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Resonances of 7He using the complex scaling method
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We study the resonance spectroscopy of 7He in the 4He+n+n+n cluster model, where the motion of valence
neutrons is described in the cluster orbital shell model. Many-body resonances are treated on the correct boundary
condition as the Gamow states in the complex scaling method. We obtain five resonances and investigate their
properties from the configurations. In particular, the 1/2− state is found in a low excitation energy of 1.1 MeV
with a width of 2.2 MeV, whereas the experimental determination of the position of this state is not so clear. We
also evaluate the spectroscopic factors of the 6He-n components in the obtained 7He resonances. The importance
of the 6He(2+) state is shown in several states of 7He.
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I. INTRODUCTION

Development of the radioactive beam experiments provides
us with much information of the unstable nuclei far from the
stability. In particular, the light nuclei near the neutron drip-line
exhibit the new phenomena of the nuclear structures, such
as the neutron halo structure in 6He, 11Li, and so on. The
disappearance of the 0p-1s shell gap is also found in 11Li and
neighboring nuclei [1,2].

Recently, many experiments of 7He, the unbound nuclei,
have been reported [3–10]. The ground state is commonly
assigned to be the 3/2− resonant state at 0.3–0.5 MeV above
the 6He+n threshold energy. However, there are still found
contradictions in the observed energy levels and the excited
states are not settled for their spins and energies. The excited
state at Ex ∼ 3 MeV is reported in several experiments [3,4,
6,9] and a possibility of the 5/2− state is proposed in Refs.
[8,9]. The existence of 1/2− and 3/2−

2 states is also expected
[5–9] but still unclear and their positions and decay widths
are not fixed. In particular, the 1/2− state is interested with
the possibility of the LS partner of the ground 3/2− state,
because the LS splitting in this nucleus may give important
information on the LS interaction in neutron drip-line nuclei.
For this state, the recent experiments [5,8,9] report it with the
low excitation energy at around the 1-MeV region. However,
other observations [6,7] exclude the low excitation energy of
1/2− reported in Ref. [5] and suggest a little higher excitation
energy [6].

On the theoretical side, ab initio calculations of the no-core
shell model [11] and the Green’s function Monte Carlo [12]
were performed, and the calculated energy positions of the
ground state and the 5/2− state show a good correspondence
with those of the experiments [8]. The 1/2− state is predicted
at around 3 MeV, although the theoretical results somewhat
depend on the choice of the three-nucleon forces [12]. Those
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calculations are based on the bound-state approximation and
the continuum effect from many-body open channels is not
taken into account correctly, though all states of 7He are
unbound. The excited states with a few-MeV excitation energy
can decay not only to the two-body 6He+n channel but also
to many-body channels of 5He+2n and 4He+3n.

Several promising methods have been proposed to take
into account the continuum effects explicitly. Starting from
the traditional shell model, the particle decay into the open
channels was recently considered based on the continuum shell
model [13] and application to the He isotopes was done [14].
Another approach, the so-called Gamow shell model [15–17],
was presented to describe single-particle decaying states.
As for the model space, both the continuum shell-model
and the Gamow shell-model calculations for the resonant
spectroscopy of He isotopes have been carried out within
p-shell configurations. It is known, however, that for the
description of the weakly bound system, in addition to the
p-shell configurations, the contributions from the higher
partial waves cannot be ignored such as due to the pairing
correlation. In particular, the sd shell plays an important
role and is found to give an approximately 1-MeV energy
contribution on the binding energy of 6He with the appropriate
interactions [18,19]. For the spectroscopy of 7He, its ground
state may be a single-particle resonance with a 6He+n

configuration, but all other excited states are experimentally
suggested to appear as two- or three-particle resonances above
the 4He+3n threshold energy, because 6He is a Borromean
nucleus and breaks up easily into 4He+n+n. Furthermore,
when we discuss the properties of the 7He resonances, it is
important to reproduce the threshold energies of the particle
decays, in which the subsystems also have their particular
decay widths such as 5He+2n channels. This condition was
not emphasized so far in the previous theoretical studies of
7He. Therefore, the 7He resonant spectroscopy is desired
to be investigated with the appropriate treatments of the
decay properties concerned with the subsystem of 5,6He,
simultaneously.

The purpose of this article is to carry out the resonance spec-
troscopy of 7He with the simultaneous descriptions of 5,6He
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imposing the accurate boundary conditions of many-body
decays. To do this, we employ the cluster orbital shell model
(COSM) of 4He+n+n+n [20–22], in which the open channel
effects for the 6He+n, 5He+2n, and 4He+3n decays are taken
into account explicitly. We describe the many-body resonances
under the correct boundary conditions for these decay channels
using the complex scaling method (CSM) [23]. As the details
of this method are given in Ref. [24], the resonant energies and
decay widths of many-body resonances are directly obtained
by diagonalization of the complex-scaled Hamiltonian with
L2 basis functions [25,26]. It has been also shown that CSM
is a very successful method to investigate the resonances and
the Coulomb breakups of He and Li isotopes [18,19,27]. In
this article, we find out the resonance structure of 7He with
CSM and also determine the spectroscopic factors (S factor)
of 6He-n components for every 7He resonance. The results of
the S factor are shown to help for understanding the coupling
between 6He and the additional neutron in 7He.

II. COMPLEX-SCALED 4He+Xn COSM FOR
He ISOTOPES

A. Cluster orbital shell model (COSM) for 4He+Xn systems

We explain COSM for the 4He+Xn systems, where X = 1
for 5He, X = 2 for 6He and X = 3 for 7He. The Hamiltonian
is the same as that used in Refs. [19,22];

H =
X+1∑
i=1

ti − TG +
X∑

i=1

V αn
i +

X∑
i<j

V nn
ij , (1)

where ti and TG are kinetic energies of each particle (Xn

and 4He) and the center-of-mass (c.m.) of the total system,
respectively. The interactions V αn and V nn are given by the
so-called modified KKNN potential [18] for 4He-n and the
Minnesota potential [28] with 0.95 of the u-parameter for n-n,
respectively. They reproduce the low-energy scattering data of
the 4He-n and the n-n systems, respectively, which have no
bound states.

For the wave function, 4He is assumed as the (0s)4

configuration of a harmonic oscillator wave function, whose
length parameter bc is taken to be 1.4 fm to fit the charge radius
of 4He. The motion of valence neutrons surrounding 4He is
solved accurately using the few-body technique. We employ
a variational approach in which the relative wave functions
of the 4He+Xn system are expanded on the COSM basis
states [20,21]. The total wave function � of the 4He+Xn

system is given by the superposition of the configuration �β

as

�(4He + Xn) =
∑

β

Cβ�β(4He + Xn), (2)

�β(4He + Xn) =
X∏

i=1

a†
αi

|0〉, (3)

where the 4He core is treated as a vacuum. a†
αi

is the creation
operator of the valence neutron above the 4He core, with the
quantum number αi in a jj coupling scheme. Here i = 1, 2, 3
for three valence neutrons. β indicates the set of αi . Cβ is the

FIG. 1. Sets of the spatial coordinates in COSM for the 4He+Xn

system.

variational coefficient for each configuration �β distinguished
by β. We take a summation over the available configurations.
The coordinate representation of the single-particle state
corresponding to a†

αi
is given as ψαi

with the relative coordinate
ri between the center-of-mass position of 4He and a valence
neutron shown in Fig. 1. Including the angular momentum
coupling, the total wave function �J with the spin J is also
expressed as

�J (4He + Xn) =
∑

β

Cβ�J
β (4He + Xn), (4)

�J
β (4He + Xn) = A′{[�(4He), χJ

β (Xn)
]J }

, (5)

χJ
β (n) = ψJ

α1
, (6)

χJ
β (2n) = A

{[
ψα1 , ψα2

]
J

}
, (7)

χJ
β (3n) = A

{[[
ψα1 , ψα2

]
j12

, ψα3

]
J

}
. (8)

Here, as shown in Fig. 1, χJ
β (Xn) expresses the COSM wave

functions for the valence neutrons. j12 is the coupled angular
momentum of the first and second valence neutrons, which is
included in the index β. The antisymmetrizers between valence
neutrons and between a valence neutron and neutrons in 4He
are expressed as A and A′, respectively. The latter effect of A′
is treated in the orthogonality condition model [19,22,24], in
which ψα is imposed to be orthogonal to the 0s state occupied
by neutrons in 4He. The radial part of ψα is expanded with a
finite number of Gaussian basis functions [22] as

ψα =
Nα∑
k=1

Cα,k φk
α(r, bα,k), (9)

φk
α(r, bα,k) = N r�α e−(r/bα,k )2/2[Y�α

(r̂), χσ
1/2]jα

. (10)

Here k is an index for the Gaussian basis with the length
parameter bα,k . A basis number for the state α and the
normalization factor for the basis are given by Nα and N ,
respectively. The expansion coefficients {Cβ} and {Cα,k} are
determined variationally for the total wave function �J . The
length parameters bα,k are chosen as geometric progression
[29]. We use at most 17 Gaussian basis functions with the max
length parameter corresponding to 40 fm.

For the single-particle states α = �j (j = � ⊗ 1
2 ), we take

angular momenta � � 2 (up to d waves) to keep the converged
energy accuracy within 0.3 MeV. Namely, when we employ
angular momentum states higher than � = 2, we obtain a
little energy gain less than 0.3 MeV for the ground state of
6He [18]. In calculation of 7He, we can easily adjust the
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calculational energies of 6He by taking the 178.8 MeV of
the repulsive strength of the Minnesota force [28] and the
three-cluster interaction V αnn for the 4He-n-n system [19]. The
former adjustment of the NN interaction can be understood
from the pairing correlation between valence neutrons with
higher angular momenta � > 2 [18]. The latter is considered
to come from dominantly the tensor correlation in the 4He core.
Recently, we showed that the binding energy and excited states
of 6He can be well explained without the three-body cluster
interaction by taking into account the tensor correlation of 4He
explicitly [30,31]. Here, following the previous study [19], we
use the three-cluster potential:

V αnn =
∑
i<j

v3 e−(r2
i +r2

j )/b2
c with v3 = −25 MeV. (11)

Adding this three-cluster potential to the Hamiltonian in
Eq. (1), we obtain the observed energies of 6He as
−0.974 MeV for 0+ and (Er, 
) = (0.840, 0.107) for 2+ in
MeV, respectively, measured from the 4He+n+n threshold.
The present model reproduces the observed energies and decay
widths of 5,6He, simultaneously [32], as shown in Fig. 2,
namely, the threshold energies of the particle emissions for
7He.

B. Complex scaling method

We explain CSM to obtain resonances. In CSM, we
transform the coordinates for the relative motions of the
4He+Xn model shown in Fig. 1, as

ri → rie
iθ for i = 1, . . . , X, (12)

where θ is the so-called scaling angle. Using this trans-
formation, the Hamiltonian in Eq. (1) is transformed into
the complex-scaled Hamiltonian Hθ , and the corresponding
complex-scaled Schrödinger equation is given as

Hθ�
J
θ = E�J

θ , (13)

�J
θ = e(3/2)iθ ·X �J ({rie

iθ }), (14)

where X = 1, 2, 3, representing the number of degrees of
freedom of the system. The eigenstates are obtained by solving
the eigenvalue problem of Hθ in Eq. (13). In CSM, we obtain
all the energy eigenvalues E of bound and unbound states on
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FIG. 2. (Color online) Energy eigenvalues of the obtained 5,6,7He
resonances measured from the 4He+Xn threshold.

a complex energy plane, governed by the ABC theorem [23].
In this theorem, it is proved that the boundary condition of the
Gamow resonances is transformed to the damping behavior
at the asymptotic region. This condition enables us to use the
same theoretical method to obtain the many-body resonances
as that for the bound states. For a finite value of θ , the Riemann
branch cuts are rotated down by 2θ , and continuum states such
as of the 6He+n,5He+2n, and 4He+3n channels are obtained
on these cuts with the 2θ dependence (see Fig. 3). On the
contrary, bound states and resonances are discrete and obtained
independently of θ . Hence they are located separately from the
many-body continuum spectra on the complex energy plane.
We can identify the resonances with complex eigenvalues
of E = Er − i
/2, where Er and 
 are resonance energies
measured from the threshold and decay widths, respectively.
We take the value of θ as 29◦ in the present calculation.

III. RESULTS

A. Energy spectra of 6He and 7He

We first discuss the calculational results for the dominant
configurations and structures of the 6He states, shown in
Fig. 2, which are useful to understand the 7He structures. For
the 6He ground state, the matter radii of 2.36 fm reproduces
the experiment (2.33±0.04 fm) [1] and the proton and
neutron radius are obtained as 1.81 and 2.59 fm, respectively.
The dominant configurations are (p3/2)2 and (p1/2)2 with
their squared amplitudes of 0.920 and 0.040, respectively.
The contribution of sd shell is 0.039, which is the same
order as the (p1/2)2 component. The dominant configurations
of 2+

1 , 0+
2 , 2+

2 , and 1+ excited resonant states in 6He are
(p3/2)2

2+ , (p1/2)2
0+ , (p3/2p1/2)2+ , and (p3/2p1/2)1+ with 0.900 +

i0.010, 0.967 + i0.007, 0.903 + i0.024, and 0.989 − i0.001,
respectively. Here, it should be noted that an amplitude of
a resonance becomes a complex number and its real part
has a physical meaning while an imaginary part has a small
value. These 6He states together with a neutron compose the
thresholds of 7He, and their positions in the complex energy
plane are located at the starting points of the 2θ -rotated cuts
in the complex scaling method, as shown in Fig. 3.

Next, for the 7He resonances, we obtain five states which are
all located above the 6He(ground state)+n threshold. We list
their energies and decay widths in Table I measured from the
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FIG. 3. (Color online) Energy eigenvalues for the 7He resonances
(solid circles) in the complex energy plane. The continuum states
rotated down by 2θ are schematically displayed with the cut lines.
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TABLE I. Energy eigenvalues of the
7He resonances measured from the 4He+3n

threshold. The values with parentheses are
the ones fitted to the position of the observed
resonance energy of the ground state.

Energy (MeV) Width (MeV)

3/2−
1 −0.790(−0.54) 0.014(0.14)

3/2−
2 2.58 1.95

3/2−
3 4.53 5.77

1/2− 0.26 2.19

5/2− 2.46 1.50

4He+3n threshold energy. All excited resonant states except
for the ground state are obtained above the 4He+3n threshold.
In Fig. 2, we summarize the energy spectra for 7He with those
of 5,6He. In Fig. 3, we display the energy eigenvalues of the
7He resonances together with the many-body continuum cuts
on the complex energy plane. The energy of the ground state
is reproduced as Er = 0.184 MeV measured from the 6He+n

threshold. The result is slightly overbound with respect to the
experiments (Er = 0.44(2) MeV [3] and 0.36(5) MeV [8]).
Due to this overbinding, the decay width is smaller than
experimental values of 
 ∼ 0.16 MeV. When we fit the above
energy of Er = 0.44 MeV by reducing the strength of V αnn,
the decay width 
 becomes 0.14 MeV and nicely agrees with
experimental values. The overbinding problem is discussed
later.

In Fig. 4, we display the excitation energies in comparison
with the various results of the experiments. We found the
5/2− state, whose position agrees with the several experiments
[3,4,8], and the obtained decay width of 1.50 MeV is a little
smaller than experimental values. As seen from Fig. 4, the
obtained 3/2−

2 state is degenerated with the 5/2− state and
their decay widths do not differ so much (see Table I). This
result suggests the superposed observation of the two states in
this energy region. We found one broad 1/2− resonance with a
low excitation energy of Ex = 1.05 MeV. Three experiments
report the 1/2− state with a low excitation energy at around
1 MeV [5,8,9], whereas the experimental uncertainty is large.

0

1

2

3

4

5

6
3/2-

E
xc

ita
io

n 
E

ne
rg

y 
[M

eV
]

0

1

2

3

4

5

6

a) b) c) e) f) Present

1/2-
3/2-

5/2- 3/2-

5/2-

Γ=2.0
+1.0
−1.1

Γ=2.19
Γ=0.75(8)

Γ=1.0(9)

1/2-

7He

Γ=2.2(3) Γ=1.9(3) Γ=2.1(8)

d)

Γ∼2

FIG. 4. (Color online) Excitation spectra of 7He in comparison
with the experiments (a) Ref. [3], (b) Ref. [4], (c) Ref. [5], (d) Ref. [6],
(e) Ref. [8], (f) Ref. [9]).

Other experiments [6,7] exclude the possibility of the low
excitation energy of this state and instead suggest the higher
excitation energy of Ex = 2.6 MeV [6]. It is desired that further
consistent experimental data are coming.

We discuss the structures of each resonance in detail. In
CSM, resonances are precisely described as eigenstates solved
using an L2 basis functions and thus have finite amplitudes
normalized as unity totally. We list the main configurations
[squared amplitudes C2

β in Eq. (4)] for the 7He resonances in
Table II. In general, the square amplitude of each configuration
of the resonant states can be a complex number, whereas
the total amplitude of the state is normalized to be unity.
The physical interpretation of the imaginary parts in physical
quantity of the resonances is still an open problem [33,34].
However, the amplitudes of the dominant components are
almost real values for every resonance, because their imaginary
parts are very small. Hence, it is expected that we can
discuss the physical meaning of the dominant components
of the resonances in the same way as the case of bound
states. Furthermore, it was found that the imaginary parts
of the dominant configurations cancel each other for every
resonance and their summations have much smaller imaginary
parts. When we consider all the available configurations, the
summations conserve unity due to the normalization of the
states.

For the 3/2− ground state, our results indicate that the
(p3/2)3 configuration is dominant with a small mixing
of the p1/2 component. For the excited 3/2−

2 state, we obtained
the interesting result; one neutron occupies the p1/2 orbit and
the residual two neutrons in p3/2 form the spin of 2+, which
corresponds to 6He(2+

1 ), because the first excited 2+ state of
6He has been shown to have the dominant (p3/2)2 configuration
[18]. The importance of the 6He(2+

1 )+n configuration in the
3/2−

2 state of 7He is also discussed later using S factors.
Two-particle excitation of the (p1/2)2 component is mixed
by about 9%. The other excited 3/2−

3 state is dominated
by the (p3/2)(p1/2)2 configuration, in which the (p1/2)2 part is
the same configuration of 6He(0+

2 ). From the configurations,
the several excited states of 7He can be described by the 6He+n

configuration. The 6He component in 7He is shown via S

factors in detail later.
The 1/2− state corresponds to the one-particle excitation

from the ground state. Its decay width (2.19 MeV) is twice
larger than the resonance energy (1.05 MeV). This property
is similar to the 1/2− case of 5He in the 4He+n system. In
comparison with the 5He case, whose resonance energy is
2.13 MeV with the decay width of 5.84 MeV, the 1/2− state
of 7He has a smaller excitation energy and is closer to the
threshold of 6He+n. The difference comes from the residual
two neutrons occupying the p3/2 orbit in 7He. The attraction
between the p1/2 neutron and other two neutrons makes the
energy of the 1/2− state lower.

In the 5/2− state, the 2+ component of (p3/2)2 plus p1/2

is a dominant configuration. This coupling scheme is similar
to the 3/2−

2 case. Furthermore, in every resonance, 1s and 0d

wave configurations are mixed slightly being coupled with the
p orbits.

We return to the overbinding problem of the ground state.
Our model reproduces the energies of 5,6He, and in this sense
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TABLE II. Configurations of valence neutrons with their squared amplitudes C2
β in the 7He resonances. �̄j is

the orthogonal state of �j .

3/2−
1 3/2−

2 3/2−
3

(p3/2)3 0.920 + i0.0004 (p3/2)2(p1/2) 0.883 + i0.044 (p3/2)(p1/2)2 0.926 + i0.161
(p3/2)(p1/2)2 0.026 + i0.004 (p3/2)(p1/2)2 0.093 − i0.029 (p3/2)2(p1/2) 0.117 − i0.154
(p3/2)2(p1/2) 0.016 − i0.004 (d5/2)(d3/2)(p3/2) 0.012 − i0.013 (d3/2)2(p3/2) −0.031 − i0.012
(d5/2)2(p3/2) 0.015 + i0.002 (d5/2)2(p1/2) 0.003 + i0.001 (p3/2)3 0.007 − i0.008
Sum 0.978 + i0.002 Sum 0.991 + i0.002 Sum 1.018 − i0.013

1/2− 5/2−

(p3/2)2(p1/2) 0.968 − i0.097 (p3/2)2(p1/2) 0.983 − i0.004
(d5/2)2(p1/2) 0.022 + i0.002 (p3/2)2(p̄3/2) −0.012 + i0.004
(p1/2)2(p̄1/2) 0.012 + i0.021 (1s1/2)(d5/2)(p3/2) 0.008 − i0.0004
(1s1/2)2(p1/2) −0.010 + i0.073 (1s1/2)(d3/2)(p3/2) 0.006 + i0.003
Sum 0.991 − i0.002 Sum 0.984 + i0.002

the slight overbinding of 7He with respect to the 4He+3n

threshold suggests the problem of the employed interactions.
It is interesting to see the contributions of the higher partial
waves beyond � = 2 for the valence neutrons while tuning the
energies of 5,6He again, although the essential results of the
energy spectra and the configuration mixing would not change.
However, the rearrangement of 4He inside 7He is expected [30,
35,36], which is not included explicitly in the present model.
The tensor correlation produces the strong 2p-2h excitations
in 4He, which are coupled with the motions of valence neutrons
outside 4He [30,37–39]. It would be interesting to see these
two kinds of effects on the structures not only of the ground
state but also of the excited states in He isotopes [40].

B. Spectroscopic factors of 7He

Finally we investigate S factors of the 6He-n components
for the 7He resonances. Before proceeding to the results, we
would like to briefly explain S factors for Gamow states. It
should be noted that S factors are not necessarily positive
definite for Gamow states. Because Gamow states belong to
the eigenstates having complex energies, their matrix elements
of the physical quantities have complex numbers generally. S

factors for the Gamow states are defined by the squared matrix
elements, but not Hermitian products, due to the biorthogonal
properties of the states [17,19,33,41] as

S
J,ν
J ′,ν ′ =

∑
α

S
J,ν
J ′,ν ′,α, (15)

S
J,ν
J ′,ν ′,α = 1

2J + 1

〈
�̃J

ν (7He)
∣∣|a†

α|∣∣�J ′
ν ′ (6He)

〉2
, (16)

where a†
α is defined in Eq. (3). J and J ′ are the spins of 7He

and 6He, respectively. ν (ν ′) is an index to distinguish the
obtained eigenstates of 7He with J (6He with J ′) expressed in
Eq. (4). We take a summation over the possible configurations
α of a valence neutron. {�̃J

ν } are biorthogonal states of {�J
ν }.

In this expression, S
J,ν
J ′,ν ′ are allowed to be complex values

and include the physical information of the resonant wave
functions. In general, an imaginary part in S factors frequently

becomes large relative to the real part for a broad resonance,
which has a large decay width. When an imaginary part of
the matrix element is smaller than the real part, physical
interpretation is allowable for the matrix element as a usual
S factor, similar to the amplitudes of the configurations for
the Gamow states as discussed in Table II. For the obtained
resonances, we checked that the real parts of the calculated
results are consistent with those obtained in the bound-state
approximation for resonances. It is considered that the matrix
elements of the Gamow states could be connected to those of
the bound states in the analytical continuation between them
by adjusting the strength of the interaction in the Hamiltonian.

The sum rule value for the S factors of Gamow states could
be considered, which corresponds to the associated particle
number [24,34]. When we count all the obtained complex S

factors for not only Gamow states but also the nonresonant
continuum states of the subsystems, the summed value of the
S factors becomes real and satisfies the particular sum-rule
value derived from the completeness relation of the obtained
eigenstates. In that case, the imaginary part of the summed
S factors is automatically canceled out, as similar to the
amplitudes of the configurations shown in Table II and also
to the transition strength functions [24,27]. In the case of 7He
with the 6He-n decompositions, the summed value of the S

factor S
J,ν
J ′,ν ′ in Eq. (16) via taking all the 6He states is given as∑

J ′,ν ′
S

J,ν
J ′,ν ′ =

∑
α,m

〈
�̃JM

ν (7He)
∣∣a†

α,maα,m

∣∣�JM
ν (7He)

〉
= 3, (17)

where we use the completeness relation of 6He (1 =∫∑
J ′,M ′,ν ′ |�J ′M ′

ν ′ (6He)〉〈�̃J ′M ′
ν ′ (6He)|). Here M (M ′) and m are

the z components of the wave functions of 7He (6He) and of
the creation operator of the valence neurons, respectively. It
is found that the summed value of the S factor satisfies the
number of valence neutrons of 7He for every 7He resonance
because the state is normalized.

In Table III, we list the results of the S factors for the 7He
resonances, which are calculated using the complex-scaled
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TABLE III. Spectroscopic factors of the 6He-n components in
7He. Details are described in the text.

6He(0+
1 )-n 6He(2+

1 )-n

Present CK VMC Present CK VMC

3/2−
1 0.75 + i0.10 0.59 0.53 1.51 − i0.40 1.21 1.76

3/2−
2 0.03 + i0.03 0.06 0.06 1.78 + i0.06 1.38 1.11

3/2−
3 0.01 + i0.03 – – 0.02 + i0.05 – –

1/2− 0.25 − i0.47 0.69 0.87 0.13 − i0.08 0.60 0.34
5/2− 0.00 + i0.00 0.00 0.00 1.37 − i0.15 1.36 1.20

wave functions and independent of the scaling angle θ . In
our calculation, we also describe 6He(2+

1 ) as a Gamow state.
For reference, the results of the conventional Cohen-Kurath
shell model (CK) and of the variational Monte Carlo (VMC)
calculations [6,12] are also shown with real values due to the
bound-state approximation for the description of resonances.
The trend seen in our results is roughly similar to the CK
and VMC results. For the 3/2−

1 state, the mixing of 6He(2+
1 )

component is almost twice that of the 6He(0+
1 ) case. For the

3/2−
2 state, 6He(2+

1 ) is strongly mixed from the dominant
amplitude of (p3/2)2

2+ ⊗ (p1/2). For the 3/2−
3 state, the 0+

1
and 2+

1 states of 6He are hardly included because of the
(p3/2) ⊗ (p1/2)2 configuration. Instead of the above two 6He
states, the 0+

2 [(p1/2)2] and 2+
2 [(p3/2)(p1/2)] states of 6He may

give large contributions for this state [19]. For the 1/2− state,
even if this state is dominated by a (p3/2)2 ⊗ (p1/2) component,
the S factor for 6He(0+

1 ) is not large. This indicates that the
spatial property of the (p3/2)2 component is changed in the
1/2− state of 7He from the halo structure of the neutrons
in 6He(0+

1 ). This is because the 1/2− state is located above
the 4He+3n threshold and can decay to four particles. In
fact, when we locate this state just below 0.5 MeV from
the 4He+3n threshold energy by adjusting the interaction,
the S factor becomes 0.79 − i0.35 and its real part gets close
to unity. The 6He(2+

1 ) component is small in this state. The
1/2− state also shows the large imaginary part of the S factor,

which comes from the large decay width of this state. The
present S factors correspond to the components of 6He in
the 7He resonances, similar to the results shown in Table II.
However, it is still difficult to derive the definite conclusion
of the interpretation of this imaginary part at this stage.
The further theoretical development and analysis would be
desired to solve this problem. For the 5/2− state, the 6He(2+

1 )
component is included. For the summary of the results of the S

factors, the obtained 7He states are not considered to be purely
single-particle states coupled with the 6He ground state. The
excitation of 6He into 2+

1 is important in several states.

IV. SUMMARY

We have investigated the resonance structures of 7He with
the cluster orbital shell model. The boundary condition for
many-body resonances is accurately treated in the complex
scaling method. The decay thresholds concerned with sub-
systems are described consistently. As a result, we found
five resonances that are dominantly described by the p-shell
configurations and the small contributions come from the sd

shell. The 1/2− state is predicted in a low-excitation-energy
region with a large decay width. We further investigate the
spectroscopic factor of the 6He-n component. It is found that
the 6He(2+

1 ) state contributes largely in the ground and the
several excited states of 7He.
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[21] H. Masui, K. Katō, and K. Ikeda, Phys. Rev. C 73, 034318
(2006).
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[38] T. Myo, K. Katō, H. Toki, and K. Ikeda, Phys. Rev. C 76, 024305

(2007).
[39] T. Terasawa, Prog. Theor. Phys. 23, 87 (1960); Arima and

T. Terasawa, ibid. 23, 115 (1960).
[40] K. Ikeda, T. Myo, S. Sugimoto, K. Katō, and H. Toki, Mod.
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