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Nuclear shape-phase diagrams
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Ground-state energy functions of even-even and odd-A nuclei are derived from simple parameter-dependent
Interacting Boson Model (IBM) and Interacting Boson-Fermion Model (IBFM) Hamiltonians. Exact nuclear
shape-phase diagrams in the two-parameter (1, x) plane are explicitly described using the energy functions on

the basis of the condition of phase equilibrium.
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I. INTRODUCTION

A phase transition can roughly be defined as a qualitative
change in a given property of a system. In the past few years,
there has sprung up a heated discussion as to shape-phase
transitions in finite nuclei [1-13], i.e., at a certain value of
the control parameters the ground state flipping from one
deformation configuration to another. The Landau theory of
continuous phase transition for infinite classical systems [14] is
shown to be a useful tool for analyzing shape-phase transitions
in even-even nuclei, where the energy function usually is
truncated up to the fourth order of the order parameter
[5,7,9,10]. In this paper we will employ the condition of
shape phase equilibrium to quest for exact nuclear shape-phase
diagrams especially in odd-A nuclei without any truncation.

II. OUTLINE OF THE THEORETICAL APPROACH

The study of shape-phase transition in even-even nuclei can
be well done from the simple well-known two-parameter IBM
Hamiltonian [15]:
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Hy(N. 0., %) = nng — T”Q(x)- 0(x).

where n,; = df cz represents the d-boson number operator,
O(x) =d's +s'd + x[d' x d]® is the quadrupole operator
and N is the total boson number. Value of the so-called control
parameters 7 ranges from O to 1 and y is located in the interval
of —+/7/2 to +/7/2. The ground-state energy function can be
derived by making use of the coherent state formalism for the
IBM [16,17]
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Here intrinsic shape 8 and y are used as order parameters in
shape-phase transition theory and we set y = 0 to study only
the B dependence. The energy function can therefore take the
form

INBy) = 10). (1)

E(N,n, x,B)
_ _ l _ _ 2_ 2
= =51 =1)+ ﬂz)z{[Nn (1= AN + £ — 818
2 3
+4(N - DA —1n) 7Xﬁ
2N +5
+[Nn—<1—n>( — x2—4>]ﬂ4}. @

0556-2813/2007/76(5)/054304(4)

054304-1

PACS number(s): 21.60.Fw, 21.10.Re, 27.60.4j

In order to infer the energy function of the odd-A nuclei
within the framework of the IBFM, we resort to a phenomeno-
logical method. When an odd fermion is added into the
even-even core, we assume a many-body wave function for
the system to have the form of product of the wave functions
of the single particle and the core [16]
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with no fixed value of angular momentum. Here discussion
is limited to the case when the odd fermion occupies only
one shell model orbital, of angular momentum j and its z
component . The IBFM Hamiltonian [18] is given by

H = Hp + Hr + Hpp, (€]

where Hp is the fermion Hamiltonian and contains only
one-body term. Then Hr =), ¢ j(a;ma jm) contributes to
the ground-state energy function an additive constant de-
pending on quantum number j. Hpp is the interaction of
the odd fermion and the core usually dominated by three
terms, a monopole-monopole, a quadrupole-quadrupole, and
an exchange interaction [18]. The quadrupole-quadrupole
interaction can be expressed as

Hpr < [Q(x) x (ab x @)@, ©)

where Ej_m =(—1)/T"q jm- Then the contribution of Hgr to
the ground-state energy function for y = 0 can be obtained

[16]
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One can naturally expect the Hpp is a perturbing operator in
the IBFM Hamiltionian and hence interaction strength « can
be assumed to be a small and positive constant. The energy
summation of ¢; and Epp
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is somewhat similar to the single-particle energy &;q of
deformed shell model (2 = |m|) adopted in Ref. [19] due

Eprp = (NByjm|Hpr|NByjm)
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to (jm20|jm) o< (3m? — j(j + 1)), though here we restrict
the odd fermion to occupy only one shell model orbital
|jm) and ignore the contribution of the levels with the same
quantum number m coming from different j-shells. We neglect
the remaining monopole and exchange interactions which
contribute the energy function a term H-IT or % [16]
and represent just a renormalization of the core Hamiltonian.
So the total energy function is derived

E(m, x,«,B)=EMm, x.B) t+ ¢
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where the coefficients ay, a,, as, and a4 in the large-N limit
read

ar = 2ic(jm20 | jm).
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With the inverse trigonometric function substitution 6 =
arctan(B) (—7% <0< 7) and the use of the trigonometric
formulas, we have the energy function and change the variable
from B to 20 — %
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where the hypotenuses 7y, 1, angles o (—m < o) < 7) and o
(—m/2 < ay < m/2) have the following relationship with the
coefficients ay, a,, az, and ay:
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III. DISCUSSIONS

Since the the variable 26 — % is located within the region

of —37” to 37” and cos(2(20 — “—22)) has two minima and one
maximum as a even function, it can be observed from Eq. (10)
that two-phase equilibrium exists in the system only if
cos((20 — %) + (% — a)) is also a even function and has one
minimum or maximum. So the shape-phase transition curve
of the E(n, x, «, B) in (1, x) plane can then be denoted by a

very compact form ¢ — o =0, £7

a—as ap+as
= 2arctan ———.
as — an —2ay
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12)

Detailed analysis of the eqnarray leads to identify the phase-

transition curve

af + a%ag + dayaray — a1a§ — Salaf + darazas — a; =0.
(13)

The minima of E(n, x, «, B) as a function of 8 can be esti-

mated by equating the derivative d E /9 to zero ry sin((20 —

%) + ) + 2rp sin(2(260 — “72)) =0 and we obtain double
minima at values
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The solution sin(20 — %) = 0 corresponds to a maximum of
E(n, x, k, B), not aminimum. The critical point is determined
by 4r7‘2 =1, that is

Salz —10a;,a3 + 3a§ — 8asay + 4a§ =0,

(aretanc;_zz)) (15)
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When « =0 (a; = 0), the shape-phase transition curve
ai = 4dayazay [see Eq. (13)] for even-even nuclei is shown
in Fig. 1, where the well-known Casten triangle exhibits
three phases—spherical, prolate, and oblate deformed—each
separated by first-order phase transition. At the triple point
where the phases coexist, a second-order phase transition
occurs with a well-known critical value n, = 4/5(a; = 0)
[5,7,9]. When « # 0, The exact solution of the cubic eqnarray
(13) of n can be obtained for a tentative (jm20 | jm)x =
—10exhibited in Fig. 2. The section AB in Fig. 2 differs
the oblate from the prolate shapes in the (1, x) plane; the
shape-phase transition line BC distinguishes between the
oblate and the near-spherical shapes and the equilibrium shape
values as a function of the control parameter can be seen in
Fig. 3; the prolate and the near-spherical shapes are separated
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NUCLEAR SHAPE-PHASE DIAGRAMS

1.2+

084 =1~ =
S

o1 I
o4
0.4 508002 08004 0.8006 0.8008
R 0.1

B ]
0.0

-0.4-

I11

-0.8

0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

n

FIG. 1. Phase diagram of even-even nuclei within the framework
of the interacting boson model in the large-N limit. I, II, and III stand
for spherical, oblate and prolate shapes, respectively.
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FIG. 2. Phase diagram of odd-A nuclei within the framework of
the interacting boson-fermion model in the large-N limit. I, II, and III
stand for near-spherical, oblate and prolate shapes, respectively.

0.1 A1 B+

0.0 +

+
-0.14 B_

col
-0.2+1

0.7988 0.7992 0.7996 0.8000 0.8004 0.8008

n

FIG. 3. Values of the respective near-spherical and oblate location
B of the double minima of the IBFM energy function against the
control parameter n as (jm20 | jm)x = —107.
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FIG. 4. Values of the respective prolate and near-spherical loca-
tion B, of the double minima of the IBFM energy function against
the control parameter 7 as (jm20 | jm)x = —107>. The B, equals
the S_ at the critical point ..

by the phase-transition curve E D shown in Fig. 4. The phase
equilibrium line E D in the (1, x) plane terminates at a critical
point E (5., x.). Below n., near-spherical shape does not exist.
If x.<x <0 there is no (n, x) which satisfies 4’7‘2 <1 [see
Eq. (14)]. Thus no shape-phase transition curve exists in this
region. It is obvious that the n. will be equal to 4/5 if the
interaction between the odd fermion and the core vanishes.

In Ref. [20], the interaction strength « is fixed as 0.032 &
0.002 MeV to reproduce the data for a wide range of nuclei. For
a quantitative investigation of the dependence of the critical
point on the interaction strength x, we resort to solve the
nonlinear sets of eqnarrays (13) and (15). The result is shown
in Fig. 5. It is obvious that the critical point lies in the Casten
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FIG. 5. Dependence of the critical point 7, and x. on the
interaction strength k.
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triangle when the the interaction strength « is small, while the
critical point is located outside the Casten triangle for the fixed
Kk value.

IV. CONCLUSIONS

The Landau theory of continuous phase transition is proved
to be a useful tool in the study of shape-phase transitions in
even-even nuclei. By referring to the shape-phase transitions
in even-even nuclei, we employ shape phase equilibrium
condition in the framework of IBFM to discuss nuclear shape-
phase diagram in odd-A nuclei. Exact nuclear shape-phase
diagrams in the two-parameter (7, x) plane are explicitly
described. Three phases—near spherical, prolate, and oblate
phases—each separated by first-order phase transitions are
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found in the boson-fermion mixing system. As expected a
first-order phase transition line for odd-A nuclei ends at a
critical point. This critical value is equal to the previously
known one in the even-even nuclei if the interaction between
the odd nucleon and the core vanishes.
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