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Self-consistent quasiparticle random-phase approximation for a multilevel pairing model
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Particle-number projection within the Lipkin-Nogami (LN) method is applied to the self-consistent
quasiparticle random-phase approximation (SCQRPA), which is tested in an exactly solvable multilevel pairing
model. The SCQRPA equations are numerically solved to find the energies of the ground and excited states at
various numbers � of doubly degenerate equidistant levels. The use of the LN method allows one to avoid the
collapse of the BCS (QRPA) to obtain the energies of the ground and excited states as smooth functions of the
interaction parameter G. The comparison between results given by different approximations such as the SCRPA,
QRPA, LNQRPA, SCQRPA, and LNSCQRPA is carried out. Although the use of the LN method significantly
improves the agreement with the exact results in the intermediate coupling region, we found that in the strong
coupling region the SCQRPA results are closest to the exact ones.
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I. INTRODUCTION

The random-phase approximation (RPA), which includes
correlations in the ground state, provides a simple theory of
excited states of the nucleus. However, the RPA breaks down
at a certain value Gcr of interaction parameter G, where it
yields imaginary eigenvalues. The reason is that the RPA
equations, linear with respect to the X and Y amplitudes
of the RPA excitation operator, are derived based on the
quasiboson approximation (QBA). The latter neglects the Pauli
principle between fermion pairs and its validity is getting poor
with increasing the interaction parameter G. The collapse
of the RPA at the critical value Gcr of G invalidates the
use of the QBA. The RPA therefore needs to be extended
to correct this deficiency, at least for finite systems such as
nuclei.

One of methods to restore the Pauli principle is to
renormalize the conventional RPA to include the nonzero
values of the commutator between the fermion-pair operators
in the correlated ground state. These so-called ground-state
correlations beyond RPA are neglected within the QBA. The
interaction in this way is renormalized and the collapse of
RPA is avoided. The resulting theory is called the renor-
malized RPA (RRPA) [1–3]. However, the test of the RRPA
carried out within several exactly solvable models showed
that the RRPA results are still far from the exact solutions
[3–5].

Recently, a significant development in improving the RPA
has been carried out within the self-consistent RPA (SCRPA)
[4–6]. Based on the same concept of renormalizing the
particle-particle (pp) RPA, the SCRPA made a step forward
by including the screening factors, which are the expectation
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values of the products of two pairing operators in the correlated
ground state. The SCRPA has been applied to the exactly
solvable multilevel pairing model, where the energies of the
ground state and first excited state in the system with N + 2
particles relative to the energy of the ground-state level in
the N -particle system are calculated and compared with the
exact results. It has been found that the agreement with the
exact solutions is good only in the weak coupling region,
where the pairing-interaction parameter G is smaller than the
critical values Gcr. In the strong coupling region (G � Gcr),
the agreement between the SCRPA and exact results becomes
poor [4,5]. In this region a quasiparticle representation should
be used in place of the pp one, as has been pointed out in
Ref. [7]. As a matter of fact, an extended version of the
SCRPA in the superfluid region has been proposed and is called
the self-consistent quasiparticle RPA (SCQRPA), which was
applied for the first time to the seniority model in Ref. [8] and
a two-level pairing model in Ref. [9]. However, the SCQRPA
also collapses at G = Gcr. It is therefore highly desirable to
develop a SCQRPA that works at all values of G and also in
more realistic cases, e.g., multilevel models. The aim of the
present work is to construct such an approach. Obviously, the
collapse of the SCQRPA at G = Gcr, which is the same as
that of the nontrivial solution for the pairing gap within the
Bardeen-Cooper-Schrieffer theory (BCS), can be removed by
performing the particle-number projection (PNP). The Lipkin-
Nogami method [10,11], which is an approximated PNP before
variation, will be used in such extension of the SCQRPA in
the present article because of its simplicity. This approach
shall be applied to a multilevel pairing model, the so-called
Richardson model [12], which is an exactly solvable model
extensively employed in literature to test approximations of
many-body problems.

The article is organized as follows. Section II presents a
brief outline of the SCQRPA theory that includes the PNP
within the LN method. The results of numerical calculations
are analyzed and discussed in Sec. III. Conclusions are drawn
in the last section.
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II. FORMALISM

A. Model Hamiltonian

The Richardson model (also called the multilevel pairing
model, picket-fence model, or ladder model) was described in
detail in Refs. [4–6,12]. It consists of � doubly-fold equidistant
levels interacting via a pairing force with a constant parameter
G. The model Hamiltonian is given as

H =
�∑

j=1

(εj − λ)Nj − G

�∑
j,j ′=1

P
†
j Pj ′ , (1)

where εj are the single-particle energies on the j shells. The
particle-number operator Nj and pairing operators P

†
j , Pj on

the j -th orbital (with unit shell degeneracy j + 1/2 ≡ 1) are
defined as

Nj = a
†
j aj + a

†
−j a−j , (2)

P
†
j = a

†
j a

†
−j , Pj = (P †

j )†. (3)

These operators fulfill the following exact commutation
relations

[Pj , P
†
j ′ ] = δjj ′(1 − Nj ), (4)

[Nj, P
†
j ′ ] = 2δjj ′P

†
j ′ , [Nj, Pj ′ ] = −2δjj ′Pj ′ . (5)

By using the Bogoliubov transformation from particle opera-
tors a

†
j and aj to quasiparticle ones α

†
j and αj

a
†
j = ujα

†
j + vjα−j , a−j = ujα−j − vjα

†
j , (6)

the pairing Hamiltonian in Eq. (1) is transformed into the
quasiparticle Hamiltonian as [13,14]

H = a +
∑

j

bjNj +
∑

j

cj (A†
j + Aj ) +

∑
jj ′

djj ′A†
jAj ′

+
∑
jj ′

gj (j ′)(A†
j ′Nj + NjAj ′)

+
∑
jj ′

hjj ′(A†
jA

†
j ′ + Aj ′Aj ) +

∑
jj ′

qjj ′NjNj ′ , (7)

where Nj is the quasiparticle-number operator, whereas A†
j

and Aj are the creation and destruction operators of a pair of
time-conjugated quasiparticles:

Nj = α
†
jαj + α

†
−jα−j , (8)

A†
j = α

†
jα

†
−j , Aj = (A†

j )†. (9)

The commutation relations among operators Nj ,A†
j , and Aj

are similar to those for particle operators in Eqs. (4) and (5),
namely

[Aj ,A†
j ′ ] = δjj ′(1 − Nj ), (10)

[Nj ,A†
j ′ ] = 2δjj ′A†

j ′ , [Nj ,Aj ′ ] = −2δjj ′Aj ′ . (11)

The coefficients a, bj , cj , djj ′ , gj (j ′), hjj ′ , qjj ′ in Eq. (7) are
given in terms of the coefficients uj , vj of the Bogoliubov
transformation, and the single-particle energies εj as (see, e.g.,

Ref. [13,14])

a = 2
∑

j

(εj − λ)v2
j − G

∑
j

ujvj

2

−G
∑

j

v4
j , (12)

bj = (εj − λ)
(
u2

j − v2
j

)
+2Gujvj

∑
j ′

uj ′vj ′ + Gv4
j , (13)

cj = 2(εj − λ)ujvj

−G
(
u2

j − v2
j

) ∑
j ′

uj ′vj ′ − 2Gujv
3
j , (14)

djj ′ = −G
(
u2

ju
2
j ′ + v2

j v
2
j ′
) = dj ′j , (15)

gj (j ′) = Gujvj

(
u2

j ′ − v2
j ′
)
, (16)

hjj ′ = G

2

(
u2

j v
2
j ′ + v2

j u
2
j ′
) = hj ′j , (17)

qjj ′ = −Gujvjuj ′vj ′ = qj ′j . (18)

The single-particle energies are given as εj = jε, where j =
1, . . . , �, and ε is the level distance chosen to be equal to
1 MeV in the present work. The chemical potential λ and
the coefficients uj and vj are determined by solving the gap
equations discussed in the next section.

B. Gap and number equations

1. Renormalized BCS

It is well known that the Pauli principle between the
quasiparticle-pair operators Aj and A†

j ′ is neglected within the
conventional BCS, which assumes that 〈BCS|Nj |BCS〉 = 0
within the BCS ground state |BCS〉. A simple way to restore
the Pauli principle is to introduce a new ground state |0̄〉 in
which the correlations among quasiparticles lead to nonzero
values of the quasiparticle occupation numbers so that the
contribution of the Nj term at the right-hand side of Eq. (10)
is preserved. By doing so, the BCS equations are renormalized
and the resulting theory is called the renormalized BCS
(RBCS) [15]. Within the RBCS the commutator between the
quasiparticle-pair operators are defined as

〈0̄|[Aj ,A†
j ′ ]|0̄〉 = δjj ′ 〈Dj 〉, (19)

with

Dj = 1 − Nj , 〈Dj 〉 = 1 − 2nj , (20)

where nj is the quasiparticle number in the correlated ground
state |0̄〉

nj ≡ 1
2 〈0̄|Nj |0̄〉 �= 0. (21)

Taking into account Eq. (19) and performing a constrained
variational calculation to minimize the Hamiltonian H ≡
H ′ − λN̂ , where N̂ = ∑

j Nj is the particle-number operator,
the RBCS equations for the pairing gap � and particle number
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N have been derived as [15]

� = G
∑

j

τj , N = 2
∑

j

ρj , (22)

where

τj = ujvj 〈Dj 〉, ρj = v2
j 〈Dj 〉 + 1

2 (1 − 〈Dj 〉), (23)

u2
j = 1

2

(
1 + εj − Gv2

j − λ

Ej

)
,

(24)

v2
j = 1

2

(
1 − εj − Gv2

j − λ

Ej

)
,

Ej =
√

(εj − Gv2
j − λ)2 + �2. (25)

The renormalization factors 〈Dj 〉, called the ground-state
correlation factors, are obtained by solving the SCQRPA
equations discussed later in this article (see Sec. II D2). The
internal energy of the system within the RBCS ground state
(the RBCS ground-state energy) is given as

ERBCS
g.s. = 2

∑
j

(εj − λ)ρj − �2

G
− G

∑
j

ρ2
j . (26)

By setting 〈Dj 〉 = 1, the RBCS equations go back to the well-
known BCS ones.

2. BCS with SCQRPA correlations

In the minimization procedure, which leads to the equation
(see, e.g., Ref. [16])

〈0̄|[H,A†
j ]|0̄〉 = 0, (27)

the RBCS ignores the expectation values 〈A†
j ′Aj 〉 ≡

〈0̄|A†
j ′Aj |0̄〉 and 〈Aj ′Aj 〉 ≡ 〈0̄|Aj ′Aj |0̄〉 of the products of

pair operators in the correlated quasiparticle ground state |0̄〉.
By retaining these screening factors in calculating the left-hand
side of Eq. (27), we derive from Eq. (27) an equation for the
level-dependent pairing gap in the form

�j = G

∑
j ′ uj ′vj ′ 〈DjDj ′ 〉

〈Dj 〉 , (28)

with the single-particle energies εj in the expressions for uj

and vj in Eq. (24) being renormalized to ε′
j as

ε′
j = εj + G

〈Dj 〉
∑
j ′

(
u2

j ′ − v2
j ′
)
(〈A†

jA
†
j ′ 〉 + 〈A†

jAj ′ 〉). (29)

We call Eq. (28) the BCS gap equation with SCQRPA correla-
tions, and use the abbreviation BCS1 to denote this approach,
having in mind that it includes the screening factors 〈A†

jA
†
j ′ 〉

and 〈A†
jAj ′ 〉 in the renormalized single-particle energies given

by Eq. (29). These screening factors are found by solving
Eqs. (28) and (29) self-consistently with the SCQRPA ones to
be discussed later in Sec. II D, where the explicit expressions
of the screening factors are given in terms of the SCQRPA

forward- and backward-going (X andY) amplitudes. The limit
case of Eqs. (28) and (29) for a degenerate two-level model is
studied in Ref. [9].

The right-hand side of Eq. (28) contains the expectation
values 〈DjDj ′ 〉, whose exact treatment is not possible as
it involves an infinite series in terms of the products of
A†

jAjA†
j ′Aj ′ [9], or an infinite boson expansion [17], which

again needs to be truncated at a certain order. In Ref. [9] this
series is truncated at the first order, whereas the consideration
in Ref. [17] is limited up to the four-boson terms. Such
expansion is based on the method of treating the single-particle
(quasiparticle) density used by Rowe in Ref. [2] or a mapping
employed in Ref. [3]. In the numerical calculations within
the present article we treat these terms approximately as
follows. By noticing that the expectation values 〈DjDj ′ 〉
are present in the ratios 〈DjDj ′ 〉/〈Dj 〉 or, more generally,
〈DjDj ′ 〉/√〈Dj 〉〈Dj ′ 〉, and that

〈DjDj ′ 〉 = 〈Dj 〉〈Dj ′ 〉 + δNjj ′ , with
(30)

δNjj ′ = 〈NjNj ′ 〉 − 〈Nj 〉〈Nj ′ 〉,
we rewrite these ratios as

〈DjDj ′ 〉√〈Dj 〉〈Dj ′ 〉 = √〈Dj 〉〈Dj ′ 〉 + δNjj ′√〈Dj 〉〈Dj ′ 〉 . (31)

The numerator δNjj ′ of the last term at the right-hand side of
Eq. (31) can be estimated by using the mean-field contraction
as

δNjj ′ � 2δjj ′nj (1 − nj ) = δjj ′(δNj )2, (32)

where (δNj )2 ≡ 〈N 2
j 〉 − 〈Nj 〉2 = 2nj (1 − nj ) is the

quasiparticle-number fluctuation on the j -th orbital. This
quantity is much smaller than 1, whereas the denominator√〈Dj 〉〈Dj ′ 〉, which is also the first term at the right-hand
side of Eq. (31), is comparable with 1 as the ground-state
correlations factors 〈Dj 〉 are not much smaller than 1.
Therefore the last term at the right-hand side of Eq. (31) can
be safely neglected so that

〈DjDj ′ 〉√〈Dj 〉〈Dj ′ 〉 � √〈Dj 〉〈Dj ′ 〉. (33)

Consequently, the ratio 〈DjDj ′ 〉/〈Dj 〉 in the sum over j ′ at the
right-hand side of Eq. (28) can be simply approximated with
〈Dj ′ 〉.1 In this case Eq. (28) takes the same level-independent
form as that of Eq. (22) for the RBCS gap except that the
single-particle energies in uj ′ and vj ′ are now given by Eq. (29).
In the rest of the article, such level-independent approximation
for the pairing gap is assumed, whose numerical accuracy is
checked in the Appendix.

1In Refs. [4,5] the factorization 〈NjNj ′ 〉 � 〈Nj 〉〈Nj ′ 〉 (j = p, h)
was straightforwardly used to close the SCRPA equations because
〈Nh〉〈Nh′ 〉, whose value in the Hartree-Fock (HF) limit is 4, is much
larger than the particle-number fluctuation (δNh)2 = 2fh(1 − fh).
This is no longer the case for quasiparticle numbers, where (δNj )2

are of the same order with 〈Nj 〉2.
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C. Lipkin-Nogami method with SCQRPA correlations

The main drawback of the BCS is that its wave function is
not an eigenstate of the particle-number operator N̂ . The BCS,
therefore, suffers from an inaccuracy caused by the particle-
number fluctuations. The collapse of the BCS at a critical
value Gcr of the pairing parameter G, below which it has only
a trivial solution with zero pairing gap, is intimately related
to the particle-number fluctuations within BCS [11]. This
defect is cured by projecting out the component of the wave
function that corresponds to the right number of particles. The
Lipkin-Nogami (LN) method is an approximated PNP, which
has been shown to be simple and yet efficient in many realistic
calculations (see Ref. [18] for a recent detailed clarification
of the use of the LN method). This method, discussed in
detail in Refs. [10,11], is a PNP before variation based on the
BCS wave function, therefore the Pauli principle between the
quasiparticle-pair operators Eq. (10) is still neglected within
the original version of this method. In the present work, to
restore the Pauli principle we propose a renormalization of the
LN method, which we refer to as the renormalized LN (RLN)
method or LN method with SQRPA correlations (LN1) when
they are based on the RBCS or BCS1, respectively. Similarly to
the BCS1 (RBCS), the LN1 (RLN) includes the quasiparticle
correlations in the correlated ground state |0̄〉, and the LN1
(RLN) equations are obtained by carrying out the variational
calculation to minimize Hamiltonian H̃ ≡ H ′ − λN̂ − λ2N̂

2.
The LN1 equations obtained in this way have the form

�̃ = G
∑

j

τ̃j , N = 2
∑

j

ρ̃j , (34)

ε̃j = ε′
j + (4λ2 − G)ṽ2

j , λ = λ1 + 2λ2(N + 1), (35)

where

τ̃j = ũj ṽj 〈Dj 〉, ρ̃j = ṽ2
j 〈Dj 〉 + 1

2 (1 − 〈Dj 〉), (36)

ũ2
j = 1

2

(
1 + ε̃j − λ

Ẽj

)
, ṽ2

j = 1

2

(
1 − ε̃j − λ

Ẽj

)
,

(37)

Ẽj =
√

(ε̃j − λ)2 + �̃2.

The coefficient λ2 has the following form [19]

λ2 = G

4

∑
j (1 − ρ̃j )τ̃j

∑
j ′ ρ̃j ′ τ̃j ′ − ∑

j (1 − ρ̃j )2ρ̃2
j[∑

j ρ̃j (1 − ρ̃j )
]2 − ∑

j (1 − ρ̃j )2ρ̃2
j

, (38)

which becomes the expression given in the original article [11]
of the LN method in the limit of 〈Dj 〉 = 1 and ε′

j = εj . The
internal energy obtained within the LN1 ground state (the LN1
ground-state energy) is given as

ELN1
g.s. = 2

∑
j

(εj − λ)ρ̃j − �̃2

G
− G

∑
j

ρ̃2
j − λ2�N2, (39)

where the expression for the particle-number fluctuation �N2

in terms of ũj , ṽj , and nj ≡ (1 − 〈Dj 〉)/2 has been derived in
Ref. [14]. The LN1 equations becomes the RLN equations by
replacing the renormalized single-particle energies ε′

j defined
in Eq. (29) with εj . The RLN equations return to the BCS ones
in the limit case, when λ2 = 0 and 〈Dj 〉 = 1.

D. SCQRPA equations

1. QRPA

The QRPA excited state |ν〉 is constructed by acting the
QRPA operator Q†

ν

Q†
ν =

∑
j

(
Xν

jA
†
j − Y ν

j Aj

)
, Qν = (Q†

ν)†, (40)

on the QRPA ground state |0〉 as

|ν〉 = Q†
ν |0〉, (41)

where |0〉 is defined as the vacuum for the operator (40), i.e.,

Qν |0〉 = 0. (42)

The QBA assumes the following relation

〈0|[Aj ,A†
j ′ ]|0〉 = δjj ′ . (43)

Within the QBA the QRPA amplitude Xν
j and Y ν

j obey the
well-known normalization (orthogonality) conditions∑

j

(
Xν

j X
ν ′
j − Y ν

j Y ν ′
j

) = δνν ′ , (44)

to guarantee that the QRPA operators (40) are bosons, i.e.,

〈0|[Qν,Q
†
ν ′ ]|0〉 = δνν ′ . (45)

By linearizing the equation of motion with respect to Hamilto-
nian (7) and operators (40), the set of linear QRPA equations
is derived and presented in the matrix form as follows(

A B

B A

) (
Xν

j

Y ν
j

)
= ων

(
Xν

j

−Y ν
j

)
, (46)

where the QRPA submatrices are given as

Ajj ′ = 2(bj + 2qjj ′ )δjj ′ + djj ′ , (47)

Bjj ′ = 2(1 − δjj ′ )hjj ′, (48)

and the eigenvalues ων ≡ Eν − E0 are the energies Eν of the
excited states relative to that of the ground-state level, E0. The
QRPA ground-state energy is given as the sum of the BCS
ground-state energy EBCS

g.s. and the QRPA correlation energy as
follows [2,20]

EQRPA
g.s = EBCS + 1

2

∑
ν

ων −
∑

j

Ajj

 . (49)

2. Renormalized QRPA

To restore the Pauli principle, the QRPA is renormalized
based on Eq. (19) instead of the QBA (43). The RQRPA
operators are introduced as [20]

Q†
ν =

∑
j

1√〈Dj 〉
(
X ν

j A
†
j − Yν

j Aj

)
, Qν = (Q†

ν)†, (50)

which are bosons within the quasiparticle correlated ground
state |0̄〉, i.e.,

〈0̄|[Qν,Q†
ν ′ ]|0̄〉 = δνν ′ , (51)
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if the X ν
j and Yν

j amplitudes satisfy the same orthogonality
conditions (44), namely∑

j

(
X ν

j X ν ′
j − Yν

j Yν ′
j

) = δνν ′ . (52)

The RQRPA submatrices are given as

Ajj ′ = 2

bj + 2qjj ′ + 2
∑
j ′′

qjj ′′

(
1 − 〈DjDj ′′ 〉

〈Dj 〉
) δjj ′

+ djj ′
〈DjDj ′ 〉√〈Dj 〉〈Dj ′ 〉 , (53)

Bjj ′ = 2hjj ′

(
〈DjDj ′ 〉√〈Dj 〉〈Dj ′ 〉 − δjj ′

)
. (54)

The ground-state correlation factor 〈Dj 〉 has been derived as
a function of the backward-going amplitudes Yν

j (see, e.g.,
Refs. [3,20]) as

〈Dj 〉 = 1

1 + ∑
ν

(
Yν

j

)2 , (55)

whose values are found by consistently solving Eq. (55) with
the RQRPA equations under the orthogonality condition (44)
for X ν

j and Yν
j amplitudes. In the limit of 〈Dj 〉 = 1, one

recovers from Eqs. (53) and (54) the QRPA matrices (47)
and (48).

3. SCQRPA and Lipkin-Nogami SCQRPA

The only difference between the SCQRPA and the RQRPA
is that, similarly to the SCRPA [4–6], the SCQRPA includes
the screening factors, which are the expectation values of
the pair operators 〈A†

j ′Aj 〉 and 〈Aj ′Aj 〉 over the correlated
quasiparticle ground state |0̄〉. The SCQRPA operators are
defined in the same way as that for the RQRPA ones so is
the correlated ground state. Therefore we use for it the same
notation |0̄〉, having in mind the above-mentioned difference
due to screening factors.

The SCQRPA submatrices are obtained in the following
form

Ajj ′ = 2

[
bj + 2qjj ′ + 2

∑
j ′′

qjj ′′

(
1 − 〈DjDj ′′ 〉

〈Dj 〉
)

− 1

〈Dj 〉
( ∑

j ′′
djj ′′ 〈A†

j ′′Aj 〉 + 2
∑
j ′′

hjj ′′ 〈Aj ′′Aj 〉
)]

δjj ′

+ djj ′
〈DjDj ′ 〉√〈Dj 〉〈Dj ′ 〉 + 8qjj ′

〈A†
jAj ′ 〉√〈Dj 〉〈Dj ′ 〉 , (56)

Bjj ′ = −2

[
hjj ′ + 1

〈Dj 〉
( ∑

j ′′
djj ′′ 〈Aj ′′Aj 〉

+ 2
∑
j ′′

hjj ′′ 〈A†
j ′′Aj 〉

)]
δjj ′

+ 2hjj ′
〈DjDj ′ 〉√〈Dj 〉〈Dj ′ 〉 + 8qjj ′

〈AjAj ′ 〉√〈Dj 〉〈Dj ′ 〉 , (57)

where the screening factors 〈A†
jAj ′ 〉 and 〈AjAj ′ 〉 are given in

terms of the amplitudes X ν
j and Yν

j as

〈A†
jAj ′ 〉 ≡ 〈0̄|A†

jAj ′ |0̄〉 = √〈Dj 〉〈Dj ′ 〉
∑

ν

Yν
j Yν

j ′ , (58)

〈AjAj ′ 〉 ≡ 〈0̄|AjAj ′ |0̄〉 = √〈Dj 〉〈Dj ′ 〉
∑

ν

X ν
j Yν

j ′ . (59)

The right-hand sides of Eqs. (58) and (59) are obtained by
using the inverted transformation of Eq. (50), namely

A†
j = √〈Dj 〉

∑
ν

(
X ν

j Q†
ν + Yν

j Qν

)
, (60)

and Eq. (51).
For the internal (ground-state) energy, the relation (49)

no longer holds due to the presence of the ground-state
correlation factors 〈Dj 〉 in the SCQRPA equations. Therefore,
the SCQRPA ground-state energy is calculated directly as the
expectation value of the Hamiltonian (7) in the correlated
quasiparticle ground state, namely

ESCQRPA
g.s. = 〈0̄|H |0̄〉 = a +

∑
j

bj (1 − 〈Dj 〉)

+
∑
jj ′

djj ′ 〈A†
jAj ′ 〉 +

∑
jj ′

hjj ′(〈A†
jA

†
j ′ 〉

+ 〈Aj ′Aj 〉) +
∑
jj ′

qjj ′ 〈(1 − Dj )(1 − Dj ′ )〉. (61)

In the numerical calculations in the present article the exact
ratios 〈DjDj ′ 〉/√〈Dj 〉〈Dj ′ 〉 in the RQRPA and SCQRPA
submatrices (53), (54), (56), and (57) are calculated within
the approximation (33), whose accuracy within the SCQRPA
is numerically tested in the Appendix.

Concerning the SCQRPA ground-state energy, by using
Eq. (30) and relation (32), the last term at the right-hand side
of Eq. (61) can be approximated as∑

jj ′
qjj ′ 〈(1 −Dj )(1 −Dj ′ )〉 �

∑
jj ′

qjj ′ (1 − 〈Dj 〉)(1 − 〈Dj ′ 〉)

+
∑

j

qjj (δNj )2 = −G�

4

[∑
jj ′

(1 − 〈Dj 〉)(1 − 〈Dj ′ 〉)
EjEj ′

+
∑

j

1 − 〈Dj 〉2

2E2
j

]
. (62)

The set of Eq. (24) (for uj and vj ) with the renormalized
single-particle energies ε′

j (29) replacing εj , Eq. (46) with
submatrices (56), (57), and Eq. (52) (for the amplitudesX ν

j ,Yν
j

and energies ων), together with Eq. (55) (for the ground-state
correlation factors 〈Dj 〉) forms a set of coupled nonlinear
equations for uj , vj ,X ν

j ,Yν
j , ων , and 〈Dj 〉. This set is solved

by iteration in the present article to ensure the self-consistency
with the SCQRPA. Neglecting the screening factors (58)
and (59) the SCQRPA is reduced to the RQRPA, and the
SCQRPA correlated ground state |0̄〉 becomes the RQRPA
ground state.

The Lipkin-Nogami SCQRPA (LNSCQRPA) equations
have the same form as that of the SCQRPA ones given in
Eqs. (56) and (57), but the chemical potential and coefficients
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FIG. 1. (Color online) Pairing gaps � as functions of G for N =
10. The dotted, thin, and thick dash-dotted lines denote the BCS,
RBCS, and BCS1 results, respectively, whereas the dashed, thin,
and thick dash-double-dotted lines represent the LN, RLN, and LN1
results, respectively.

of the Bogoliubov transformation are determined by solving
the LN1 gap equations (34) and (35) instead of the BCS ones.

III. ANALYSIS OF NUMERICAL CALCULATIONS

We carried out the calculations of the ground-state energy,
Eg.s, and energies of excited states, ων ≡ Eν − E0, in the
quasiparticle representation using the BCS, QRPA, SCQRPA
as well as their renormalized and PNP versions, namely the
RBCS, BCS1, LN, RLN, LN1, LNQRPA, and LNSCQRPA, at
several values of particle number N . The detailed discussion is
given for the case with N = 10. In the end of the discussion we
report a comparison among results obtained for N = 4, 6, 8,
and 10 to see the systematic with increasing N .

A. Pairing gap

Shown in Fig. 1 are the pairing gaps obtained within the
BCS, RBCS, BCS1, LN, RLN, and LN1 as functions of the
pairing-interaction parameter G for N = 10. Similarly to
the two-level case [20], the BCS has only a trivial solution
�BCS = 0 at G � GBCS

cr = 0.34 MeV, whereas at G > GBCS
cr

the gap �BCS increases with G. Within the BCS1 (RBCS)
the ground-state correlation factor 〈Dj 〉 is always smaller than
1 (at G �= 0). This shifts up the value of the critical point
Gcr to GRBCS

cr � 0.38 MeV, and GBCS1
cr � 0.47 MeV so that

GBCS
cr < GRBCS

cr < GBCS1
cr . The PNP within the LN method

completely smears out the BCS and BCS1 (RBCS) critical
points to produce the pairing gap �LN as a smooth function
of G, which increases with G starting from its zero value at
G = 0. It is worth noticing that, whereas the BCS1 and RLN
gaps are smaller than the BCS one at a given G, especially for
the BCS1 gap at G � GBCS1

cr , the increases of the gap offered
by the LN1 and RLN compared to the LN value are negligible
at all G.

B. Ground-state energy

Shown in Fig. 2 are the results for the ground-state energies
obtained within the BCS, LN, SCRPA, QRPA, LNQRPA,
SCQRPA, and LNSCQRPA in comparison with the exact
one for N = 10. The exact result is obtained by directly
diagonalizing the Hamiltonian in the Fock space [21]. It is
seen that the BCS strongly overestimates the exact solution.
The LN result comes much closer to the exact one even
in the vicinity of the BCS (QRPA) critical point, whereas
the QRPA (RPA) result agrees well with the exact solution
only at G � GBCS

cr (G � GBCS
cr ). The improvement given by

the SCRPA is significant as its result nearly coincides with
the exact one in the weak coupling region. However, the
convergence of the SCRPA solution is getting poor in the
strong coupling region. As a result, only the values up to

N = 10

0 0.2 0.4 0.6
G   (MeV)

-31

-30

-29

-28

-27

-26

-25

E
g

.s
.
 (

M
e
V

)

N = 10

0.2 0.4 0.6 0.8
G   (MeV)

0

(a) (b)

FIG. 2. (Color online) Ground-state energies as functions of G for N = 10. The exact result is represented by the thin solid line in both
(a) and (b). In (a), the dotted line denotes the BCS result, the thin dashed line stands for the LN result, the dash-dotted line shows the pp

RPA result at G � GBCS
cr , and the QRPA one at G > GBCS

cr , whereas the dash-double-dotted line depicts the LNQRPA result. Predictions by
self-consistent approaches are plotted in (b), where the thick dashed line denotes the SCRPA result, whereas the SCQRPA and LNSCQRPA
are shown by the thick solid and double-dash-dotted lines, respectively.
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G � 0.46 MeV are accessible. The SCQRPA is much better
than the QRPA as it fits well the exact ground-state energy
at G � GBCS1

cr . The LNQRPA strongly underestimates the
exact solution, whereas the LNSCQRPA, which includes the
effects due to the screening factors in combination with PNP,
significantly improves the overall fit. From this analysis, we
can say that, among all the approximations undergoing the test
to describe simultaneously the ground and excited states, the
SCRPA, SCQRPA, and LNSCQRPA can be selected as those
which fit best the exact ground-state energy. The LN method
based on the BCS (thin dashed line) also fits quite well the
exact one at all G but it does not allow to describe the excited
states as the approaches based on the QRPA do. Although the
fit offered by the LNSCQRPA in the vicinity of the critical
point is somewhat poorer than those given by the SCRPA
and the SCQRPA, its advantage is that it does not suffer any
phase-transition point due to the violation of particle number
as well as the Pauli principle.

The corrections due to ground-state correlations can also
be clearly seen by examining the energy difference

�E ≡ Eg.s.(G) − Eg.s.(0) (63)

between the ground-state energies defined at finite and zero
G.2 The values of this energy difference as predicted by the
QRPA, SCQRPA, LNQRPA, and LNSCQRPA for the system
with N = 10 at various G are compared with the exact ones
in Table I. It is seen from this table that, although in the
weak coupling regime (GBCS

cr � G � 0.8 MeV) the QRPA and
SCQRPA predictions for this energy difference are closer to the
exact result, at high G the SCQRPA and LNSCQRPA are the
ones that offer the better fits for this quantity. The LNQRPA, on
the contrary, offers a quite poor fit for �E to the exact result.

More quantitative calibrations can be seen by analyzing the
relative errors

δE(a) = �E(approx) − �E(exact)

�E(exact)
, and

(64)

δE(b) = E(approx) − E(exact)

E(exact)
,

which are shown in Table II. Because �E(exact) are quite small
at small G, the relative errors δE(a) are quite large in the weak-
coupling region. In this respect the relative error δE(b) turns
out to be a better calibration. Although δE(a) decreases as G

increases for all approximations with the LNSCQRPA having
the smallest relative errors at large G, the behavior of δE(b) on
G is somewhat different depending on the approximation. A
decrease of this quantity is seen within the QRPA and SCQRPA

2Within the RPA and SCRPA, where the mean field is the HF
one, �E coincides with the correlation energy Ecorr ≡ Eg.s. − EHF

because E(exact)
g.s. (0) = EHF, (f HF

p = 0, f HF
h = 1). Within the quasipar-

ticle formalism, however, Ecorr is defined as the difference between
the QRPA (LNQRPA, SCQRPA, LNSQRPA) ground-state energy
and that given within the BCS (LN, LN1) method. This Ecorr is quite
different from �E in the strong-coupling regime because of the large
pairing gap. Therefore we find more appropriate in the quasiparticle
representation to compare the approximated and exact energies �E

(63) rather than Ecorr.

TABLE I. The energy difference �E ≡ Eg.s.(G) − Eg.s.(0) at
various G (in MeV) as predicted by the QRPA, SCQRPA, LNQRPA,
LNSCQRPA, and exact solutions for N = 10.

G QRPA SCQRPA LNQRPA LNSCQRPA Exact

0.10 −0.05 −0.06 −0.04
0.20 −0.24 −0.28 −0.17
0.30 −0.63 −0.69 −0.44
0.35 −0.93 −0.91 −0.94 −0.64
0.40 −1.00 −1.26 −1.21 −0.90
0.47 −1.38 −1.44 −1.86 −1.66 −1.36
0.50 −1.60 −1.66 −2.16 −1.88 −1.60
0.60 −2.53 −2.58 −3.34 −2.80 −2.56
0.70 −3.70 −3.75 −4.76 −3.96 −3.76
0.80 −5.09 −5.13 −6.39 −5.33 −5.17
0.90 −6.65 −6.68 −8.19 −6.87 −6.75
1.00 −8.34 −8.38 −10.13 −8.56 −8.46
1.10 −10.15 −10.18 −12.19 −10.37 −10.29
1.20 −12.05 −12.08 −14.33 −12.27 −12.22
1.30 −14.03 −14.06 −16.55 −14.25 −14.22
1.40 −16.06 −16.10 −18.84 −16.30 −16.28

with increasing G up to G = 0.7 MeV, and an increase with
G takes place at large G. For the LNSCQRPA, the relative
error δE(b) increases first with G up to G = 0.4 MeV, then
decreases at larger G. Within LNQRPA one sees a steady
increase of δE(b) with G to reach a value as large as 6.2% at
G = 1.4 MeV.

The quantities that are directly defined by the differences
of ground-state energies are the chemical potentials λ± and λ,
namely

λ+ = 1
2 [Eg.s.(N + 2) − Eg.s.(N )],

λ− = 1
2 [Eg.s.(N ) − Eg.s.(N − 2)], (65)

λ = 1
2 (λ+ + λ−).

The exact values of the chemical potentials λ and λ± are
shown in Fig. 3 in comparison with the predictions within
quasiparticle presentations for N = 10. It is seen from this
figure that the SCRPA and SCQRPA [Fig. 3(d)–3(f)] offer
the best fit to the exact results except that the SCRPA
poorly converges at G > 0.4 MeV, whereas SCQRPA stops
at G = GBCS1

cr . The RPA and QRPA also describe very well
the exact results, except the values in the critical region, where
the RPA and QRPA diverge. The LNSCQRPA predictions for
the chemical potentials show smooth functions at all G, which
fit well the exact results, including the region around Gcr,
where they slightly underestimates the exact ones.

C. Energies of excited state

As has been discussed in Refs. [9,20], the first solution ω1

of the QRPA or SCQRPA equations is the energy of spurious
mode, which is well separated from the physical solutions ων

with ν � 2. The first excited state energy is therefore given by
ω2. Figure 4 shows the exact eigenvalues for the excited states.
As has also been demonstrated in Ref. [22], this figure shows
that the coupling in the small-G region causes only small
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TABLE II. Relative errors δE(a) and δE(b) from Eq. (64) at various G as predicted by the QRPA, SCQRPA, LNQRPA,
and LNSCQRPA for N = 10.

G (MeV) δE(a)(%) δE(b)(%)

QRPA SCQRPA LNQRPA LNSCQRPA QRPA SCQRPA LNQRPA LNSCQRPA

0.10 25.00 50.00 0.04 0.08
0.20 41.18 64.71 0.28 0.44
0.30 43.18 56.82 0.75 0.98
0.35 43.51 42.19 46.88 1.13 1.05 1.17
0.40 11.11 40.00 34.44 0.39 1.39 1.20
0.47 1.47 5.88 36.76 22.06 0.08 0.30 1.90 1.14
0.50 0.00 3.75 35.00 17.50 0.00 0.23 2.11 1.05
0.60 1.17 0.78 30.47 9.37 0.11 0.07 2.83 0.87
0.70 1.60 0.27 26.60 5.32 0.21 0.03 3.48 0.70
0.80 1.55 0.77 23.60 3.09 0.27 0.13 4.04 0.53
0.90 1.48 1.04 21.33 1.78 0.32 0.22 4.54 0.38
1.00 1.42 0.95 19.74 1.18 0.36 0.24 4.99 0.30
1.10 1.36 1.07 18.46 0.78 0.40 0.31 5.38 0.23
1.20 1.39 1.15 17.27 0.41 0.46 0.38 5.67 0.13
1.30 1.34 1.13 16.39 0.21 0.48 0.41 5.94 0.08
1.40 1.35 1.11 15.72 0.12 0.53 0.44 6.20 0.05

perturbations in the single-particle levels. With increasing G

the system goes to the crossover regime, where level splitting
and crossing are seen, releasing the levels’ degeneracy. In
the strong coupling regime the levels coalesce into narrow
well-separated bands. The approaches based on the QRPA
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FIG. 3. (Color online) Chemical potentials λ and λ± as functions
of G for N = 10 as predicted by the exact solutions, RPA, QRPA,
SCRPA, SCQRPA, and LNSCQRPA. Notations are as in Fig. 2.

with PNP within the LN method also splits the levels but the
nature of the splitting comes from the two components within
the QRPA operator (40), which correspond to the addition
and removal modes, respectively, in the RPA limit. When the
pairing gap � is finite, it is not possible to consider the QRPA
excitations as purely addition or removal modes but only as
those with some components having the dominating property
inherent to one of these modes. The QRPA eigenvalues also
have two branches with positive ων and negative −ων energies.
However, unlike the pp RPA, where the negative eigenvalues
in the equations for addition modes are also physical as they
are the energies of the removal modes taken with the minus
sign and vice versa, within the QRPA only the positive energies
ων are physical, and they are compared with the exact ones,
Eex

ν ≡ Eν(N ) − E0(N ), in the present article.
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FIG. 4. Exact energies Eex
ν ≡ E ex

ν (N ) − E ex
0 (N ) obtained within

the Richardson model for excited states ν relative to the exact ground-
state level E ex

0 as functions of G for N = 10.
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FIG. 5. (Color online) The energies of the first excited state as
functions of G at N = 10. The results refer to the exact solution,
Eex

1 (solid line), the QRPA solution, ω
QRPA
2 (dash-dotted line), the

SCQRPA solution, ωSCQRPA
2 (thick solid line), the LNQRPA solutions,

ω
LNQRPA
2 (thin dash–double-dotted line), and ω

LNQRPA
3 (thick dash–

double-dotted line), as well as the LNSCQRPA solutions, ω
LNSCQRPA
2

(thin double-dash–dotted line), and ω
LNSCQRPA
3 (thick double–dash-

dotted line).

As an example to illustrate this level-splitting pattern, we
show in Fig. 5 the exact energy Eex

1 ≡ E1(N ) − E0(N ) of
the lowest excited state (ν = 1) with respect to the exact
ground state (ν = 0 ) in the system with N = 10 particles in
comparison with the predictions within the QRPA, LNQRPA,
SCQRPA, and LNSCQRPA.3 As the exact energy Eex

1 repre-
sents the energy of the lowest pair-vibration state, it is com-
pared with the energies ω1 of the lowest excited state obtained
within QRPA, LNQRPA, SCQRPA, and LNSCQRPA, which
are built on the pairing condensate (quasiparticle vacuum).
The splitting is clearly seen from Fig. 5 within the LN method,
namely the LNQRPA and LNSCQRPA. One can see that,
within the LN(SC)QRPA, each single level at G = 0 splits into
two components in the small-G region, e.g., the pair ω

LNQRPA
2

and ω
LNQRPA
3 or ω

LNSCQRPA
2 and ω

LNSCQRPA
3 . To look inside the

source of the splitting, we rewrite the QRPA operator (40) into
the components with dominating contributions of addition-
and removal-mode patterns as follows:

Q†
ν = (Q†

ν)(A) + (Q†
ν)(R),

(Q†
ν)(A) =

∑
p

Xν
pA†

p −
∑

h

Y ν
hAh, (66)

(Q†
ν)(R) =

∑
h

Xν
hA

†
h −

∑
p

Y ν
pAp,

where the indices j run over all the levels, from which those
located below (above) the chemical potential are formally

3For the two-level case Eex
1 corresponds to the solid line in the

upper panel of Figs. 1 and 3–5 in Ref. [9] or Figs. 1–3 in Ref. [17]
for N = 4, 8, and 12).
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FIG. 6. The energies of the first excited state in different schemes
as functions of G for N = 10. The thin and thick dash–double-dotted
lines denote the second and third LNQRPA solutions, whereas the
thin and thick dotted lines stand for the absolute values of the
corresponding solutions within the LNQRPA1 scheme.

labeled with h (p) indices. It is not difficult to see that in
the RPA limit (or zero-pairing limit), (Q†

ν)(A) is transformed
into operator A†

ν that generates the addition modes, whereas
(Q†

ν)(R) becomes R†
ν that generates the removal modes (in

the standard notations for addition and removal operators
from Refs. [4–6]). Using this formal expression (66), we
derived the QRPA equations for the excitations generated by
operators (Q†

ν)(A) and (Q†
ν)(R), separately. The energies of the

corresponding first excited states from the resulting sets of
equations were calculated by using the LN method. We call
this scheme as LNQRPA1. The set of equations for the modes
generated by operator (Q†

ν)(A) gives a negative ω
LNQRPA1
2 and

positive ω
LNQRPA1
3 , which means that they correspond to the

energies of the removal and addition modes, respectively. The
absolute values of these energies are shown in Fig. 6 along with
ω

LNQRPA
2,3 . It is seen from this figure that in the weak-coupling

region the higher-lying levels ω
LNQRPA
3 and ω

LNQRPA1
3 nearly

coincide, whereas the lower-lying one, ω
LNQRPA
2 , is almost

the same as |ωLNQRPA1
2 |. From here, we can identify ω

LNQRPA
3

and ω
LNQRPA
2 as the levels where the addition and removal

modes dominate, respectively. As the interaction G increases,
the occupation probabilities of the levels below and above
the Fermi level become comparable so it becomes more and
more difficult to separate the patterns belonging to addition
and removal modes in the QRPA excitations.

From this analysis and Fig. 5, it becomes clear that, in the
weak coupling region, the level ω

LNQRPA
3 , which is generated

mainly by the addition mode, fits well the exact result, whereas
the agreement between the exact energy and ω

QRPA
2 as well as

ω
SCQRPA
2 is good only in the strong coupling region. At large

values of G, predictions by all approximations and the exact
solution coalesce into one band, whose width vanishes in the
limit G → ∞.
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FIG. 7. (Color online) Energies of ground state
(left panels) (notations as in Fig. 2) and first excited
state (right panels) (notations as in Fig. 5) for several
values of N indicated on the panels as functions of
G.

The energies of the ground state and the first excited state
obtained for N = 4, 6, 8 are depicted in Fig. 7. The figure
shows that increasing N worsens the agreement of the results
obtained within the LNQRPA and LNSCQPPA with the exact
ones for both the ground state and the first excited state,
whereas the QRPA and SCQRPA results become closer to
the exact ones at G � Gcr. At small N (N = 4), the solution
ω

LNQRPA
3 seems to fit best the exact result for all values of G.

The pair-vibration excitation energy Eex
1 is usually larger

than the energy of the lowest state with one broken pair. The
latter is described within the pp RPA as the energy of the lowest
addition mode in the laboratory reference frame fixed to the
ground state of N -particle system [4–6]. It is worthwhile to
compare the predictions for the excited-state energies obtained
within the quasiparticle approaches developed in the present
article with pp RPA and SCRPA predictions by transforming
the latter into the intrinsic reference frame of the system with
N + 2 particles. This is done as follows. From the (SC)RPA
energy of the ground-state level ω

(SC)RPA
0 = E (SC)RPA

0 (N +
2) − E (SC)RPA

0 (N ) and that of the first excited state ω
(SC)RPA
1 =

E (SC)RPA
1 (N + 2) − E (SC)RPA

0 (N )4 it follows that

�ω(SC)RPA ≡ ω
(SC)RPA
1 − ω

(SC)RPA
0

= E (SC)RPA
1 (N + 2) − E (SC)RPA

0 (N + 2), (67)

This energy �ω(SC)RPA is shown in Fig. 8 as a function of G

along with the corresponding LNQRPA, LNSCQRPA, and

4The energies ω
(SC)RPA
0 and ω

(SC)RPA
1 correspond to energies E1 and

E2 shown in Figs. 3 and 4 in Ref. [4], respectively.

exact energies for several values of N . This figure clearly
shows that the LNQRPA and LNSCQRPA are superior to the
pp RPA and SCRPA as they offer an overall prediction closer
to the exact result for all G and N . They neither collapse
at a Gcr as in the case with the pp RPA nor have a poor
convergence as the SCRPA does at G � Gcr.
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FIG. 8. (Color online) Energy �ω(SC)RPA (67) obtained within the
pp RPA (dash-dotted line) and SCRPA (thick solid line) as a function
of G for several values of N in comparison with the energy ω

LNQRPA
3

(dash–double-dotted line), ωLNSCQRPA
3 (double-dash–dotted line), and

the exact energy Eex
1 (thin solid line), which are the same as those in

Fig. 7(d)–7(f) for N = 4, 6, and 8.
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TABLE III. BCS1 and LN1 pairing gaps (in MeV) at various
values of G (in MeV) (see text).

G BCS1 LN1

� � δ�

�
(%) �̃ �̃ δ�̃

�̃
(%)

0.01 0.0015 0.0015 0.0000
0.10 0.0606 0.0607 0.1647
0.20 0.2279 0.2289 0.4369
0.30 0.5278 0.5321 0.8081
0.40 0.9579 0.9660 0.8385
0.47 0.8224 0.8357 1.5915 1.3139 1.3233 0.7103
0.50 1.0694 1.0829 1.2467 1.4742 1.4839 0.6537
0.60 1.7219 1.7351 0.7608 2.0261 2.0360 0.4862
0.70 2.3314 2.3436 0.5206 2.5896 2.5993 0.3617
0.80 2.9279 2.9391 0.3811 3.1541 3.1633 0.2908
0.90 3.5132 3.5235 0.2923 3.7148 3.7234 0.2310
1.00 4.0882 4.0977 0.2318 4.2701 4.2783 0.1917
1.10 4.6539 4.6629 0.1930 4.8197 4.8277 0.1657
1.20 5.2118 5.2203 0.1628 5.3641 5.3718 0.1433
1.30 5.7628 5.7710 0.1421 5.9037 5.9113 0.1286
1.40 6.3079 6.3160 0.1282 6.4390 6.4466 0.1179

IV. CONCLUSIONS

This work proposes a self-consistent version of the QRPA
in combination with particle-number projection within the
Lipkin-Nogami method as an approach that works at any
values of the pairing-interaction parameter G without suffering
a phase-transition-like collapse (or poor convergence) due to
the violation of Pauli principle as well as of the integral of
motion such as the particle number. The self-consistency is
maintained within a set of coupled equations for the pairing
gap, QRPA amplitudes, and energies by means of the screening
factors, which are the expectation values of the products of
quasiparticle-pair operators, and the ground-state correlation
factor, which is a function of the QRPA backward-going
amplitudes.

The proposed approach is tested in a multilevel exactly
solvable model, namely the Richardson model for pairing. The
energies of the ground and first-excited states are calculated
within several approximations such as the BCS, RBCS,

BCS1, LN, RLN, LN1, QRPA, SCQRPA, LNQRPA, and
LNSCQRPA. The obtained results for the ground-state energy
show that the use of the LN method that includes the SCQRPA
correlations not only allows us to avoid the collapse of the
BCS as well as the QRPA but also fits well the exact result.
For the energy of the first excited state, the LNQRPA and
LNSCQRPA results offer the best fits to the exact solutions
in the weak coupling region with large particle numbers,
whereas the QRPA and SCQRPA reproduce well the exact one
in the strong coupling region. In the limit of very large G all
the approximations predict nearly the same value as that of the
exact one. As the number of particles decreases, it becomes
sufficiently well to use the predictions given by the LNQRPA
and LNSCQRPA for energies of both the ground state and
first-excited state to fit the exact results.

We believe that the approach proposed in this work can be
useful in the applications to light and unstable nuclei, where
the validity of the QBA and that of the conventional BCS are
in question. Such applications are the goal for forthcoming
studies.
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APPENDIX: ACCURACY OF APPROXIMATION (33)

Let us analyze the accuracy of the assumption (33) used
in the numerical solutions of the BCS1, LN1, and SCQRPA
equations in the present article.

Shown in the second and fifth columns of Table III are
the values of the pairing gaps � and �̃ obtained under
the approximation (33) within the BCS1 and LN1 method,
respectively. They are compared with the average gaps �

(third column) and �̃ (sixth column), which are the values
obtained by averaging the level-dependent BCS1 gap �j and
LN1 gap �̃j over all the levels, namely � = ∑

j �j/N and

TABLE IV. The ratio (δNj )2/〈Dj 〉 from Eqs. (31) and (32) corresponding to the five
lowest levels j = 1, . . . , 5, and the energies ω3 (in MeV) of the first excited state described
in the text for N = 10 at different values of G (in MeV) within the LNSCQRPA. The energy
ω3(a) is obtained including the last term at the right-hand side of Eq. (31), whereas ω3(b) is
calculated using the approximation (33).

G j = 1 j = 2 j = 3 j = 4 j = 5 ω3(a) ω3(b)

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 2.0001 2.0001
0.2 0.0009 0.0012 0.0017 0.0027 0.0046 2.0697 2.0711
0.4 0.0023 0.0030 0.0040 0.0055 0.0082 2.6701 2.6742
0.6 0.0019 0.0023 0.0027 0.0032 0.0054 4.2040 4.2067
0.8 0.0013 0.0015 0.0016 0.0021 0.0033 6.1514 6.1531
1.0 0.0009 0.0010 0.0011 0.0015 0.0022 8.1798 8.1812
1.2 0.0006 0.0007 0.0009 0.0012 0.0017 10.211 10.212
1.4 0.0005 0.0006 0.0008 0.0011 0.0014 12.229 12.230
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�̃ = ∑
j �̃j /N . The second term at the right-hand side of

Eq. (31), which contains δN 2
j as evaluated by the approxima-

tion (32), is taken into account in calculating �j and �̃j within
the perturbation theory, i.e., with nj being evaluated within
SCQRPA and LNSCQRPA (where this term is neglected).
Except for the two values at G = GBCS1

cr = 0.47 MeV and G =
0.5 MeV within the BCS1, we see that the values of the relative
errors δ�/� ≡ (� − �)/� and δ�̃/�̃ ≡ (�̃ − �̃)/�̃ are all
smaller than 1%, and decrease with increasing G.

Shown in Table IV are the values of the ratio (δNj )2/〈Dj 〉
from Eqs. (31) and (32) corresponding to the five lowest levels

for N = 10 at various G obtained within the LNSCQRPA.
The largest value of this ratio is observed at the level with
j = 5, the closest one to the Fermi level, at G = 0.4 MeV
(close to GBCS1

cr ). But it amounts to only 0.0082, which is
a clear evidence that this ratio is indeed negligible. The
last two columns of this table display the energies ω3(a),
obtained within the LNSCQRPA, including the last term at the
right-hand side of Eq. (31), and ω3(b), which the LNSCQRPA
predicts within the approximation (33). Although a systematic
ω3(a) > ω3(b) is observed, the largest difference, also seen at
G = 0.4 MeV, does not exceed 0.15%. These results guarantee
the high accuracy of the approximation (33).
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