un/vn|)
2i|unvn| , (42)

have identical values. Hence, poles below and above the real
axis yield the same contribution to the contour integral. Based
on this consideration, the projected DFT energy in Eq. (34),
expressed in terms of residues, reads

EN
DFT =

R0(0) + 2
∑

n∈C
Rn(i|un/vn|)

2i|unvn|
Res
z=0

〈�|�(z)〉 (43)

or

EN
DFT =

n̄∑
n=0

EN
DFT(n), (44)

where EN
DFT(n) denotes the contribution from the nth pole,

including the n = 0 pole at the origin up to n = n̄ (last pole
encircled by C).

As an example, we explicitly calculate the residues for a
term that depends on the squared particle density,

EDFT(ρz) = Cρ

∫
d3rρ2

z (r), (45)

with

ρz(r) =
∑

n

z2v2
n

u2
n + z2v2

n

∑
σ

|ϕn(rσ )|2, (46)

and Cρ being a coupling constant. Assuming a twofold
Kramers degeneracy, the corresponding residue at ±i|un/vn|
is

Res
z=±i|un/vn|

EN (z) = 2Cρv2
n

(
−v2

n

u2
n

) N−2
2

∫
d3r

(∑
σ

|ϕn(rσ )|2
)2

×
∏

m�=n>0

v2
m

(
u2

m

v2
m

− u2
n

v2
n

)
. (47)

One can see that residues can be very large for poles
corresponding to canonical states that have occupation num-
bers close to unity. These very large contributions to the
projected DFT energy must be compensated by a similarly
large contribution from the single pole at z = 0. Therefore,
within the DFT formalism, one cannot use the HFB expression
(15) that involves only one residue at z = 0.

Recall from our discussion in Sec. III C that the poles have
the order of p − q. In the above example, the polynomial
order is p = 2; hence, the residue of Eq. (47) must vanish
if the degeneracy factor q � 2. This is indeed the case as for
q > 1 u2

m = u2
n for at least one value of m �= n.

E. The DFT sum rules

The HFB sum rules derived in Sec. II C are based on
the linearity of the Hamiltonian, by which a matrix element
involving the HFB state is a sum of matrix elements calculated
for all the PNP components [Eq. (18)]. To derive the analogous
sum rules for the projected DFT energies, one can only use
properties of the underlying transition energy density. To this
end, we recall that in the HFB theory, the mixing of particle
numbers corresponds to the broken U(1) gauge symmetry, and
that the PNP actually corresponds to expanding the HFB state
in irreducible representations of this group. This observation
can be extended to the DFT transition energy density, expanded
in these same irreducible representations, with the projected
DFT energies being the expansion coefficients. The resulting
sum rules must follow from the closure relations on the group
manifold.
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These general remarks can be expressed in an explicit form
in the following way. By using integration contours that are
circles of radius |z0| around the origin, z = z0e

iφ , we have the
following expression for the projected DFT energy of Eq. (34):

〈�N |�N 〉EN
DFT = z−N

0

2π

∫ 2π

0
dφe−iNφE(φ), (48)

where E(φ) denotes the part of the integrand that does not
depend on N , i.e.,

E(φ) = 〈�|�(z)〉EDFT(ρz, χz, χ̄z) at z = z0e
iφ. (49)

Hence, the DFT projected energy is given by a Fourier
transform of E(φ). Since the Fourier components constitute a
complete set of functions on a circle,

∑∞
N=0 e−iNφ = 2πδ(φ),

we obtain the DFT sum rule,

〈�|�(z0)〉EDFT(ρz0 , χz0 , χ̄z0 ) =
∞∑

N=0

zN
0 〈�N |�N 〉EN

DFT, (50)

which is the analog of the HFB sum rule for the matrix elements
of Eq. (24). For z0 = 1, we obtain the DFT counterpart of the
HFB sum rule (20):

EDFT(ρ, χ, χ∗) =
∞∑

N=0

〈�N |�N 〉EN
DFT. (51)

We note that in the above derivations, z0 is an arbitrary
complex number; its modulus fixes the radius of integration
contour, while its phase gives the point on the circle that fixes
the starting point of the integral in Eq. (48). This starting point
has obviously no importance for the value of the integral. The
sum rule (50) gives, therefore, a representation of the DFT
transition energy density in terms of a series expansion in z0,
which converges only on the ring between the poles. For each
such ring, the projected DFT energies EN

DFT are different, and
the DFT transition energy density is thus equal to a different
series expansion. It is obvious that these different values of
the projected DFT energies do not contradict the continuity of
the DFT transition energy density. In this way, all projected
DFT energies for arbitrarily chosen contours of integration
correspond to this same common DFT energy functional.

F. Density-dependent terms with fractional powers

Let us now analyze the terms in the DFT energy density
that depend on fractional powers α of the local density. In
many functionals related to the Skyrme interaction, and for
the Gogny force, such terms are quite often postulated, both in
the particle-hole and particle-particle channels (see Ref. [12]
for a review). In particular, the familiar density-dependent
term of the Skyrme force, which is proportional to ργ (r),
produces a contribution of the order of α = 2 + γ to the DFT
energy density. Similarly, the density-dependent, zero-range
term of the Gogny force yields a contribution to the DFT
energy density that is of α = 1 + γ order (for this force, γ =
1
3 ), provided the particle-hole and particle-particle terms are
consistently added, which is usually the case for applications
using the Gogny force. We note here in passing that also the
Skyrme force SkP [39] has been defined and should be used

with the particle-hole and particle-particle terms consistently
added, and hence it then also gives a contribution to the DFT
energy density that is of α = 1 + γ order (for this force, γ =
1
6 ).

One more aspect of the density-dependent term also
influences the order of its contribution to the DFT energy
density, namely, the value of the x3 exchange parameter; see,
e.g., Ref. [12]. It turns out that for x3 = 1, the particle-particle
term vanishes, while the particle-hole term has the form of
(ρn + ρp)γ ρnρp. Therefore, both in the neutron and proton
subsystems, the order of the contribution to the DFT energy
density is then α = 1 + γ . Values of x3 = 1 were postulated
for older Skyrme forces SI–SVI [40] (for these forces, γ = 1),
and hence for them one has α = 1 + γ . Incidently, value of
x3 = 1 was also postulated for the Gogny force; i.e., for this
force, one obtains α = 1 + γ for two entirely independent
reasons. Of course, these two reasons together are as good as
any one of them.

By taking into account the degeneracy factors q discussed
in Sec. III C, the resulting poles are of the order of α − q = 1 +
γ − q for the Gogny, SI–SVI, and SkP forces, and α − q =
2 + γ − q for all other Skyrme forces. Since typical values
of γ are between 0 and 1, for nondegenerate states (q = 1)
the DFT transition energy density always has poles at zn =
±i|un/vn|. But more importantly, the fractional powers lead to
the multivalued DFT transition energy density on the complex
z plane, and now we are going to discuss this aspect of the
problem.

In the standard treatment of fractional powers α of a
complex function, cuts along the negative real axis must be
introduced. Tto apply this procedure to fractional powers of
the local transition densityof Eq. (46), we must identify on the
complex z plane the lines along which ρz(r) is real negative.

Obviously, ρz(r) is real positive along the real z axis and
real along the imaginary z axis. To simplify the discussion, let
us assume that the sum in Eq. (46) is finite, which is always
the case in any practical calculation. In such a case, ρz(r) has
a finite number, say M , of different first-order poles along the
positive imaginary axis, and the same number M of poles along
the negative imaginary axis. Moreover, since all coefficients
in Eq. (46) are positive, ρz(r) must have a first-order zero
between each pair of poles on the positive imaginary axis,
and similarly on the negative imaginary axis. Since ρz(r) also
has a second-order zero at z = 0, we conclude that it has
altogether 2M zeros on the imaginary axis. It is also obvious
that ρz(r) is a rational function with a 2M-order polynomial
in the numerator, and thus we conclude that all the zeros of
ρz(r) are located on the imaginary axis. Therefore, the cuts
for possible fractional powers α must be located along the
imaginary axis, and connect zeros of ρz(r) with its adjacent
poles.

The above discussion is visualized in Fig. 2. The left portion
shows schematically the transition density ρIm[z](r) along the
imaginary axis Im[z] oriented vertically. The plot illustrates
the transition density of Eq. (46) in one selected point of space
r, i.e., values of wave functions at r enter only as numerical
coefficients. There appear four poles and three zeros of ρIm[z]

on the positive imaginary axis, the same number of poles and
zeros on the negative imaginary axis, and the second-order zero

054315-7



DOBACZEWSKI, STOITSOV, NAZAREWICZ, AND REINHARD PHYSICAL REVIEW C 76, 054315 (2007)

0.00

0.10

0 5 10

ρρ ρρ z(r
) 

(f
m

-3
)

r (fm)

z=1z=i

-0.0002

0.0002 z=1
z=i

18O18O

FIG. 3. (Color online) Ordinary (z = 1) and transition (z = i)
densities in 18O calculated in HFB+SLy4 as functions of r . The
upper part of the figure shows (in extended scale) the small region of
radii where the transition density becomes negative.

at the origin. Sections of the imaginary axis where the density
is negative are shaded. In the right portion of Fig. 2 we show
poles (crossed circles) and zeros (full dots) of the transition
density on the complex z plane, along with the three integration
contours C0, C1′, and C2′ discussed above. The cuts in the
complex z plane connecting zeros and poles, corresponding to
real negative values of ρz, are indicated by vertical segments.

While the location of the poles is independent of r, the
position of zeros of the transition density is r dependent. To
visualize this, we plot in Fig. 3 the total ordinary (z = 1)
and transition (z = i) densities in 18O obtained within the
SLy4 energy density functional. One can see that the transition
density is positive almost everywhere; only in a very narrow
region near r 	 5 fm does it become slightly negative, as
shown in the upper part where the scale is expanded by a
factor of 1000. Such a behavior of ρz(r) at z2 = −1 can be
easily understood from Eq. (46). Indeed, strongly occupied
states with v2

n 	 1 always yield positive contributions, while
negative contributions of states with v2

n < u2
n can only appear

in the surface region where the least bound canonical states
dominate.

By the same token, we can see that strong negative
contributions may appear when the integration contour passes
slightly below a pole located just above the unit radius, i.e.,
v2

n is slightly smaller then u2
n. Such a situation is predicted in

26O, where the occupation probability of the canonical 2d3/2

state equals 0.486. As shown in the bottom part of Fig. 4,
the transition density at z = i is dominated by this particular
contribution and becomes strongly negative beyond r 	 2 fm.

We are now ready to discuss contour integration of terms
depending on fractional powers of the transition density.
Contour C0 shown in Fig. 2 crosses the imaginary axis in
sections where there is no cut, and thus it always stays on
the same Riemann sheet. On the other hand, contours C1
and C2 of Fig. 1, or contours C1′ and C2′ of Fig. 2, cross
the imaginary axis by passing through cuts onto another
Riemann sheet. Since the transition density of Eq. (46) is
an even function of z, the phase of the fractional power α

of the transition density increases or decreases by 2πα when
going across each of the two cuts. Therefore, after returning
to z = 1, ρz(r) is multiplied by exp(±4πα), and thus it is
not a continuous function at z = 1, unless α = k/2. This is
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FIG. 4. (Color online) Bottom: ordinary (z = 1) and transition
(z = i) densities in 26O calculated in HFB+SLy4 as functions of r .
Top: the real parts (solid lines) and imaginary parts (dashed lines)
of the 1/6 powers of the ordinary (z = 1) and transition (z = ie±iε)
densities.

quite unacceptable, as the presence of the phase creates serious
problems in interpreting the projected DFT energies [Eq. (34)]
(see, e.g., the sum rule condition discussed in Sec. III E).

Formally, by using powers of square roots in density-
dependent terms, i.e., α = k/2, one can guarantee that the
integration contours return onto the original Riemann sheet
and that the transition energy density is a continuous function
of z. However, even in such a case, one important property of
the DFT transition energy density of Eq. (33) is lost, namely,
the density-dependent term in the energy density becomes an
odd function of z, and the corresponding term in the integrand
of Eq. (35) becomes an even function of z. This is so because
the square root has opposite signs on the two Riemann sheets
in question. Consequently, contour integrals of such terms
would vanish, and the density-dependent terms would yield
zero contribution to the PN-projected energy. This is a rather
disastrous result. Hence, we are forced to conclude that the use
of continuous contours for fractional powers is not a viable
prescription for constructing the projected DFT energies.

Let us now discuss the way of evaluating contour integrals
in all practical PNP calculations up to now. Unfortunately, such
calculations have always disregarded the analytic structure of
the underlying integrands. In fact, the fractional powers of
transition density,

ρα
z (r) = |ρz(r)|α exp {iα arg [ρz(r)]} , (52)

are practically determined by computer compilers. In
Eq. (52), the so-called argument arg[ρz(r)] of ρz(r) is defined
as the phase of the complex variable ρz(r); hence, it is
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C1’’

C1’’’

FIG. 5. Modified closed contour C1′′ that encircles the zero of
the transition density. The poles (zeros) of ρz are marked by crossed
circles (dots). The equivalent circular contour C1′′′ lying between the
zero of ρz and the previous pole is also indicated. See text for more
details.

contained in the interval of −π to π . This usual prescription
corresponds to stepping over the cut whenever the contour
approaches the imaginary axis for arg[ρz(r)] = ±π , i.e., for
real negative transition densities ρz(r) < 0. In this way, the
integrand is always calculated on the same Riemann sheet, but
the integration contour is not closed.

The contour can be closed by adding a piece that goes
around the zero of the transition density ρz(r). This is
illustrated in Fig. 5, which shows a modification of contour
C1′ of Fig. 2 near the positive imaginary z axis. [An analogous
mirrorlike detour is made near the negative imaginary axis.]
The resulting contour C1′′ always stays on the same Riemann
sheet and, therefore, the integration result does not depend
on the radius. On the other hand, the contribution due
to the additional path surrounding the zero is affected by
the discontinuity of the integrand along the cut. Such a
discontinuity in the transition density is shown in the top
panel of Fig. 4 for α = 1/6 [Eq. (52)]. Since the ordinary
density (z = 1) is real and positive, its fractional power is
also real and positive. On the other hand, transition densities
[Eq. (46)] corresponding to z± = ie±iε with ε = 0.5◦, i.e.,
near the positive imaginary axis, are complex. While their real
parts are practically identical on both sides of the cut, their
imaginary parts have opposite signs; hence, a discontinuity
is encountered. (Of course, since the directions of integration
are opposite, the contributions to the PNP energy from both
segments z± of the additional path are identical.)

When transforming the contour integration in Eq. (34)
into the integral along the imaginary y axis, one must do a
change of variables from z to iy. This introduces the additional
factor i−N in the integrand. For that reason, for even N , the
discontinuity in the imaginary part of the density-dependent
term of fractional order contributes to the real part of the
projected DFT energy. As the discussion in Sec. III D proves,
the same holds for odd values of N .

Figure 5 also shows the circular contour C1′′′ lying between
the zero of ρz and the previous pole |zn−1|. This contour is
formally equivalent to the deformed contour C1′′ but it is easier
to handle in practical applications. The radius of C1′′′ must be
slightly greater than |zn−1| and smaller than the lowest zero
of ρz(r), minimized over the whole space r, associated with
the branching point corresponding to zn. The use of contour
C1′′′ guarantees that the integration of fractional-order terms
is done properly.

Altogether, blind application of prescription (52) can lead
to spurious and entirely uncontrolled contributions to the
projected DFT energies. Excepting Ref. [23], this fact has been
entirely overlooked in all practical applications of the PNP
method to date, and it casts serious doubts on the reliability
of the obtained results. The lrgest contributions are, of course,
obtained when the integration contour passes slightly below
a pole of the DFT transition energy density. For the Skyrme
functionals in Sec. IV B, we present specific examples of such
situations.

The appearance of spurious contributions is, in fact,
independent of the order of divergence at the pole. Therefore,
it also shows up for “integrable” poles, diverging with powers
of α − p = 1 + γ − p < 1, discussed for the Gogny force in
Ref. [37].

IV. NUMERICAL EXAMPLES

To illustrate theoretical findings presented in Sec. III, we
carried out numerical calculations within the Skyrme-DFT
method. We used the code HFBTHO [41] which is capable
of handling spherical and axially deformed nuclei within
the Lipkin-Nogami (LN) approximation followed by the
PNP. This corresponds to the projection-after-variation (PAV)
method of restoring the PN symmetry. By using a new version
of HFBTHO, we also performed full variation-after-projection
(VAP) calculations analogous to those of Ref. [23].

To provide illustrative examples, we study spherical and
deformed configurations in 18O and in 32Mg calculated using
the Skyrme functionals SIII [40] and SLy4 [42]. These two
parametrizations differ in a significant way with respect to the
PNP method. The density-dependent term of SIII contributes
to the energy density as (ρn + ρp)ρnρp. Therefore, both in
the neutron and proton subsystems, the powers p (Sec. III E)
of the density dependence are equal to 2. Consequently, from
the PNP perspective, the density-dependent term of SIII is
not any different than the density-independent terms. On the
contrary, the density-dependent term of SLy4 is proportional
to [ρn + ρp]1/6 and exemplifies the case of fractional-power
dependence discussed in Sec. III F. The contact pairing force
of the volume type (density independent) was used in the
particle-particle channel. All calculations have been performed
in the spherical harmonic-oscillator basis of N0 = 6 or 10
shells for 18O or 32Mg, respectively.

A. Numerical accuracy

To calculate residues, we take circular contour integrals of
radius r0:

z = r0e
iφ. (53)
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TABLE I. Contributions EN
DFT(n) in 18O from the individual neutron poles to the projected DFT energy of Eq. (44) for N = 10 calculated

using the SIII and SLy4 Skyrme functionals. For each parametrization, the last column shows the sum of the nth lowest contributions
[Eq. (44)], with the values of EN

DFT marked by boxed numbers. Canonical energies εn and pole positions zn are also given. All energies are
in MeV.

n Orbital SIII SLy4

εn zn EN
DFT(n)

∑n

m=0 EN
DFT(m) εn zn EN

DFT(n)
∑n

m=0 EN
DFT(m)

0 n.a. n.a. 0.000 −1.510 + 6 −1.510 + 6 n.a. 0.000 −2.910 + 6 −2.910 + 6
1 1s1/2 −35.181 0.021 1.510 + 6 0.178 −36.985 0.038 2.910 + 6 731.008
2 1p3/2 −20.302 0.045 0 0.178 −20.691 0.077 −8.610 + 2 −125.448
3 1p1/2 −15.040 0.072 −1.410 + 2 −140.540 −14.783 0.131 −1.710 + 2 −142.584
4 1d5/2 −6.528 1.429 0 −140.540 −6.399 1.462 1.210 − 1 −142.464
5 2s1/2 −2.166 11.255 −1.110 + 3 −1235.194 −2.685 5.702 −4.810 + 1 −190.628
6 1d3/2 2.831 17.458 0 −1235.194 3.143 10.952 4.010 + 1 −150.627
7 1f7/2 10.265 31.398 0 −1235.194 10.325 19.033 2.510 + 1 −125.608

The integrals are evaluated using the Fomenko discretization
method [43,44], whereby values of integrands are summed
up at gauge angles φk = kπ

L
for k = 0, . . . , L − 1. This

corresponds to the upper half circle in the complex z plane,
and, as discussed in Sec. III B, only the real part of the
integral is kept. For analytic integrands, the Fomenko method
delivers exact results up to admixtures of wave functions with
N ± L,N ± 2L,N ± 3L, . . . particles. The main question in
applying this method to nonanalytic integrands, which have
poles in the complex plane, is to what extent can it deliver
equally accurate numerical results.

The Fomenko method clearly fails when there is a pole
[Eq. (28)] lying just on the integration contour, r0 = |zn|,
and an even number of points L is used. In such a case, the
integration point with k = L/2 is located exactly at the pole
of the integrand. Therefore, in most practical calculations, an
odd number of integration points, most often L = 7 or 9, was
used.

However, a more stringent condition on L results from
the fact that the discretization method must fail whenever
the integrand varies too rapidly between two neighboring
integration points. Therefore, the spacing between points
πr0/L must be appropriately smaller than the distance from the
pole. For odd values of L, the integration points corresponding
to k = (L ± 1)/2 are closest to the imaginary axis; hence, one
arrives at the condition

πr0

L
<

√
(r0 − |zn|)2 +

(πr0

2L

)2
, (54)

or

L >

√
3πr0√

4|r0 − |zn||
. (55)

In the present study, a large number of L = 93 integration
points was used, which allows for calculating the contour
integrals with radii r0 that differ by as little as 3% from the
position of the closest pole |zn|.

B. Dependence of projected energy on integration contours in
spherical nuclei

In this section, we present examples of calculations per-
formed for the spherical shape of 18O, for which degeneracy
factors introduced in Sec. III C equal q = j + 1

2 . Table I
displays the results of PNP calculations performed by using
circular integration contours [Eq. (53)] of different radii.
The precision of numerical integrations was confirmed by
calculating contributions from individual poles. This was
done by carrying out contour integrals over small circles
surrounding the poles. In this way, we determined residues
from the individual poles EN

DFT(n) and checked that their sums,∑n
m=0 EN

DFT(m), agree very well with the results of contour
integrals along circular contours C, as required by the Cauchy
theorem (44).

As seen in Table I, contributions of the n = 0 poles at z = 0
are huge. Therefore, the DFT residues at z = 0 cannot at all
be interpreted as the projected energies, as was the case for the
PNP HFB theory, Eq. (15). Residues at z = 0 are canceled,
to a large extent, by contributions from the 1s1/2 deep-hole
states, which are large, because they contain large factors of the
type (−v2

n/u
2
n)N for u2

n 	 0 [see Eq. (47)]. Contributions from
other poles are also quite large, and apart from the integration
contour at |z| = 1, none of the other contours reproduce the
correct projected energy shown by a boxed number.

For the SIII parametrization, one can see that contributions
from poles associated with spherical states with j � 3/2
(q � 2) are indeed equal to zero, cf. discussion in Sec. III C.
This property does not hold for SLy4, for which the projected
DFT energies have jumps also when the integration contours
cross the j � 3/2 poles. In this case, the jumps are not related
to nonzero residues, but, as discussed in Sec. III F, they
occur because the integration contours are not closed for the
fractional-power terms.

Figure 6 shows the projected DFT-SLy4 energies obtained
by using circular integration contours of different radii r0.
These calculations illustrate properties of poles listed in
Table I. The contributions originating from the density-
independent and density-dependent terms of the Skyrme force
are separated. The latter terms yield the fractional-power
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FIG. 6. (Color online) N = 10 projected DFT-SLy4 energies of
Eq. (44) calculated in 18O as functions of the integration radius r0.
Panels (a) and (b) show, respectively, results for the terms originating
from density-independent and density-dependent parts of the Skyrme
force. Positions of individual neutron poles are marked by arrows. The
inset shows the results near the 2s1/2 pole on an expanded scale. The
result of calculations obtained with the equivalent contours passing
below the branching point associated with the 2s1/2 pole (cf. Fig. 5)
is shown by a dotted line.

terms in the DFT energy density discussed in Sec. III F.
As in the SIII case, the density-independent terms exhibit
jumps only at the two j = 1/2 poles. On the other hand, the
density-dependent terms show jumps at all poles, and these
jumps carry over to the total projected DFT energies shown in
Table I. [The small jump at the 1d5/2 pole, 120 keV, is practi-
cally invisible in the scale of Fig. 6.] Moreover, contributions
of the density-dependent terms are not constant between the
poles, as would be required by the Cauchy theorem. This is
caused by the prescription (52) to step over the cuts in the
complex plane and illustrates spurious contributions to the
projected DFT energies discussed in Sec. III F. As shown in
the blown-up inset in Fig. 6(b), these spurious contributions
appear just below the pole thresholds (i.e., for small negative
values of r0 − |zn|), and they can be quite large—of the order
of several tens of MeV. The gradual development of spurious
contributions below threshold has been explained in Sec. III F.
Namely, if the contour radius is only slightly greater than
|zn−1|, the branching point associated with the pole zn is always
outside for all values of r. With increasing r0, more and more
branching points corresponding to different regions of space
fall inside the contour, leading to the spurious behavior. As
discussed earlier, one can eliminate this subthreshold effect by
taking equivalent contours discussed in the context of Fig. 5.
Such a procedure is illustrated by a dotted line in the inset of
Fig. 6(b).

The spurious contributions may result in large errors in
the projected PNP energies, making results of the standard
PNP calculations meaningless. Unfortunately, this is true not

only for Skyrme forces that use density-dependent terms of
fractional orders but also for the Gogny force, which contains
a density-dependent term of order γ = 1/3.

C. Calculations for deformed nuclei

In our previous study [45], we calculated the complete HFB
mass chart of even-even nuclei by performing the PNP of
paired ground states determined by the LN method. At this
point, when performing the PNP calculation in each individual
nucleus, one should take care of the cases when one of the poles
zn turns out to be near the standard r0 = 1 integration circle
(unit circle).

To produce the ground state masses for all even-even
nuclei lying between the two-nucleon drip lines, one has to
calculate about 6000 nuclei. Moreover, each nucleus has to
be calculated three times, by starting from oblate, spherical,
and prolate initial shapes. We have found that among these
6000 nuclei, about 100 have a neutron or proton state with
occupation numbers near 1/2. Therefore, the standard PNP
method yields about 100 questionable results across the mass
chart. However, the situation is much more serious when
performing the constrained HFB calculations discussed in the
following sections.

D. Distribution of poles as a function of deformation

When increasing the quadruple deformation, states with
the smallest (largest) angular momentum projections onto
the symmetry axis, �, become more (less) bound on the
prolate side, and the opposite holds for the oblate side. For
states located above the shell gap, this means that low-�
and high-� orbitals become more occupied with increasing
prolate and oblate deformation, respectively. Therefore, at
some deformation, these orbitals cross the Fermi energy, and
the corresponding poles cross the unit circle. An analogous
situation may also occur for orbitals located below the shell
gap, whereupon high-� and low-� Nilsson orbitals become
less occupied with increasing prolate and oblate deformation,
respectively, and also may cross the Fermi energy. We wish to
emphasize that the problem occurs not at the point where the
orbitals from above and below the shell gap cross each other,
leading to a configuration change, but at deformation where
either of these orbitals crosses the Fermi energy.

Such a case is illustrated in Fig. 7 for the nucleus 18O.
In pure HFB calculations (no LN correlations included), this
nucleus has neutron pairing only. At the spherical shape, the
1d5/2 shell is located above the N = 8 shell gap, i.e., it has
particle character (|z| > 1). The three-fold degeneracy of this
shell (q = 3) makes the contribution from this pole to the
projected energy vanish. At nonzero deformations, however,
the degeneracy is lifted, and three individual poles (q = 1)
appear in the complex plane. Moreover, near β = 0.12 and
β = −0.12, poles corresponding to the � = 1/2 and � = 5/2
Nilsson levels cross the unit circle |z| = 1.

The situation is much worse for nuclei having more single-
particle states with poles close to the unit circle. The neutron-
rich nucleus 32Mg is such a complicated case, illustrated in
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FIG. 7. (Color online) Neutron poles zn in 18O [Eq. (28)] as
functions of quadrupole deformation β, calculated within the HFB-
SIII method with volume pairing interaction.

Fig. 8. This example is calculated in the HFB+LN approach,
in which both neutron and proton pairing is nonzero. For
completeness, canonical single-particle energies en associated
with the poles zn are plotted in Fig. 9.

As can be seen in Fig. 8, there appear numerous crossings
of poles with the unit circle as a function of deformation.
On the prolate side, neutron poles 1f7/2,�=1/2 (Nilsson level
[330]1/2) and 1d3/2,3/2 ([202]3/2) cross the unit circle at
the same deformation where they cross one another. At
larger deformation, the same situation occurs for the 1f7/2,3/2

([321]3/2) and 1d3/2,1/2 ([200]1/2) orbitals. For protons, a
single 1d5/2,5/2 ([202]5/2) orbital crosses the unit circle at small
deformations. On the oblate side, neutron orbitals 1f7/2,5/2

([312]5/2) and 1d3/2,1/2 cross the unit circle at different
deformations, near the point where they cross one another,
while the proton 1d3/2,1/2 orbital stays near the unit circle for
a wide range of deformations.

As discussed in Secs. III C and IV B, results of the PNP,
at least for the density-independent terms, must only depend
on the residues of poles that are inside the integration radius
r0. However, whenever a given pole crosses the integration
contour, the projected energy must undergo a sudden jump as
a function of deformation. This jump is, of course, equal to
the residue at this pole. The fact that a given pole crosses the
integration contour could be without consequence, provided
the contour is shifted back to always stay between the same
poles. This is always possible, as long as the poles do not

cross around the contour. It is obvious that whenever they do,
the projected energy may have a sudden jump that cannot be
avoided by a contour shift. On the other hand, when two poles
cross precisely at the integration contour, the corresponding
degeneracy factor q increases by a unity, and the poles may
simply disappear (at least for the terms that show polynomial
density dependence), in which case the projected energy may
stay smooth. Such cases are studied in the next section.

E. Deformation energy within the HFB+PNP method

Results in this section were obtained with the SIII Skyrme
force whose density-dependent terms do not create additional
problems (cf. Sec. IV). Let us first analyze the simpler case
of 18O. Figure 10 presents the deformation energy E(β) as
a function of the quadrupole deformation β. As a reference
curve, we show the unprojected deformation energy emerging
from the HFB calculations and the associated PNP energy
curve (PAV; solid squares; the contour radius r0 = 1). Near
the ground state (β = 0), the projected energy is lowered by
about 1.5 MeV because of additional PN correlations. At
larger deformations, the correlation energy decreases owing
to the stronger static neutron pairing.

At deformations β 	 −0.12 and β 	 +0.12, the projected
energy curve exhibits unphysical jumps. By comparing this
with Fig. 7, one concludes that at these deformations the
neutron 1d5/2 poles cross the integration contour. Obviously,
the residue contributions of these poles cause the sudden jumps
in the deformation energy. The 1d5/2,5/2 pole introduces a
positive contribution at β 	 −0.12, while the 1d5/2,1/2 pole
introduces another positive contribution at β 	 +0.12. Based
on this observation, two other sets of PAV calculations were
carried out. The first calculation (open circles) was done by
excluding contributions from the 1d5/2 poles, as is the case
for the ground state configuration. This can be accomplished
by reducing the integration radius from r0 = 1 to a smaller
value of about r0 = 0.1, cf. Fig. 7. At small deformations,
−0.12 � β � 0.12, the new results are identical to those
obtained with the unit circle, and at the larger deformations
(prolate or oblate), the energy curve smoothly continues
without any jump. Thus, in this example, an appropriate shift of
the integration contour allows us to obtain smooth and unique
projected energy. The second PAV curve (open squares) was

FIG. 8. (Color online) Neutron
(left) and proton (right) poles zn

[Eq. (28)] as functions of quadrupole
deformation β calculated for 32Mg
with the SIII functional and volume
pairing interaction.
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FIG. 9. (Color online) Similar to
Fig. 8, except for canonical energies
ek .

obtained by always including the lowest 1d5/2 pole, i.e., by
continuously varying the integration radius as a function of
β, to ensure that it always stays between the first and second
1d5/2 pole (cf. Fig. 7). The resulting energy curve coincides
at large deformations with the standard PAV result, and then
smoothly continues to β = 0, where the 1d5/2 poles (q = 3)
disappear.

Figure 10 also presents the fully self-consistent VAP
results. Similar to the PAV case, two sets of calculations were
performed. The solid (open) stars correspond to including
(excluding) the contributions from the lowest 1d5/2 poles. In
both cases, one obtains smooth curves, which, beyond the
spherical point, differ from one another.

In this rather simple case of 18O, both in the PAV and VAP
calculations, one can avoid unphysical jumps of the projected
energy curve by making a specific selection of “active” poles
that are considered during contour integration. Such selection
of residues can, in principle, become a part of the definition
of the projected energy. The variational principle can then be
invoked to pick the selection that yields the lowest projected
energy. In the discussed case of 18O, the PAV and VAP energies
obtained by excluding the 1d5/2 poles are the lowest, and
they are smooth functions of deformation. Therefore, such

FIG. 10. (Color online) Deformation energy E(β) as a function
of quadrupole deformation β, calculated for 18O with the SIII force
and volume pairing interaction. Results of HFB (open triangles) are
compared with different variants of PAV (squares and circles) and
VAP PNP (stars) (see text for details).

a selection can be adopted for the final PNP energy in this
nucleus. It is clear, however, that one cannot a priori tell
which selection of poles leads to the lowest projected energy.
For example, in heavier oxygen isotopes, the lowest energy is
obtained by including some of the 1d5/2 poles.

Let us now consider a more complicated case of the
HFB+LN calculations for the neutron-rich nucleus 32Mg. The
total HFB energy (without the corrective λ(2) LN term) is
shown in Fig. 11 as a function of β. Solid squares denote
the result of PAV PNP calculations on the top of HFB+LN. At
β 	 +0.1, the PAV curve exhibits a small jump, after which its
behavior changes character. This is clearly related to the proton
1d5/2,5/2 pole crossing the unit circle, cf. Fig. 8. Otherwise,
the PAV deformation energy is quite smooth as a function of
deformation, despite the fact that three pairs of neutron poles
cross the unit circle in the deformation range considered. This
apparent lack of sensitivity to neutron poles can be traced
back to the fact that they cross the integration contour at or
near points where they pairwise cross one another. Therefore,
the increasing degeneracy factor q makes the poles disappear
at the crossing points; hence, the total PAV curve behaves
smoothly.

Following the example of 18O, we also performed
PAV calculations for 32Mg wherein we took into account

FIG. 11. (Color online) Deformation energy E(β) as a function of
quadrupole deformation β calculated for 32Mg with the SIII force and
volume pairing interaction. Results of the PAV HFB+LN calculations
(squares and triangles) are compared with the VAP PNP results (dots).
The standard HFB result is shown by open triangles.
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FIG. 12. (Color online) Contributions to the PAV energy of 32Mg
from the three selected poles as a function of deformation β.

contributions from all the poles that contribute to the ground
state configuration (β = 0). The resulting PAV curve (solid
triangles in Fig. 11) behaves smoothly but shows unphysical
behavior at very large deformations. An explanation of this
artifact follows from Fig. 12, where we plot energy contribu-
tions from the most important poles: (i) the neutron 1d3/2,3/2

pole (solid circles; it leaves the unit-circle at β 	 0.22, and we
have to add its contribution beyond this point); (ii) the neutron
1d7/2,1/2 pole (solid squares; it enters the contour at β 	 0.22,

and we have to subtract its contribution beyond this point);
and (iii) the proton 1d5/2,5/2 pole (solid triangles; it leaves
the contour at β 	 0.1, and we have to add its contribution
beyond this point). Interestingly, pole contributions to the total
projected energy oscillate with deformation. As expected, the
residues vanish when the corresponding poles cross at the
integration circle, cf. Fig. 8. However, oscillations between
the crossing points can become quite large, as is the case for
the proton 1d5/2,5/2 pole; hence, the projected energy curve
obtained by keeping contributions from the ground state set of
poles acquires strong unphysical oscillations.

In a search for the most sensible method of calculating
the projected energy curve within the PAV approach, we can
employ a prescription whereby the number of the lowest
poles is kept fixed within the integration contour. This can
be realized by keeping r0 between the poles or at the pole
crossing point. Since at the crossing points the poles vanish, at
least in SIII calculations, this results in a smooth energy curve.
Such an option is shown in Fig. 11 with solid squares. The
resulting curve is indeed very smooth; however, at β 	 0.4,

an unphysical bump appears, which makes this option as
unacceptable as the other one.

We also attempted to calculate the energy curve within
the VAP approach. In principle, the VAP approach could
have generated problems related to the fact that the density-
dependent terms of fractional order may lead to large negative
contributions (see Sec. III F). In practice, this is never the case,
because the VAP method [23] is not implemented through an
explicit minimization of the energy but is carried out by solving
variational equations that have been derived with the same
incorrect treatment of cuts in the complex plane. In this context,

it is worth emphasizing that the appearance of poles never
leads to infinite total energies but to discontinuities in the total
energy. Therefore, there is no danger that the minimization
procedure may attract a solution toward a pole.

The main problem in implementing the VAP method is
related to the fact that unprojected quantities, e.g., particle ρnn′

or pairing ρ̃nn′ densities, lose their usual physical meaning
[23] in VAP. They depend on the internal normalization
N ′ = Trρ of the density ρnn′ that is not related to the particle
number N onto which the state is projected. Neither the total
VAP energy nor other projected observables depend on the
normalization N ′. However, depending on the choice of the
internal normalization N ′, one obtains different canonical
occupation probabilities; hence, the associated poles zn are
not distributed in the same way as in the unprojected HFB
case. Depending on the internal normalization N ′, different
poles zn enter the integration contour, and the convergence
procedure cannot be easily controlled.

Additional problems arise when two poles are nearly
degenerate. Although at the point of degeneracy the poles
disappear, when the distance between the poles is small but
nonzero and the integration contour is between them, one
faces significant instabilities of the constrained VAP problem.
During the iteration of VAP equations, one or both poles enter
or leave the integration contour. The poles create jumps in the
projected energy; and, which is even more important, they
create jumps in the deformation. The numerical algorithm
enters a “ping-pong” regime, which cannot be overcome, and
one cannot converge to any solution. Figure 11 offers a good
illustration of this problem. The converged VAP energies for
32Mg are shown with solid circles. The converged solution can
be found only in limited regions of deformation. The 1d and
1f neutron poles close to the contour spoil the convergence in
the regions of β ≈ −0.2, 0.25, and 0.5. The same is true for
the proton 1d states around β ≈ −0.2 and 0.1. As a result, the
VAP procedure could be solved only within small deformation
intervals around β ≈ −0.2, 0, and 0.4.

V. CONCLUSIONS

This study contains the systematic analysis of the particle-
number-projected DFT approach. This approach, usually in the
Skyrme-HFB or Gogny-HFB framework, is commonly used in
systematic calculations of nuclear ground state properties, low-
energy excitations, and high-spin states. For heavy, complex
nuclei, the nuclear DFT is the only viable microscopic tool
based on the effective interaction (or functional). To further
advance the nuclear DFT, improve its theoretical foundations,
and make it a more reliable tool, it is important to fully
understand the advantages and drawbacks of the method when
applied to self-bound nuclear systems.

The main conclusions of this work can be summarized as
follows:

(i) The transition density matrices connecting states having
different orientation in the gauge plane z have poles
on the imaginary axis Im[z]. In the HFB formalism
that is based on one Hamiltonian acting in all channels
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(Hamiltonian-based HFB), these poles are irrelevant, as
their impact is nullified by the cancellation between the
Hamiltonian matrix elements originating from particle-
hole and particle-particle channels. Such a cancellation is
not present in the HFB applications in which some of the
Hamiltonian matrix elements are neglected (or approxi-
mated), in the HFB method based on density-dependent
interactions (usually acting in different channels), and in
the DFT approach in which the Hamiltonian does not
appear at all. In all those cases, the projection operator
is not defined uniquely, and the result depends on the
analytic structure of the transition energy density; hence,
the projected DFT energy depends on the integration
contour. The resulting PNP energy can be expressed in
terms of individual residues corresponding to the poles
zn associated with single-particle (canonical) proton and
neutron orbits. In contrast, in the Hamiltonian-based
HFB, the result depends only on the single pole at the
origin (z0 = 0).

(ii) Within the Hamiltonian-based HFB, there exist sum
rules that relate the unprojected matrix elements with
the matrix elements in the projected states. Similar
sum rules can be derived within the DFT; they relate
the unprojected DFT transition energy density with the
projected DFT energies. The DFT sum rules offer the
interpretation of the projected DFT energies as Fourier
components [associated with irreducible representations
of gauge group U(1)] of the DFT transition energy
density. This can be naturally extended to other (higher)
broken symmetry groups, such as SU(2) (associated with
the broken angular momentum symmetry).

(iii) The discussion of the particle number restoration can
be extended to other symmetry restoration problems.
In particular, DFT transition densities associated with
angular-momentum-projected states are expected to have
a complicated pole structure in the three-dimensional
space of Euler angles (see the example shown in
Ref. [46]).

(iv) For the terms in the density functional that have polyno-
mial density dependence, the appearance of poles inside
the contour gives rise to sudden jumps of the projected
energy whenever the contour’s pole content changes.
Otherwise, the results are stable. This is not true for
the terms having fractional-power density dependence
(e.g., density-dependent pieces of many Skyrme and
Gogny interactions or the Coulomb exchange term taken
in the Slater approximation). Here, the dependence on
the contour radius shows a strong subthreshold behavior
that can only be cured by considering appropriate
integration contours which do not go across the cuts
in the complex z plane. Other prescriptions give rise to
uncontrolled energy behavior resulting from the fact that
the corresponding integration contours do not close.

(v) As a practical measure that allows us to avoid problems
related to the fractional-power density dependence, we
propose using the integration contours which pass near
and above the poles. Although such a prescription
requires using rather dense meshes of integration points,
it minimizes the risks of crossing the cuts in the

complex plane. In this way, the ambiguities related to the
nonanalyticity of the DFT transition energy are reduced
to those corresponding to the choice of poles included
within the integration contour.

(vi) The projected DFT yields questionable results if a pole
appears very close to the integration contour. While such
a situation seldom happens in the ground state calcu-
lations (less than 2% cases are affected), it frequently
occurs in calculations of projected energy surfaces, such
as those in the generator coordinate method (GCM). The
appearance of poles in the vicinity of the contour as a
function of the collective coordinate (e.g., deformation)
gives rise to uncontrolled irregularities and jumps in the
results; in particular, it makes it impossible to define the
PNP potential energy surfaces.

(vii) Pole pathologies appear in a particularly strong way
in the fully self-consistent VAP calculations. In this
approach, transition density poles are not uniquely
defined; moreover, their positions can change during the
iteration process leading to numerical instabilities.

(viii) The analytic structure of the transition energy density
becomes exceedingly complicated in nuclei with protons
and neutrons paired, thus requiring simultaneous proton
and neutron PNP. Of particular importance in the context
of GCM applications is the extension of the present
analysis to nondiagonal matrix elements between the
PNP states.

Some of the problems listed above, in particular those
related to the configuration-mixing DFT method and ap-
plications of the generalized Wick’s theorem to DFT, have
been recently addressed in a series of papers [33,34]. In
these studies, a practical cure has been proposed that is
based on removing specific spurious components of the DFT
functional that can be associated with self-interaction and self-
pairing. When applied to truncated Hamiltonians, this practical
prescription turns out to be very effective [47]. However, this
kind of solution does not remove ambiguities related to using
complicated (e.g., fractional power) dependence of the energy
density functionals on particle densities. Finding ultimate
cures to the problems discussed in our study will undoubtedly
result in establishing better theoretical constraints on the form
of the DFT energy density functionals for nuclear self-bound
systems.
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