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Nuclear shape-phase diagrams
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Ground-state energy functions of even-even and odd-A nuclei are derived from simple parameter-dependent
Interacting Boson Model (IBM) and Interacting Boson-Fermion Model (IBFM) Hamiltonians. Exact nuclear
shape-phase diagrams in the two-parameter (η, χ ) plane are explicitly described using the energy functions on
the basis of the condition of phase equilibrium.
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I. INTRODUCTION

A phase transition can roughly be defined as a qualitative
change in a given property of a system. In the past few years,
there has sprung up a heated discussion as to shape-phase
transitions in finite nuclei [1–13], i.e., at a certain value of
the control parameters the ground state flipping from one
deformation configuration to another. The Landau theory of
continuous phase transition for infinite classical systems [14] is
shown to be a useful tool for analyzing shape-phase transitions
in even-even nuclei, where the energy function usually is
truncated up to the fourth order of the order parameter
[5,7,9,10]. In this paper we will employ the condition of
shape phase equilibrium to quest for exact nuclear shape-phase
diagrams especially in odd-A nuclei without any truncation.

II. OUTLINE OF THE THEORETICAL APPROACH

The study of shape-phase transition in even-even nuclei can
be well done from the simple well-known two-parameter IBM
Hamiltonian [15]:

HB(N, η, χ ) = ηnd − 1 − η

N
Q(χ ) · Q(χ ),

where nd = d† · d̃ represents the d-boson number operator,
Q(χ ) = d†s + s†d̃ + χ [d† × d̃](2) is the quadrupole operator
and N is the total boson number. Value of the so-called control
parameters η ranges from 0 to 1 and χ is located in the interval
of −√

7/2 to
√

7/2. The ground-state energy function can be
derived by making use of the coherent state formalism for the
IBM [16,17]

|Nβγ 〉 =
{
s† + β

[
cos γ d

†
0 +

√
1
2 sin γ (d†

2 + d
†
−2)

]}N√
N !(1 + β2)N

|0〉. (1)

Here intrinsic shape β and γ are used as order parameters in
shape-phase transition theory and we set γ = 0 to study only
the β dependence. The energy function can therefore take the
form

E(N, η, χ, β)

= −5(1 − η) + 1

(1 + β2)2

{
[Nη − (1 − η)(4N + χ2 − 8)]β2

+ 4(N − 1)(1 − η)

√
2

7
χβ3

+
[
Nη − (1 − η)

(
2N + 5

7
χ2 − 4

)]
β4

}
. (2)

In order to infer the energy function of the odd-A nuclei
within the framework of the IBFM, we resort to a phenomeno-
logical method. When an odd fermion is added into the
even-even core, we assume a many-body wave function for
the system to have the form of product of the wave functions
of the single particle and the core [16]

|Nβγjm〉 = a
†
jm|Nβγ 〉

= a
†
jm

{
s† + β

[
cos γ d

†
0 +

√
1
2 sin γ (d†

2 + d
†
−2)

]}N√
N !(1 + β2)N

|0〉 (3)

with no fixed value of angular momentum. Here discussion
is limited to the case when the odd fermion occupies only
one shell model orbital, of angular momentum j and its z

component m. The IBFM Hamiltonian [18] is given by

H = HB + HF + HBF , (4)

where HF is the fermion Hamiltonian and contains only
one-body term. Then HF = ∑

m εj (a†
jmajm) contributes to

the ground-state energy function an additive constant de-
pending on quantum number j . HBF is the interaction of
the odd fermion and the core usually dominated by three
terms, a monopole-monopole, a quadrupole-quadrupole, and
an exchange interaction [18]. The quadrupole-quadrupole
interaction can be expressed as

HBF ∝ [Q(χ ) × (a†
j × ãj )(2)](0), (5)

where ãj−m = (−1)j+majm. Then the contribution of HBF to
the ground-state energy function for γ = 0 can be obtained
[16]

EBF = 〈Nβγjm|HBF |Nβγjm〉

= κ〈jm20 | jm〉
(

2Nβ

1 + β2
−

√
2

7
χ

Nβ2

1 + β2

)
. (6)

One can naturally expect the HBF is a perturbing operator in
the IBFM Hamiltionian and hence interaction strength κ can
be assumed to be a small and positive constant. The energy
summation of εj and EBF

εj + κ〈jm20 | jm〉
(

2Nβ

1 + β2
−

√
2

7
χ

Nβ2

1 + β2

)
(7)

is somewhat similar to the single-particle energy εj� of
deformed shell model (� = |m|) adopted in Ref. [19] due
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to 〈jm20|jm〉 ∝ (3m2 − j (j + 1)), though here we restrict
the odd fermion to occupy only one shell model orbital
|jm〉 and ignore the contribution of the levels with the same
quantum number m coming from different j -shells. We neglect
the remaining monopole and exchange interactions which
contribute the energy function a term ∝ 1

1+β2 or β2

1+β2 [16]
and represent just a renormalization of the core Hamiltonian.
So the total energy function is derived

E(η, χ, κ, β) = E(η, χ, β) + εj

+ κ〈jm20 | jm〉
(

2Nβ

1 + β2
−

√
2

7
χ

Nβ2

1 + β2

)

= 1

(1 + β2)2
(a1β + a2β

2 + a3β
3 + a4β

4), (8)

where the coefficients a1, a2, a3, and a4 in the large-N limit
read

a1 = 2κ〈jm20 | jm〉,

a2 = 5η − 4 −
√

2

7
κ〈jm20 | jm〉χ,

(9)

a3 = 4(1 − η)

√
2

7
χ + 2κ〈jm20 | jm〉,

a4 = η − 2

7
χ2(1 − η) −

√
2

7
κ〈jm20 | jm〉χ.

With the inverse trigonometric function substitution θ =
arctan(β) (−π

4 � θ � π
4 ) and the use of the trigonometric

formulas, we have the energy function and change the variable
from β to 2θ − α2

2

E(η, χ, κ, β) = a1 sin(θ ) cos3(θ ) + a2 sin2(θ ) cos2(θ )

+ a3 sin3(θ ) cos(θ ) + a4 sin4(θ )

= −a4

2
cos(2θ ) + a1 + a3

4
sin(2θ )

+ a4 − a2

8
cos(4θ ) + a1 − a3

8
sin(4θ )

+ a2 + 3a4

8

= r1 cos
((

2θ − α2

2

)
+

(α2

2
− α1

))
+ r2 cos

(
2
(

2θ − α2

2

))
+ a2 + 3a4

8
, (10)

where the hypotenuses r1, r2, angles α1(−π � α1 < π ) and α2

(−π/2 � α2 < π/2) have the following relationship with the
coefficients a1, a2, a3, and a4:

r1 =
√

4a2
4 + (a1 + a3)2

4
,

α1 = arctan
a1 + a3

−2a4
, a4 � 0,

α1 = π + arctan
a1 + a3

−2a4
, a4 > 0, a1 + a3 � 0; α1

(11)

= −π + arctan
a1 + a3

−2a4
, a4 > 0, a1 + a3 < 0,

r2 =
√

(a4 − a2)2 + (a1 − a3)2

8
,

α2 = arctan
a1 − a3

a4 − a2
.

III. DISCUSSIONS

Since the the variable 2θ − α2
2 is located within the region

of − 3π
4 to 3π

4 and cos(2(2θ − α2
2 )) has two minima and one

maximum as a even function, it can be observed from Eq. (10)
that two-phase equilibrium exists in the system only if
cos((2θ − α2

2 ) + ( α2
2 − α1)) is also a even function and has one

minimum or maximum. So the shape-phase transition curve
of the E(η, χ, κ, β) in (η, χ ) plane can then be denoted by a
very compact form α2

2 − α1 = 0,±π

arctan
a1 − a3

a4 − a2
= 2 arctan

a1 + a3

−2a4
. (12)

Detailed analysis of the eqnarray leads to identify the phase-
transition curve

a3
1 + a2

1a3 + 4a1a2a4 − a1a
2
3 − 8a1a

2
4 + 4a2a3a4 − a3

3 = 0.

(13)

The minima of E(η, χ, κ, β) as a function of β can be esti-
mated by equating the derivative ∂E/∂β to zero r1 sin((2θ −
α2
2 ) + π ) + 2r2 sin(2(2θ − α2

2 )) = 0 and we obtain double
minima at values

β± = tan

(
α2

4
± arccos

(
r1

4r2

))
= tan

arctan( a1−a3
a4−a2

)

4

± arccos


√

4a2
4 + (a1 + a3)2

2
√

(a4 − a2)2 + (a1 − a3)2

 . (14)

The solution sin(2θ − α2
2 ) = 0 corresponds to a maximum of

E(η, χ, κ, β), not a minimum. The critical point is determined
by r1

4r2
= 1, that is

3a2
1 − 10a1a3 + 3a2

3 − 8a2a4 + 4a2
2 = 0,

β± = tan
(α2

4

)
= tan

(
arctan

(
a1−a3
a4−a2

)
4

)
. (15)

When κ = 0 (a1 = 0), the shape-phase transition curve
a3

3 = 4a2a3a4 [see Eq. (13)] for even-even nuclei is shown
in Fig. 1, where the well-known Casten triangle exhibits
three phases—spherical, prolate, and oblate deformed—each
separated by first-order phase transition. At the triple point
where the phases coexist, a second-order phase transition
occurs with a well-known critical value ηc = 4/5(a2 = 0)
[5,7,9]. When κ �= 0, The exact solution of the cubic eqnarray
(13) of η can be obtained for a tentative 〈jm20 | jm〉κ =
−10−5exhibited in Fig. 2. The section AB in Fig. 2 differs
the oblate from the prolate shapes in the (η, χ ) plane; the
shape-phase transition line BC distinguishes between the
oblate and the near-spherical shapes and the equilibrium shape
values as a function of the control parameter can be seen in
Fig. 3; the prolate and the near-spherical shapes are separated
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FIG. 1. Phase diagram of even-even nuclei within the framework
of the interacting boson model in the large-N limit. I, II, and III stand
for spherical, oblate and prolate shapes, respectively.
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FIG. 2. Phase diagram of odd-A nuclei within the framework of
the interacting boson-fermion model in the large-N limit. I, II, and III
stand for near-spherical, oblate and prolate shapes, respectively.
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FIG. 3. Values of the respective near-spherical and oblate location
β± of the double minima of the IBFM energy function against the
control parameter η as 〈jm20 | jm〉κ = −10−5.
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FIG. 4. Values of the respective prolate and near-spherical loca-
tion β± of the double minima of the IBFM energy function against
the control parameter η as 〈jm20 | jm〉κ = −10−5. The β+ equals
the β− at the critical point ηc.

by the phase-transition curve ED shown in Fig. 4. The phase
equilibrium line ED in the (η, χ ) plane terminates at a critical
point E(ηc, χc). Below ηc, near-spherical shape does not exist.
If χc � x � 0 there is no (η, χ ) which satisfies r1

4r2
� 1 [see

Eq. (14)]. Thus no shape-phase transition curve exists in this
region. It is obvious that the ηc will be equal to 4/5 if the
interaction between the odd fermion and the core vanishes.

In Ref. [20], the interaction strength κ is fixed as 0.032 ±
0.002 MeV to reproduce the data for a wide range of nuclei. For
a quantitative investigation of the dependence of the critical
point on the interaction strength κ , we resort to solve the
nonlinear sets of eqnarrays (13) and (15). The result is shown
in Fig. 5. It is obvious that the critical point lies in the Casten
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FIG. 5. Dependence of the critical point ηc and χc on the
interaction strength κ .
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triangle when the the interaction strength κ is small, while the
critical point is located outside the Casten triangle for the fixed
κ value.

IV. CONCLUSIONS

The Landau theory of continuous phase transition is proved
to be a useful tool in the study of shape-phase transitions in
even-even nuclei. By referring to the shape-phase transitions
in even-even nuclei, we employ shape phase equilibrium
condition in the framework of IBFM to discuss nuclear shape-
phase diagram in odd-A nuclei. Exact nuclear shape-phase
diagrams in the two-parameter (η, χ ) plane are explicitly
described. Three phases—near spherical, prolate, and oblate
phases—each separated by first-order phase transitions are

found in the boson-fermion mixing system. As expected a
first-order phase transition line for odd-A nuclei ends at a
critical point. This critical value is equal to the previously
known one in the even-even nuclei if the interaction between
the odd nucleon and the core vanishes.
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