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Impact of the electron environment on the lifetime of the 229Thm low-lying isomer
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The question of the lifetime of the 229Thm low-lying isomer is considered in light of current experimental
research. A strong effect of the electron shell on lifetime is demonstrated, depending on the energy of the isomer.
Calculations are performed within the framework of the multiconfiguration Dirac-Fock method. The calculated
lifetime ranges from around 1 min down to 10−5 s. Prospects for further experimental research of the isomer are
discussed.
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I. INTRODUCTION

The availability of new experimental facilities provides new
opportunities for observing processes that occur comparatively
rarely in neutral atoms under ordinary conditions [1,2]. Bound
internal conversion (BIC) [3], where the conversion electron
is lifted up to a bound state of the atom, is an example of such
a process. The sharp resonance character of BIC, which is also
known as resonance conversion, offers a way of accelerating
nuclear processes by tuning the atomic frequencies in the field
of a laser [4–7]. BIC was experimentally discovered in highly
charged ions of 125Tem [3]. It was expected that the rate of the
35492 eV M1 transition should essentially retard in the ions
of charge q = 45 and 46, when the binding energy of the 1s

electron exceeds the conversion threshold. Surprisingly, the ex-
periment showed that the lifetime held, which was interpreted
as a manifestation of BIC. The retention of the conversion rate
when crossing the continuum boundary was confirmed ana-
lytically in the general case [3]. Calculations performed in the
framework of the Dirac-Fock (DF) method are in agreement
with the experimental data [8]. In Ref. [9], the shift of the x-ray
line predicted in Ref. [3] was experimentally confirmed.

Another important example of BIC is provided by the
decay of the isomer of 229Thm, which occurs at a uniquely
low energy within 10 eV. For a long time, the most accepted
value has been ωn = 3.5 ± 1 eV [10]. This energy is below
the threshold of traditional internal conversion (IC) because,
according to our calculation, the binding energy ε7s of the
valence 7s electron in the Th atom (ionization potential) is
equal to I = 5.2 eV. The previous recommendation of Reich
and Helmer was ωn = −1 ± 4 eV [11]. Other measurements
led to the value of 5.5 ± 1 eV [12]. The last reported value,
obtained using a detector with better resolution, is 7.6 ±
0.5 eV [13]. However, despite a great number of repeated
attempts [14–19], nobody observed direct decay of the isomer
in question with confidence, since a precision determination
of the few eV energy difference on the background of tens
keV transition energies is a very difficult task. For this reason,
we do not confine the calculation by considering a particular
nuclear energy, but rather we investigate the problem of the
lifetime generally. We also consider the possible influence of
both traditional IC and BIC on the lifetime of the isomer.

The study of the 229Thm isomer attracts particular interest
specifically because of the chance to discover a new physics

related to the resonance atomic-nuclear interactions, which
enables, e.g., population inversion of the ground and excited
levels [20]. The traditional channels of isomer deexcitation are
the radiative and α decays. The aim of experiments used to be
the detection of soft photons from direct nuclear decay with
an energy of around 3.5 eV. Moreover, a rather long lifetime
of tens of hours was usually assumed in the experiments based
on the Weisskopf estimation (cf. Refs. [14,21]). That was in
spite of confident theoretical predictions that the lifetime of
the isomer is much shorter in view of internal conversion
processes, which drastically changes the nuclear lifetimes,
especially at the transition energies near threshold [6,22,23].
It does not matter even if traditional IC turns out to be
energetically forbidden, because there arises a number of decay
channels through BIC according to the resonance electron
bridge scheme. Similar to the case of 125Tem, they take the
place of traditional IC. In BIC, the electron is lifted up virtually
to a higher lying discrete level, mainly 7s → 8s. From the 8s

level, the electron returns to the 7s state via a cascade of two
or more radiative transitions. Nuclear energy is thus taken off
by several soft delayed photons.

Figure 1 demonstrates the Feynman graphs for the deex-
citation of the isomer via (a) radiative decay and (b) BIC
mechanisms. It has been shown in Refs. [20,21,24] within
the one-electron DF method that BIC turns out to be the
predominant decay mode in the case of the 3.5 eV energy
of 229Thm. The most probable chain of electron transitions is
7s → 8s → 7p → 7s. This is accompanied by the emission
of two electric dipole photons, each with an energy of about
ωn/2 [20,25]. The resonance conversion factor R is defined by
the ratio of the BIC and radiative transition probabilities. The
factor R is similar to the internal conversion coefficient (ICC)
in the case of traditional IC. For the 3.5 eV 229Thm isomer, R
appears to be one to three orders of magnitude, depending on
the defect of resonance [21]. Therefore, the resonance electron
bridge reduces the expected isomer lifetime to about 1 min or
less. Moreover, it was noted that in the case of an accident
resonance, the lifetime may be reduced to a small fraction of
a second, down to 10−11 s [19].

Fresh opportunities for the BIC study were produced by
Refs. [8,26] which took into account the residual interaction
of electrons. This results in splitting of the atomic energy
levels in the total angular momentum which increases the level
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FIG. 1. Feynman graphs for the decay of the isomer via (a) the
radiative decay and (b) BIC mechanisms. The ground and excited
states of the nucleus are denoted by g and ex∗, respectively. The
initial, intermediate, and final atomic states are denoted by i, �, and
f , respectively.

density and therefore, the probability of overlapping with the
nuclear transition energy. In studies of the M1 transition in
highly charged ions of 125Tem [8], allowance was made for the
interaction between electrons of open shells in the framework
of the multiconfiguration Dirac-Fock (MCDF) method [27].
In addition, the Breit magnetic interaction between atomic
electrons and higher QED corrections to the atomic energy
levels were considered. The calculations, while involving a
modest set of basis configurations, revealed a considerable
influence of the residual interactions on the factor R. As
mentioned above, the calculated lifetime of the 125Tem was
in agreement with the experiment.

In the present paper, calculations for 229Thm are also carried
out in the framework of the MCDF method. We extend the
atomic basis essentially, including a number of the electron
configurations. The Breit magnetic interaction is taken into
account. We used in the calculations the RAINE package of
computer codes [28]. Correspondingly, Sec. II is devoted
to a consideration of the ICC for overthreshold energies. In
Sec. III, we extend the BIC theory to take into account a great
number of the intermediate and final electron states. We derive
general expressions for the resonance conversion factor and
for the spectra of primary and secondary photons. In Sec. IV,
we discuss the results obtained, with respect to the prospective
experimental research.

II. INTERNAL CONVERSION

Let us start from the latest value for the isomer energy,
ωn = 7.6 ± 0.5 eV [13]. In this case ωn > I , and the main
channel of deexcitation is via traditional IC. Calculation of
ICC near the very threshold is a challenging task. The results
are sensitive to the atomic model.

The ICC calculation was performed in the first nonvan-
ishing order of the perturbation theory using a spherically
symmetric atomic potential of the free neutral atom of thorium.
Electron wave functions were calculated in the framework
of the relativistic Dirac-Fock method with the appropriate
consideration of the exchange terms. The finite size of the
nucleus was taken into consideration using the surface-current
model [29] in which the penetration effect into the nucleus was
approximately taken into account.

To test the accuracy of the theoretical model described
above, a detailed comparison between experimental and

theoretical values of ICCs was made in Refs. [30–32]. As
was shown, the model allows one to obtain theoretical ICCs
which agree with experimental values at the <∼1% level both
on average (for 100 experimental ICCs having uncertainties
�5%) [30] and for specific nuclear transitions [31,32].

We calculated the ICC in the valence 7s shell which gives
the predominant contribution to the total internal conversion
rate in the case of the M1 transition at the threshold [25], as
the state has maximal electron density at the origin. Note that
there exists the problem of allowing for the hole in the atomic
shell after conversion, which is being currently discussed
(see, for example, Ref. [32] and references therein). For this
reason, we present calculations for three cases [30]: (i) the
hole is disregarded, that is, the electron wave functions for the
bound and continuum states are calculated in the same atomic
field of the neutral atom; (ii) the hole is taken into account
using the self-consistent field (SCF) approximation, that is, the
continuum wave function is calculated in the self-consistent
field of the relevant ion; and (iii) the hole is taken into
account within the frozen orbital (FO) approximation when
the continuum wave function is also calculated in the ion field,
but this field is constructed using the bound wave functions of
the neutral atom.

The results are presented in Fig. 2 for transition energies
up to 10 eV. As one can see from the figure, the calculated
values vary by an order of magnitude within this domain. Their
variation, depend on the model, reaches ∼50% near the very
threshold; however, it does not change the order of magnitude
of the ICC. At the transition energy of 7.6 eV, the ICC value
is about αM1 ≈ 109.

Now, based on the calculated value of ICC αM1 ≈ 109, we
can estimate the isomer lifetime. The Weisskopf estimation for
the M1 transition with the energy of 7.6 eV gives ∼1 min [6].
Taking into account the hindrance factor of ∼300, typical for

FIG. 2. ICC αM1
7s multiplied by the factor 10−8 for the 7s shell of

the Th atom for the transition energy near the threshold. Calculations
were made without regard for the hole in the 7s shell after conversion
(solid line), with regard for the hole in the FO approximation (dashed
line), and with regard for the hole in the SCF approximation (dot-
dashed line).
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this domain of nuclei, with this value of ICC we arrive at the
lifetime of the isomer of the order of ∼10−5 s.

III. BIC WITH REGARD TO CONFIGURATION MIXING

Let us examine the case ωn < I . If the energy around
5.5 eV is accepted [12], we turn out to be just on the border
of the continuum. This makes calculation a tedious problem,
as the result is determined by the interplay of the values of
ωn and I within the domain of ∼1 eV. On physical grounds,
however, with the results of Ref. [3], one can predict that ICC
αM1 smoothly goes over R, the BIC factor, as ωn crosses the
boundary. Therefore, the value of ICC (above threshold) or
R (below threshold) is expected to be approximately 3 × 109

(see Fig. 2). Correspondingly, the lifetime is expected to be of
the order of 1.6 × 10−5 s.

Physics becomes considerably richer when ωn further
decreases. The case ωn = 3.5 ± 1 eV [10] was studied in
Refs. [21,24,33], where it was shown that the interaction of
configurations is of great importance for the lifetime of the
isomer, which is determined by the R factor. The interplay of
the two main effects of the configuration mixing was noted
as (1) the line strength becomes fragmented, which damps
the resonance, and (2) BIC becomes more regular and is less
sensitive to the energies of particular levels.

Herein we extend the basis of the electron configurations
essentially. This allows us to derive even more definite
conclusions about the fragmentation strength than obtained
in Ref. [33] and to correct inaccuracies that occurred therein.
Also for the sake of completeness, we cite in Tables I–III
results obtained with configuration sets 1–7 [33], along with
results of the present calculation with configuration set 8.

Interaction of configurations can be classified into three
kinds. In Fig. 3, the Feynman graphs represent (a) the
interaction arising due to one-electron mixing described by
operators of the kinetic energy and the Coulomb field of the
nucleus, (b) the two-electron interaction through the mean field
of the atom, and (c) the two-electron interaction with more
complicated many-electron configurations. All the interactions
turn out to be essential in the BIC consideration [8,26]. So we
derive below expressions for the resonance conversion factor
R taking into account the residual interactions.

The diagram in Fig. 1(b) was first considered in Ref. [34]
for the nonradiative muon transfer in prompt-fission fragments.
It was shown in Ref. [33] that the probability �

(i→f )
BIC of the

i → f resonance conversion transition taking account of the
configuration interaction can be presented in the form

�
(i→f )
BIC = R(i→f )�(n)

γ , (1)

where �(n)
γ is the radiative nuclear width, while the partial

resonance conversion factor R(i→f ) is given by1

R(i→f ) =
∑

�

ατL
d (ωn; i → �)�γ (k; � → f )

2π [(ωn − ω�)2 + (��/2)2]
. (2)

1In the present paper, all formulas are given in the relativistic units,
where h̄ = m0 = c = 1.

FIG. 3. Three types of interaction of the electron configurations:
(a) mixing of the one-electron configurations due to the kinetic energy
operator and Coulomb interaction with the nucleus, (b) one-electron
mixing due to interaction with the electron core, and (c) interaction
with multielectron configurations accompanied by the core excitation.

In Eqs. (1) and (2), ωn is the nuclear transition energy, ω� is
the energy of the atom in the intermediate (�) state, and �� is
the total width of the intermediate state. The total width ��

is the sum of the natural width of the atomic level � including
the hole width of its decay [3] and the nuclear width if the final
state of the conversion transition is not the ground one. In the
case considered here, there are no holes in the intermediate
state or atomic-decay channels other than the radiative one;
also, nuclear widths are usually negligible compared to the
atomic ones. �γ (k; � → f ) is the partial radiative width for
the atomic transition � → f with energy k. According to the
energy-conservation law, this amplitude is calculated at the
emitted-photon energy

k = ωn − ωf , (3)

where ωf is the energy of the atom in the final (f ) state.
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TABLE I. Electron configurations of the initial Th(i), intermediate Th(�), and final Th(f ) states of the thorium atom in various MCDF
calculations and total resonance conversion factor R [see Eq. (7)].

No. Th(i) = Th(�) Th(f ) R

1 7s26d2 + 7s8s6d2 7s7p6d2 + 7s8p6d2 421
2 7s26d2 + 7s8s6d2 + 7s9s6d2 7s7p6d2 + 7s8p6d2 + 7s9p6d2 452
3 7s26d2 + 7s8s6d2 + 7s9s6d2 + 7s10s6d2 7s7p6d2 + 7s8p6d2 + 7s9p6d2 + 7s10p6d2 473
4 7s26d2 + 7s8s6d2 + 7s6d3 + 8s6d3 7s7p6d2 + 7s8p6d2 + 7p6d3 + 8p6d3 1332
5 7s26d2 + 7s8s6d2 + 7s9s6d2 + 7s10s6d2 + 7s6d3 7s7p6d2 + 7s8p6d2 + 7s9p6d2 + 7s10p6d2 + 7p6d3 4787
6 7s26d2 + 7s8s6d2 + 7s9s6d2 + 7s10s6d2 + 7s6d3 + 8s6d3 7s7p6d2 + 7s8p6d2 + 7s9p6d2 + 7s10p6d2 + 7p6d3 + 8p6d3 520
7 7s26d2 + 7s8s6d2 + 7s9s6d2 + 7s10s6d2 + 7s6d3 +

8s6d3 + 9s6d3 + 10s6d3
7s7p6d2 + 7s8p6d2 + 7s9p6d2 + 7s10p6d2 + 7p6d3 +

8p6d3 + 9p6d3 + 10p6d3
608

8 7s26d2 + 7s8s6d2 + 7s9s6d2 + 7s10s6d2 + 7s6d3 +
8s6d3 + 9s6d3 + 10s6d3 + 7s25f 2 + 7s8s5f 2 + 7s9s5f 2 +

7s10s5f 2

7s7p6d2 + 7s8p6d2 + 7s9p6d2 + 7s10p6d2 + 7p6d3 +
8p6d3 + 9p6d3 + 10p6d3 + 7s7p5f 2 + 7s8p5f 2 + 7s9p5f 2 +

7s10p5f 2

639

In Eq. (2), ατL
d is the dimensional analog of the traditional

ICC which is the ratio of the conversion and radiative widths
as

ατL = �c(τL)

�γ (τL)
. (4)

Here τ and L are the type and multipolarity of the transition,
respectively. The discrete conversion coefficient ατL

d is cal-
culated with the same formulas as for the usual ICC [28,35],
where the continuum wave function for the conversion electron
is replaced by the wave function of a discrete state. Because
of the different normalization of these functions, ατL

d has
dimensions of energy. The relevant formulas can be found
in Refs. [3,6].

Performing a summation in Eq. (1) over the final states f ,
we obtain the total width of the BIC decay in the form

�BIC = R�(n)
γ , (5)

where the total resonance conversion factor

R = �BIC

�
(n)
γ

(6)

can be written in the form

R =
∑

f

R(i→f ) =
∑

f �

ατL
d (ωn; i → �)�γ (k; � → f )

2π [(ωn − ω�)2 + (��/2)2]
. (7)

We note that �� �= ∑
f �γ (k; � → f ) by virtue of Eq. (3).

It follows from Eqs. (1) and (6) that the conversion factors
R(i→f ) and R play the same role in BIC as ICC ατL [Eq. (4)]
plays in traditional conversion.

In the random-phase approximation, one can neglect in-
terference effects in performing summation over intermediate
states �. Moreover, the main contribution to the total resonance
conversion factor comes from a few states closest to the
resonance. More detailed formulas for the transition ampli-
tudes taking into account configuration mixing are derived in
Ref. [33].

Equations (1) and (2) determine the spectrum of primary
photons from resonance bridges. Ultimately, each of the
f states either undergoes direct decay or decays via a
conventional atomic cascade to the ground state, generating
the spectrum of delayed secondary photons.

IV. RESULTS OF CALCULATIONS

A. Resonance conversion factor

The total resonance conversion factor for the M1 transitions
from the lowest level of the initial state of the thorium atom, the
respective angular momentum being Ji = 2, to all J (�) levels
of the intermediate state was calculated within the relativistic
MCDF method with regard to the Breit interaction [33]. We
chose the same set of basis functions for the initial and inter-
mediate states [see Fig. 1(b)] to meet the requirements of the
completeness and orthogonality of eigenfunctions. The calcu-
lations were performed for various sets of configurations in ini-
tial (intermediate) and final states of the Th atom [below Th(i),
Th(�), and Th(f ), respectively]. Some characteristic sets of
configurations are displayed in Table I along with the values of
the total conversion factorR obtained for them. In each set, we
took into account all possible spin-orbit splittings. For exam-
ple, the 7s26d2 group involves three configurations as follows

7s26d2 = 7s2
1/26d2

3/2 + 7s2
1/26d3/26d5/2 + 7s2

1/26d2
5/2. (8)

Three main groups have their origins in the one-electron
configurations 7s26d2

3/2, 7s16d3
3/2, and 7s24f 2

5/2. The first is
the ground configuration for the Th atom and the other two
are the lowest lying configurations of the same parity.

If the one-electron approximation is used, the only reso-
nance electron state 8s makes a dominant contribution to the
factor R. The 9s and higher s levels may be ignored due to the
large resonance defect which can be written as

	 = ωn − ω�. (9)

The contribution of the d levels is modest because of the
smallness of the discrete conversion coefficient αM1

d for the
s → d transition.

The configuration mixing gives rise to two important
effects. First, the atomic levels of the Th(�) state are shifted,
affecting the factor R because of the resonance nature of
the BIC process. Second, the density of the levels increases
drastically. Nevertheless, only a few of the levels relating to
the configuration group 7s8s6d2 make a main contribution
to the strength of the M1 BIC transition. Then the levels
deexcite to the 7p levels corresponding the 7s7p6d2 group.
Transitions to the different p levels of the Th(f ) state form
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the primary photon spectrum. These are the transitions which
are responsible for the isomer lifetime. The Th(f ) state
deexcitation into the ground Th(i) level and excited levels
of the Th(�) state form the secondary photon spectrum.

As mentioned before, because of the levels splitting, the
conversion-transition strength is partitioned among a number
of levels with specific total angular momenta. So the extension
of the configuration basis leads to decreasing partial values
R(i→f ), on average, and to an increasing number of partial
fragments. This explains why the factor R is rather stable,
ranging in the majority of the cases between 421 and
639, depending on the set of configurations. Repeating the
consideration of Sec. II withR ≈ 600 instead of ICC, we arrive
at the lifetime of the isomer of around 4.5 min. Nevertheless,
the values of R from MCDF calculations 4 and 5 are several
times greater (see Table I). This is because of the resonance
character of the effect, since, in those cases, the resonance
defect 	 appears to be very small for some � levels (for
example, the smallest 	 = 0.034 eV in calculation 5), while
the discrete conversion coefficient αM1

d and the radiative width
�γ are relatively large for these levels.

The features of � levels that make a dominant contribution
toR are presented in Table II along with the values of αM1

d , �γ ,
and the conversion factorsR(i→�) for each level. The structures
of the � levels—that is, the fractions of configuration groups
that make a sizable contribution (above about 1%) to a given
level—are also displayed there. The fraction of each group was
determined as the sum of squares of mixing coefficients for
relativistic configurations entering into this group [see Eq. (8)].
The data in Table II are given for calculation 5, in which the
value ofR is the greatest, and for calculations 7 and 8, in which
the respective values are of the same order of magnitude as in

FIG. 4. (Color online) Spectrum of the primary photons.

the majority of the calculations while the sets of configurations
are more extensive.

TABLE II. Features of the �-state levels that make a dominant contribution to the conversion factor R in the MCDF calculations 5, 7, and 8.
The notation used is the following: J (�) is the angular momentum of a level, ω� is the energy of a level, αM1

d is the discrete conversion coefficient
for all possible M1 transitions Ji → J (�), �γ is the radiative width, and R(i→�) is the contribution of the level � to the total conversion factor
R [see Eq.(7)]. The decimal order of magnitudes in the fourth and fifth columns is given parenthetically. In the last column, the fraction of
each group is equal to the sum of the squares of mixing coefficients for configurations entering into this group [see Eq. (8)].

No. J (�) ω� (eV) αM1
d (eV) �γ (eV) R(i→�) Structure of level

5 2 3.534 1.84(9) 1.55(−8) 3825 0.60(7s8s6d2) + 0.28(7s6d3) + 0.07(7s9s6d2)
3 3.252 3.36(9) 2.66(−8) 232 0.88(7s8s6d2) + 0.11(7s6d3)
2 3.467 1.68(9) 8.82(−10) 218 0.99(7s8s6d2)
1 3.062 3.36(9) 7.07(−8) 196 1.00(7s8s6d2)
2 3.150 4.00(9) 3.58(−8) 187 0.83(7s8s6d2) + 0.16(7s6d3)

7 3 3.584 8.21(8) 8.47(−9) 156 0.80(7s8s6d2) + 0.15(7s6d3) + 0.02(7s9s6d2)
2 3.436 3.02(8) 1.08(−8) 128 0.67(7s8s6d2) + 0.27(7s6d3) + 0.03(7s9s6d2)
1 2.955 3.96(9) 4.46(−8) 94.6 0.98(7s8s6d2)
2 2.970 3.38(9) 3.36(−8) 64.5 0.67(7s8s6d2) + 0.31(7s6d3)
3 3.157 3.00(9) 1.48(−8) 59.9 0.78(7s8s6d2) + 0.19(7s6d3)
2 3.068 3.02(9) 1.78(−8) 45.7 0.63(7s8s6d2) + 0.35(7s6d3)
3 3.016 2.98(9) 1.62(−8) 32.8 0.37(7s8s6d2) + 0.59(7s6d3)

8 3 3.325 3.70(9) 1.29(−8) 248 0.84(7s8s6d2) + 0.11(7s6d3) + 0.02(7s8s5f 2)
1 3.124 3.40(9) 3.64(−8) 139 0.96(7s8d6d2) + 0.02(7s8s5f 2)
2 3.221 4.16(9) 1.57(−8) 133 0.74(7s8s6d2) + 0.22(7s6d3) + 0.01(7s8s5f 2)
2 3.562 9.28(7) 9.97(−9) 38.3 0.73(7s8s6d2) + 0.20(7s6d3) + 0.01(7s8s5f 2)
2 3.107 1.44(9) 2.24(−8) 33.1 0.45(7s8s6d2) + 0.51(7s6d3) + 0.01(7s26d2) + 0.01(7s8s5f 2)
3 3.732 8.38(8) 5.91(−9) 14.7 0.81(7s8s6d2) + 0.13(7s6d3) + 0.02(7s8s5f 2) + 0.01(7s9s6d2)
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TABLE III. Features of the f -state levels that make a dominant contribution to the primary photon spectrum [see Eq. (3) for the primary
photon energies] in the MCDF calculations 5, 7, and 8. The notation used is the following: Jf is the angular momentum of a level, ωf is its
energy, and R(i→f ) is the partial resonance conversion factor.

No. Jf ωf (eV) R(i→f ) Structure of level

5 3 0.931 1046 0.83(7s7p1/26d2) + 0.16(7s7p3/26d2)
3 1.743 1023 0.26(7s7p1/26d2) + 0.71(7s7p3/26d2) + 0.03(7p6d3)
3 1.432 700 0.77(7s7p1/26d2) + 0.20(7s7p3/26d2) + 0.02(7p6d3)
2 1.309 398 0.76(7s7p1/26d2) + 0.20(7s7p3/26d2) + 0.02(7p6d3)
1 1.740 265 0.12(7s7p1/26d2) + 0.85(7s7p3/26d2) + 0.03(7p6d3)
3 2.215 233 0.45(7s7p1/26d2) + 0.48(7s7p3/26d2) + 0.03(7p6d3)
2 0.734 214 0.92(7s7p1/26d2) + 0.06(7s7p3/26d2)

7 3 0.793 66.0 0.81(7s7p1/26d2) + 0.15(7s7p3/26d2) + 0.02(7s8p6d2)
2 0.591 63.5 0.89(7s7p1/26d2) + 0.06(7s7p3/26d2) + 0.01(7p6d3) + 0.01(7s8p6d2)
3 1.627 61.8 0.25(7s7p1/26d2) + 0.67(7s7p3/26d2) + 0.03(7p6d3)
2 1.717 60.5 0.29(7s7p1/26d2) + 0.66(7s7p3/26d2) + 0.02(7p6d3)
3 1.320 39.7 0.75(7s7p1/26d2) + 0.19(7s7p3/26d2) + 0.01(7p6d3)
4 1.530 32.7 0.57(7s7p1/26d2) + 0.39(7s7p3/26d2) + 0.01(7p6d3) + 0.01(7s8p6d2)
2 1.197 32.3 0.75(7s7p1/26d2) + 0.20(7s7p3/26d2) + 0.03(7p6d3)
1 1.638 27.6 0.13(7s7p1/26d2) + 0.81(7s7p3/26d2) + 0.04(7p6d3)
4 2.206 26.2 0.40(7s7p1/26d2) + 0.44(7s7p3/26d2) + 0.11(7p6d3)

8 3 0.970 111.5 0.78(7s7p1/26d2) + 0.15(7s7p3/26d2) + 0.01(7s8p6d2) + 0.02(7s7p5f 2)
2 0.759 95.1 0.88(7s7p1/26d2) + 0.06(7s7p3/26d2) + 0.02(7s8p6d2) + 0.01(7p6d3) + 0.02(7s7p5f 2)
2 1.332 56.2 0.73(7s7p1/26d2) + 0.20(7s7p3/26d2) + 0.02(7p6d3)
4 1.943 48.0 0.37(7s7p1/26d2) + 0.56(7s7p3/26d2) + 0.02(7p6d3) + 0.01(7s7p5f 2)
2 1.752 46.7 0.37(7s7p1/26d2) + 0.53(7s7p3/26d2) + 0.02(7p6d3) + 0.01(7s7p5f 2)
3 1.920 36.2 0.35(7s7p1/26d2) + 0.57(7s7p3/26d2) + 0.03(7s7p5f 2)
4 1.689 33.6 0.54(7s7p1/26d2) + 0.40(7s7p3/26d2) + 0.01(7p6d3) + 0.01(7s7p5f 2)
3 1.731 27.2 0.30(7s7p1/26d2) + 0.61(7s7p3/26d2) + 0.01(7p6d3) + 0.02(7s7p5f 2)

At the same time, it follows from a comparison of the
values of R(i→�) in Table II and the values of R in Table I that
the fragmentation mentioned above is of a limited character
(as might have been expected in view of the smallness of
the electron-electron interaction), since, in each case, only
several levels presented in Table II add up to about 96–97%
of the total factor R. Moreover, comparing the results listed
in Tables II and III for sets 7 and 8 leads to an unexpected
conclusion. In the more extended basis of set 8, even stronger
concentration of the transition strength is achieved. Thus,
in Table II, five states for set 7 have partial Ri→l values
that are more than 10% of the total R factor. Set 8 has
only three such states, and they are considerably stronger.
Similarly, in Table III, the corresponding numbers of states
with the partial Ri→f values more than 10% of the total
R factor are four for set 7 and two for set 8. It specifically
follows from this consideration that it would be incorrect
in principle to calculate the BIC probabilities on the basis
of the experimental electron-level density, as was done in
Ref. [36].

The composition of levels that make a dominant con-
tribution to R is determined primarily by groups of the
7s8s6d2 and 7s6d3 configurations. A considerable fraction
of the 7s6d3 configurations (up to 59%) is explained by the
inclusion of the diagonal M1 transitions in calculating R
(7s → 7s, 6d3/2 → 6d3/2, etc.). A moderate fraction (<∼7%)
of the 7s9s6d2 configuration and a small fraction (<∼2%)

of the 7s8s5f 2 configuration are presented in some levels
characterized by the largest values of R(i→�) in the most cases.
Groups of configurations involving higher s states (9s and 10s)
make a small contribution, but one can see from the data in
Table I that their addition to Th(i), along with the addition
of the corresponding groups of high p states to Th(f ), may
change the value ofR significantly. This is also a manifestation
of the resonance character of BIC.

We note that the lowest level in Th(i) with Ji = 2 has the
0.98(7s26d2) + 0.02(7s8s6d2) structure in calculations 1–3,
the 0.95(7s26d2) + 0.05(7s6d3) structure in calculations 4–7,
and the 0.94(7s26d2) + 0.04(7s6d3) + 0.02(7s25f 2) structure
in calculation 8. The structure of excited levels of the thorium
atom that are the closest to the ground-state level will be
discussed elsewhere. They form complexes on the basis of the
7s26d2 configuration. The probabilities of the 7p → 7s and
7p → 6d radiative transitions are approximately identical [5].
For the sake of simplicity, we assume that the secondary decay
proceeds to the ground state or the excited state closest to it (if
the decay to the ground state is forbidden in the total angular
momentum), this being sufficient for purposes of present-day
experiments. The inclusion of decay to excited states would
render the spectrum of secondary photons softer within about
0.5 eV. The structure of low-lying levels is of importance for
accurately calculating the spectrum of secondary photons and
for better planning and interpreting experiments (see Ref. [19]
and references therein).
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FIG. 5. (Color online) Histogram for the spec-
trum of the primary photons.

B. Spectra of delayed radiation

First, we calculated the spectrum of primary photons having
energies k and emerging from the i → f transition [see
Eqs. (1)–(3)]. It should be noted that the spectrum has nothing
to do with a possible spectrum of atomic radiation. The photon
energies are determined by Eq. (3) and are distinguished from
energies of atomic transitions. The line intensities depend not
only on radiative widths but also on the discrete conversion
coefficients ατL

d , the low-lying 7p levels being predominantly
populated, since the relevant probability is proportional to
the cube of the transition energy. The spectrum of primary
photons obtained in calculation 8 for the nuclear transition
energy ωn = 3.5 eV is presented in Fig. 4.

Discussing the spectrum in Fig. 4, we note first that, as
expected in the electron-bridge mechanism, there are no lines
at the nuclear energy of 3.5 eV. The most intense lines form
a doublet at the highest transition energy of 2.74 and 2.53 eV,
with the total intensity of approximately 30%. As we can see

in Table III, this doublet is brought about by fragmentation
of the 7p1/2 state. However, another group of lines with less
energy is centered around half the nuclear transition energy at
∼1–1.7 eV.

Second, we note that there are many weak lines. In view
of that, the integral delayed intensity is only measured in
the experiment (see, for example, Ref. [19]). Inclusion of
these weak lines changes the picture significantly. To better
understand the effect of the weak lines, we present the
histogram of the primary photons spectrum in Fig. 5. In the
histogram, one can clearly see the role of the weaker lines.
The central group with the half energy appears to dominate
in the integral spectrum. About 60% of the whole strength is
concentrated within the range 1–2.2 eV, while ∼45% is within
the range 1.4–1.8 eV.

The spectrum of the secondary photons is given in Fig. 6.
The intensities of the specific lines are defined by probabilities
of the f -component population, that is, by values of R(i→f ),

FIG. 6. (Color online) Spectrum of the sec-
ondary photons.
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FIG. 7. (Color online) Histogram for the spectrum of the sec-
ondary photons.

together with radiative widths of transitions f → i and f →
�. Because of this, the character of the secondary photon
spectrum also has nothing to do with a possible fluorescent
spectrum of the atom, which is tabulated, for example, in
Ref. [37]. The lines which are strong in the experimental
absorption spectrum [37] in no way stand out in the spectrum in
Fig. 6 and vice versa. Soft photons dominate, because primary
transitions occur mainly into states near the ground one.

In finer detail, we first note that the secondary photons
naturally turn out to be still softer than the primary ones.
Moreover, further fragmentation of the spectrum takes place.
Each state f decays into several states n. This gives rise to a
great number of lines that make up the secondary spectrum,
with a correspondingly lower strength of each of the lines.
Nevertheless, the two strongest lines remaining have energies
of 0.76 and 0.97 eV. They are complementary to the lines of
2.74 and 2.53 eV in Fig. 6 (see also Table III) and come from the
succeeding decays from states populated in those transitions
to the ground state. Their intensities are 9% and 14%,
respectively. Therefore, the branching ratios for the decay to
the ground state are 0.62 and 0.83 for those states, respectively,
i.e., of the order of unity, in spite of strong fragmentation. The
next most intense lines, with energies of 0.03 and 1.25 eV,
are weaker by a factor of 4–5 than the strongest lines of the
primary spectrum in Fig. 4. In the same way as for the primary
photons spectrum, the effect of the weaker lines is shown in
the relevant histogram presented in Fig. 7.

The structure of levels associated with the final state Th(f )
that make a dominant contribution to the spectrum of primary
photons is given in Table III for calculations 5, 7, and 8.
As seen, these levels are almost completely determined by
the group of 7s7p6d2 configurations. In this group, lower
levels are dominated by the 7s7p1/26d2 configurations. For
higher levels of this group, the fraction of the 7s7p3/26d2

configurations is the largest, in accordance with the fact that
the 7p1/2 one-electron level lies lower than the 7p3/2 level.
The fractions of the 7p6d3 configurations and especially the
fractions of the 7s8p6d2 and 7s7p5f 2 configurations are small
for the majority of the levels quoted above (<∼4%). Only in the
highest level at ωf = 2.2 eV from calculation 7 is the fraction
of the 7p6d3 configurations somewhat higher, 11%. We also
note several sharp peaks (three in the case of calculation 5,
four in calculation 7, and two in calculation 8) and a number
of less pronounced structures.

Finally, Figs. 8 and 9 present the entire spectrum of the
primary and secondary photons, in which a shift of the strength
toward the soft energies is readily apparent. Approximately

FIG. 8. (Color online) Resulting spectrum of
the delayed photons.
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FIG. 9. (Color online) Histogram for the
resulting spectrum of the delayed photons.

66% of the total strength is within 0.9–1.9 eV, and about 15%
is contained only in the lines at about 2.6 eV.

Therefore, we see that the traditional channel of IC appears
to be by about six orders of magnitude stronger than the BIC
mechanism. We note in this connection that the previously
mentioned defect of resonance even in the MCDF calculation
5, 	 = 0.034 eV, remains to be large in comparison with
typical line widths in the intermediate state, which are �γ ∼
10−8 eV (see Table II). On this basis, with Eq. (7) in mind,
one can conclude that BIC still retains a possibility of strong
potential enhancement of many orders of magnitude in the
case of accidental coincidence, of the order of ∼(	/�γ )2.
This situation was considered in Ref. [19], where the low limit
for the isomer lifetime of ∼10−11 s was obtained.

V. CONCLUSIONS

From the results presented in Sec. IV, one can see the
crucial influence of the electron shell on isomer lifetime.
The numerical value of the lifetime strongly depends on
the energy separation Eis of the ground and isomeric levels
with respect to the 7s electron binding energy, which equals
5.2 eV as mentioned above. For Eis = 7.6 eV, the most recent
experimental result, the traditional channel of IC diminishes
the isomer lifetime from hours to ∼10−5 s. Such a short lifetime
makes it more difficult to measure the hyperfine splitting of
the atom in the isomeric state, which measurement could
be used for its direct observation [38]. The appearance of
very soft conversion electrons or delayed soft radiation due
to succeeding recombination in this case could give direct
evidence of the deexcitation of the isomer. For Eis = 3.5 eV,
the historically most referred value, the isomer decay through
a BIC mechanism is realized by the numerous resonance
electron bridges. These turn out to be a dominant mode.
First of all, taking BIC into account reduces drastically the
isomer lifetime, from several tens of hours to ∼5 min and less.
Moreover, the isomer lifetime may diminish to a fraction of a

second in the case of a random coincidence of the frequencies
of the nuclear and atomic transitions.

In view of the possibility of such short lifetimes, respec-
tive experimental methods must be aimed at simultaneous
measurements in the course of a permanently reproduced
population of the isomer level. The use of a bulb that features
a hollow cathode and in which, in the atmosphere of a buffer
gas, a permanent pumping of the isomer occurs in the arc
discharge within the bulb containing a 229Thm sample seems a
convenient method for this [39]. For the purpose of searching
for α particles from isomer decay, it is advisable to mount a
counter or the detector inlet window within the bulb itself.

Second, it becomes clear that attempts at recording a photon
from a direct radiative deexcitation of the nucleus would be
insufficient in relevant experimental studies. It is necessary to
seek delayed photons of halved energy (see Fig. 9).

These conclusions apply to any other decay channel as well.
To be more specific, we indicate that shunting the transition
from the isomer to the ground state, a resonance conversion
bridge complicates the observation of isomer α decay; this is
because it reduces the time of accumulation of the useful spec-
trum, thereby dramatically lowering its statistical reliability.

The primary radiative spectrum is produced by several
resonance bridge transitions to the states descended from the
7p1/2 and 7p3/2 one-electron levels. In turn, they are expected
to undergo decay to the ground state with a high probability.
At the same time, their energies have nothing to do with the
well-known experimental spectrum [40]. Therefore, it is not
advisable to try to record these particular lines in search for
the isomer decay.
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